
Seminar (2019 April)

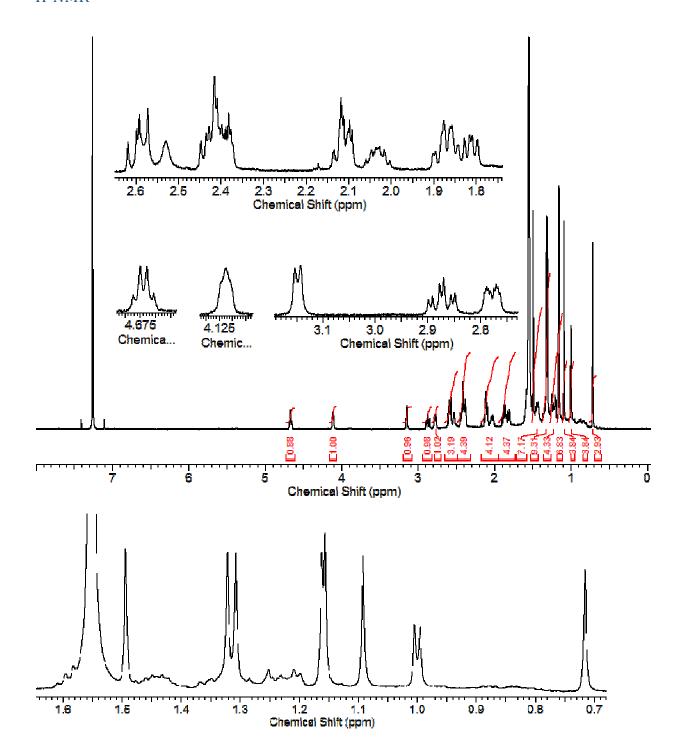
- 1. Which one you prefer? Why?
- 2. What eluant you will choose?

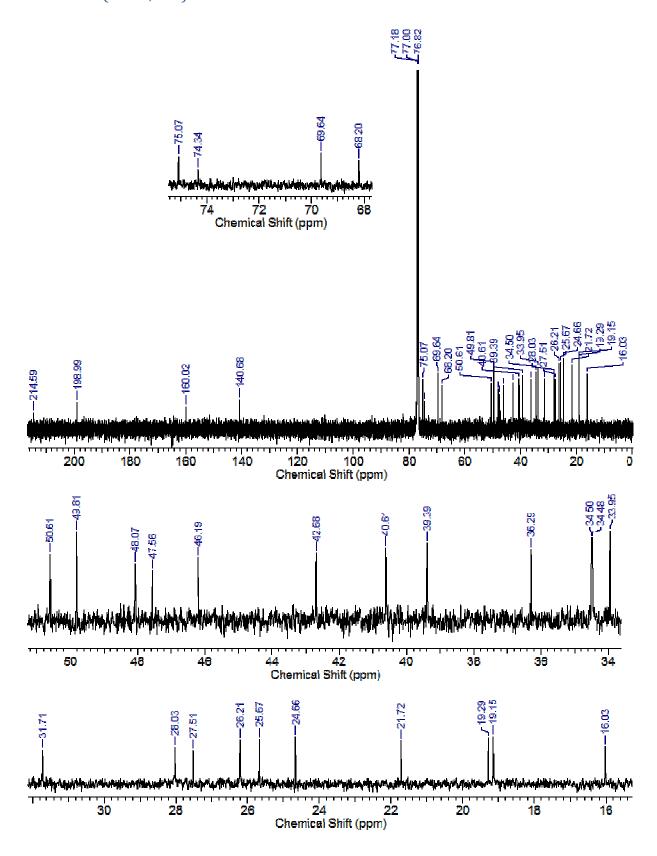
Make your choose and explain your choose with your experience or your theory.

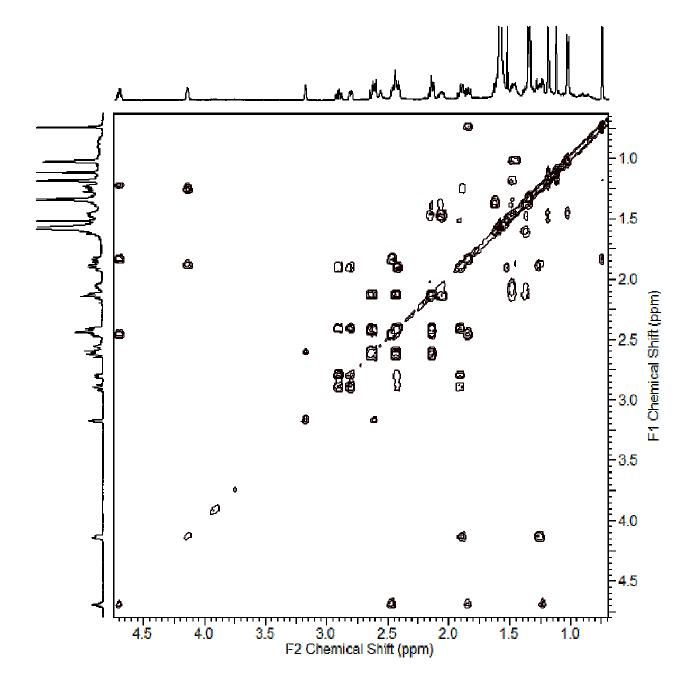
Question 2

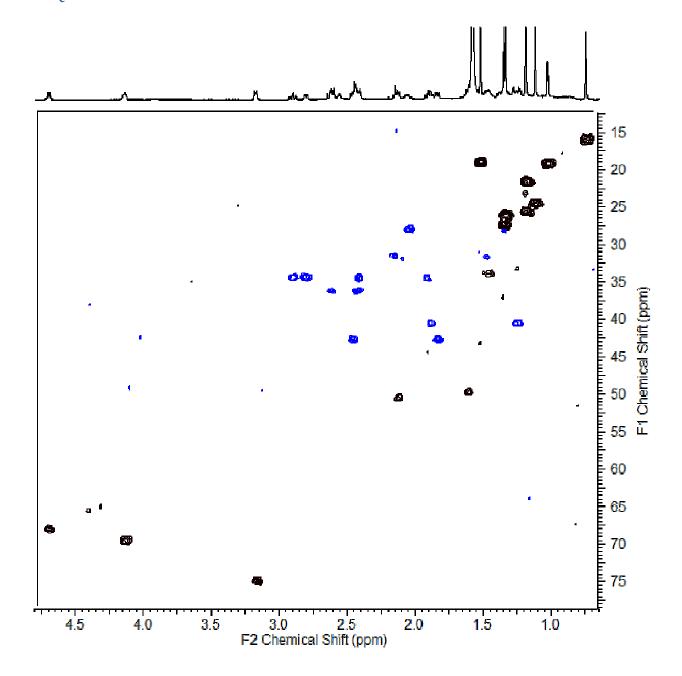
Compound Aa-12 (1) was obtained as white amorphous powder from fresh bark of *Ailanthus altissima* by Tian-Hui. The molecular formula of 1 was established as C_{30} H_{48} O_6 at m/z 527.3349 [M+Na]⁺ (Calcd 527.3348) in its HR-ESI-MS.

The $^{1}\text{H-}$ and ^{13}C NMR spectrum was attached (Table 1) and DEPT of **1** displayed signals attributed to 30 C atoms.

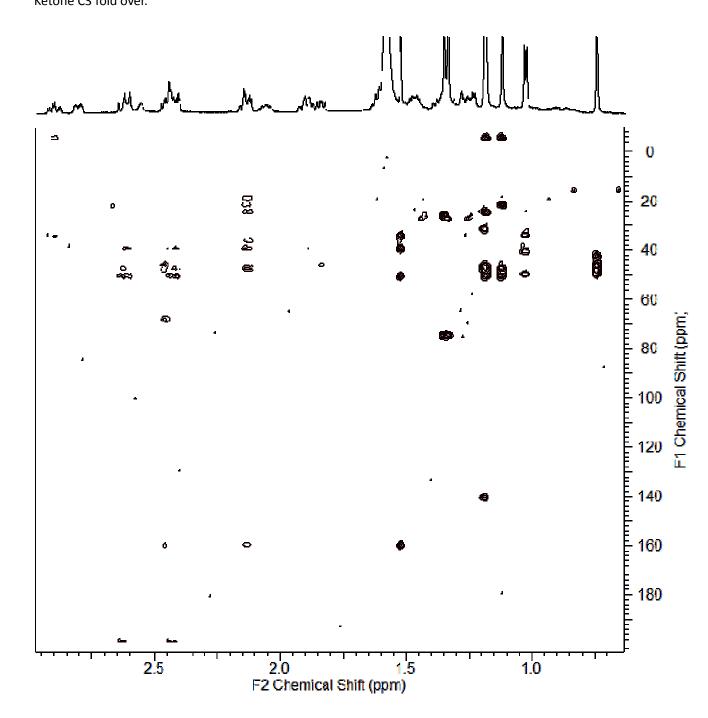

According to these information to deduce a reasonable structure for 1 and give your evident to support your proposed structure which must compatible with all the information.

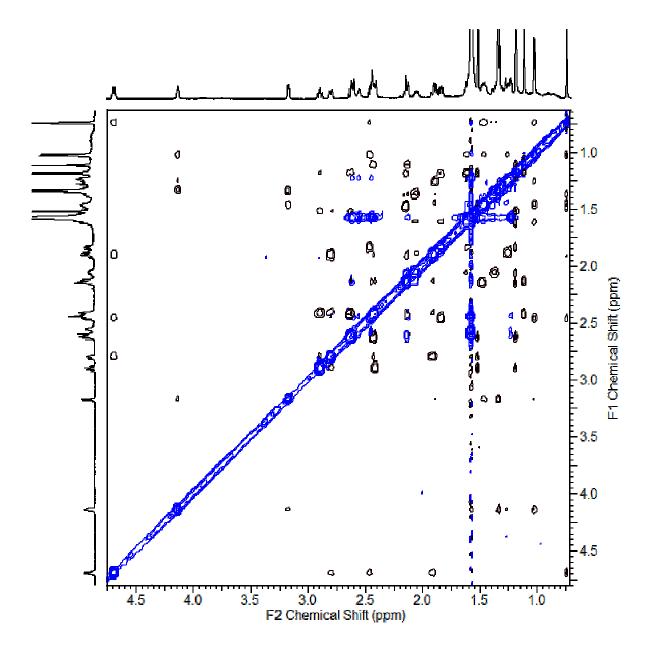

The structure depicted in Figure 1. is Right? and Why?


And how to prepare a manuscript with these data?

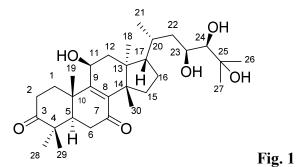

A friendly reminder:

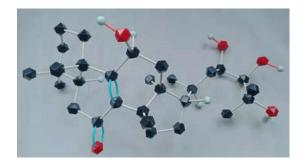
The ¹H- and ¹³C NMR spectroscopic pattern of **1** accommodated the same characteristics as that of attached reference [*Chemistry & Biodiiversity*, **2013**, *10*: 695-702.].





HMBC Ketone C3 fold over.


Table 1 NMR spectroscopic data of **1**in CDCl3, 700 MHz for ¹H and 175 MHz for ¹³C.


	С.				
Position	$\delta_{\mathrm{H}}(\mathrm{mult^a})$	J [Hz]	$\delta_{ m C}$	НМВС	NOESY ^b
1e	2.78 (ddd)	12.8, 5.1, 2.7	34.5	19	1a ^s , 11 ^m ,19 ^m
1a	1.88 (o)				
2a	2.88 (td)	14.9, 5.6	34.48		2e ^s , 1e ^m , 19 ^m , 29 ^m , 1a ^m
2e	2.40 (o)				
3			214.58	28, 29	
4			47.56	28, 29	
5	2.11 (o)		50.62	19, 28, 29	
6a	2.60 (dd)	18.5, 13.9	36.29		6e ^s , 19 ^s , 29 ^s
6e	2.42 (o)				
7			198.98		
8			140.67	30	
9			160.01	19	
10			39.39	19	
11	4.67 (q)	7.8	68.2		18 ^s , 12a ^m , 1e ^m , 1a/12 ^w
	1.20 (d)	7.6			
12a	2.45 (m)		42.69	18	11 ^m , 21 ^s
12b	1.81 (dd)	12.8, 8.4			
13			48.07 or 46.20	18, 30	
14			48.07 or 46.20	18, 30	
15a	2.13 (m)		31.71	30	
15b	1.46 (o)				
16a	2.01 (m)		28.03		
16b	1.35 (m)				
17	1.59 (o)		49.81	18, 21	30°, 21 ^w
18	0.72 (s)		16.04	12, 13, 14, 17	11°, 20°, 21°

19	1.50 (s)		19.16	1, 5, 9, 10	1e ^m , 2a ^m , 6a ^m , 29 ^s
20	1.44 (m)		33.96	21	18 ^s , 21 ^w , 24 ^w
21	1.00 (d)	6.4	19.29	17, 20, 22	12a ^s , 17 ^w , 18 ^s , 20 ^w , 23 ^s
22a	1.87 (m)		40.61	21	
22b	1.22 (m)				
23	4.11 (br.t)	5.7	69.64		27 ^s , 21 ^s
24	3.15 (d)	7.5	75.01	26, 27	26 ^s , 27 ^s , 20 ^w
25			74.33	26, 27	
26	1.33 (s)		27.51	24, 25, Me-27	24 ^s
27	1.31 (s)		26.21	24, 25, Me-26	23 ^s , 24 ^s
28	1.09 (s)		24.67	3, 4, 5, Me-29	
29	1.157 (s)		21.72	3, 4, 5, Me-28	6a ^m , 19 ^s
30	1.162 (s)		25.68	8, 13, 14, 15	17 ^s

a Multiplicity: s, singlet; d, doublet; dd, doublet of doublets; m, multiplet; o, overlapped.

b NOESY intensities are marked as strong (s), medium (m), or weak (w).

