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Microscale methodology for structure elucidation of natural
products
Tadeusz F Molinski
Advances in microscale spectroscopic techniques, particularly

microcryoprobe NMR, allow discovery and structure

elucidation of new molecules down to only a few nanomole.

Newer methods for utilizing circular dichroism (CD) have

pushed the limits of detection to picomole levels. NMR and CD

methods are complementary to the task of elucidation of

complete stereostructures of complex natural products.

Together, integrated microprobe NMR spectroscopy,

microscale degradation and synthesis, are synergistic tools for

the discovery of bioactive natural products and have opened

new realms for discovery among extreme sources including

compounds from uncultured microbes, rare invertebrates and

environmental samples.
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Introduction
Natural products, the small organic molecules produced

by many microbes, plants and invertebrates, are the

source of some 50% of modern drugs [1�]. New oppor-

tunities present themselves for natural product discovery

that take advantage of multi-pronged approaches to drug

discovery including high-throughput screening, gene

sequencing, metabolic engineering and synthetic biology

[2��,3��]. Modern molecular genetics now makes possible

the sequencing of entire genomes of organisms: the blue-

prints for all things living and, ostensibly the biosynthetic

masterplan of natural product structures. State-of-the-art

of sequencing of natural product biosynthetic genes and

predictive ‘gene gazing’ [4,5��] will no doubt eventually

enable structure elucidation from sequence and biosyn-

thetic context, alone. So far, however, the latter approach

has predicted the structures of only a few natural products

and falls short in applicability, partly due to the complex-
www.sciencedirect.com
ity of the multi-enzymatic pathways of secondary metab-

olism, which differ widely from one class of natural

product to another, and a lack of understanding of

detailed information of the respective enzymes, their

regulation and their capacities to channel substrates into

products. Consequently, even in the modern age, the

structures of natural products are largely still determined

by conventional protocols: integrated, systematic appli-

cation of spectroscopic methods (mass spectrometry; MS,

electronic spectroscopy; UV–vis, infrared spectroscopy;

IR, nuclear magnetic resonance; NMR, specific optical

rotation; [a]D, and circular dichroism; CD and X-ray

crystallography.

X-ray crystallography is the ultimate tool for molecular

structure determination. Regrettably, the majority of

natural products do not produce suitable X-ray quality

crystals, and integrated spectroscopic methods are still

the most practical means to structure elucidation. The

fundamental weak link in this chain is NMR, the most

powerful yet the least sensitive method. Nevertheless,

impressive accomplishments in structure determination

of extremely small sample amounts of natural products

have been realized, largely by ‘pushing the limits’ of the

prevailing NMR technology of the time. For example, the

structure elucidation of ciguatoxin — a complex poly-

ether toxin responsible for mass food poisonings from

ingestion of toxic fish — was completed in 1990 with only

0.3 mg of sample, purified from over two tons of fish

viscera, using 600 MHz NMR and room temperature

5 mm probes [6]. (For an informative review of this

and other representative examples of sub-milligram scale

natural product structure determinations, see Murata and

coauthors [7].)

Time-averaging of signal improves the detection limits of

NMR, but pragmatic concerns of instrument duty cycles

and time management do not allow indefinite signal

acquisition. Of greater concern is dynamic range — the

ability to detect sample signal over background signal

(solvent, impurities, etc.). Both concerns place bounds on

the practical limits of structure determination of natural

products of limited sample size. Until a few years ago, the

practical working limit was around a micromole

(10�6 mole, or �1 mg for a compound of molecular mass

of 1000), but recent revolutionary changes in NMR

instrumentation have pushed this limit down to only a

few nanomole (10�9 mole). The key developments in

commercial NMR instrumentation that have made this

possible include advent of smaller volume probes (1 mm

capillary probes and 1–1.7 mm microtube probes)
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coupled with cryogenically cooled preamplifier

electronics that reduce electronic noise (N) and increase

signal (S), respectively, with an attendant increase of 10–
20-fold in signal-to-noise ratio (S/N). Several recent

reviews showcase the advantages of cryomicroprobe

and capillary probe NMR in natural product studies

[8�,9,10]. Capillary NMR flow probes are particular

well-suited to integration with hyphenated LC–MS–
NMR platforms for high-throughput screening [11], or

rapid dereplication protocols [12], but dynamic range is

still a limitation, at least for the NMR component. As an

added advantage, capillary and cryomicroprobe NMR

spectroscopy can reveal previously hidden chemical

diversity of natural products within extracts from a single

organism by powerful coupling of component analysis by

high-dynamic range HPLC with NMR interrogation of

vanishingly small peaks.

While applications of multidimensional NMR methods

routinely reveal the molecular constitution formula of

natural products, no general solution exists to the problem

of assignment of relative and absolute configuration;

absolute stereostructures are elucidated on a case-by-case

basis. Circular dichroism (CD), a well-known biophysical

technique for protein secondary structure determination,

also boasts a long history in chiroptical analysis of organic

molecules. The advantages of CD over optical rotation

measurements for stereostructure assignment include high

sensitivity (low sample requirement) and linearity with

concentration (CD obeys the Beer–Lambert law). In

recent years, the refined numerical methods for calculation

of CD spectra by time-dependent density functional

theory (td-DFT) and low-cost computing power make

possible configurational assignments of natural products

by matching the measured spectra [13–16].

Lastly, after application of methods that secure the com-

plete structure of a nanomole of natural product, what can

one do with it? Preliminary biological evaluation may

require samples of several milligrams while preclinical

trials demand grams to kilograms. Here, the power of

modern gram-scale multi-step organic synthesis dovetails

nicely with nanomole-scale discovery of natural products.

For example, the first finding of discodermolide, a prom-

ising anticancer drug obtained from a rare deep-water

sponge, Discodermia dissoluta, resulted in only a 7 mg

yield. Recollections of the sponge with deep-water sub-

mersibles were not sustainable, however, the compound

was secured in 60 g amounts by total synthesis [17��].

HPLC and nanomole-scale NMR may also reveal unex-

pected chemodiversity and biodiversity among familiar

organisms. For example, the sponge-eating tropical dorid

nudibranch, Hexabranchus sanguineus — a shell-less sea-

slug also known as the ‘Spanish dancer’ — sequesters a

large amount of cytotoxic ‘trisoxazole’ macrolides (over

160 mg per slug! [18]), including kabiramide C [19].
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Narrowing the focus to the very minor components in

the extract leads to an unexpected finding: new modified

peptides sanguinamides A and B, in sub-milligram yields

[20]. Because H. sanguineus prefers a diet of trisoxazole-

containing sponges, the latter suggests a more complex

secondary metabolite input, perhaps other dietary

sponges that contain the new peptides.

Nano-mole scale natural product
chemistry — microcryoprobe NMR
Natural product chemistry, for the purpose of finding

therapeutic leads, is a screening strategy based upon num-

bers. High throughput screening platforms that assay large

panels of extracts, fractions or pure compounds against

clinically relevant screens that target disease is time effi-

cient strategy. Yet imperfections in screening protocols

may only favor identification of the ‘low hanging fruit’ and

lead to missed opportunities. These practical realities are

well appreciated by practitioners of the art, but missed drug

‘hits’ that fall below the thresholds of detection in screen-

ing campaigns may be repositories of those very interesting

new chemical entities (NCEs) — drug-like molecules with

unexpected, new chemical structures.

For the purposes of this review, the power of nanomole-

scale natural product discovery can be nicely illustrated

by the history of discovery compounds from a single sample
of a new species of marine sponge, Phorbas sp. which has

given rise to a remarkable number of unprecedented

compounds, including phorboxazoles, phorbasides,

hemi-phorboxazole and muironolide A. The structures

of phorboxazoles A (1) and B (2) (Figure 1), exquisitely

potent cytostatic agents with sub-nanomolar activity

against a range of tumor cell lines, were established from

NMR analysis using a 500 MHz NMR spectrometer

equipped with a conventional inverse-detection ‘room

temperature’ probe. Phorboxazoles were relatively plen-

tiful — about 180 mg (�0.2 mmole) from about 200 g of

sponge. The absolute stereostructures of 1 and 2 were

revealed from data obtained from a combination of 1D

and 2D NMR experiments [21], synthesis of model

analogs, Mosher’s ester derivatives [22], and — for C-

43 — degradation of the side-chain to (R)-tri-O-methyl

malate, followed chiral GC analysis [23]. Later, with

access to improved instrumentation (600 MHz, 5 mm

cryoprobe NMR), the unrelated phorbasides A (3), B

[24], C–E [25], were uncovered (0.1–2.7 mg) from minor

chromatography side-fractions. Chiroptical analysis of 3
by quantitative CD and comparison with prepared model

compounds of known configuration, were used to assign

the configurations of the remote stereocenters C-19, C-20

of the 2-chlorocyclopropane unit [24]. This assignment

was verified by the recent synthesis of phorbaside A (3) by

Paterson and Paquet [26].

In mid-2007, the first commercial 1.7 mm 600 MHz cryo-

microprobe became available, and the most minute fractions
www.sciencedirect.com
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Figure 1

‘Three generations’ of macrolide natural products from a single sample of the marine sponge, Phorbas sp.
from the Phorbas extract could be examined. Phorbasides F

(4) [27], G–I [28] (7–16 mg) were isolated along with two

unexpected molecules: muironolide A (5) [29] (90 mg) and

hemi-phorboxazole A (6, 16.5 mg, Figure 2). Muironolide A

is an unprecedented macro-triolide containing an 1H-iso-

indolin-1-one ring system, a trichloromethyl carbinol ester

and a 2-chlorocyclopropane, was shown to be opposite in

configuration to that of the phorbasides A and B [24].

Hemi-phorboxazole A (6) [30], the third member of the

phorboxazole family, was fully characterized from a total
sample of only 16.5 mg. Because 6 is approximately half the

molecular mass of 1, it is likely to arise as an oxidative

degradation product of phorboxazole A or biosynthesized

as a truncated polyketide, and terminated in a similar

manner to that of borrelidin, an a,b-unsaturated nitrile

produced by several species of Streptomyces [31,32]. With

the complete stereostructure of the natural product in

hand, a short synthesis of 6 [33] subsequently provided

milligrams of material, sufficient for biological evaluation.

In the course of these investigations, a practical NMR

method was refined for ‘in tube’ quantitation of natural

product samples [27], which proved useful for further

measurements of molar spectroscopic quantities (e.g.

UV–vis molar absorbtivity, e, or molar circular dichroism,

De) after quantitative sample recovery.

It is worth reminding that the provenance of the foregoing

compounds was a single specimen of Phorbas sp.; notable

for its rarity and lack of successful recollection [34�].
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Current trends in NMR development indicate that future

gains in S/N will be expected, particularly for insensitive

spins such as 15N and 13C. One promising technique,

although first described decades earlier, is dynamic

nuclear hyperpolarized NMR (DNP) [35,36] that exploits

the advantage of the large difference between ground

state and excited states of unpaired electron spins

(radicals), and transference of the population difference

to NMR active nuclei. Polarization of spin nuclei is

achieved in two stages: pumping rf energy into the

electron spin energy levels of a co-mixture of sample

and stable organic radical in a cryogenically frozen matrix

using microwave radiation (GHz). Favorable polarization

transfer populates the ground state (a) of the nuclear

spins and depopulates the excited state (b); a subsequent

rf pulse at the NMR frequency (MHz) results in greatly

improved NMR signal intensity, particularly for inher-

ently insensitive spins (up to 104-fold improvement in S/

N for 13C). Disadvantages of DNP NMR include the

expense of hardware (a separate microwave transmitter

and cryomagnet is required for ex situ polarization, and

pump lines for sample thawing and rapid transfer into a

separate NMR cryomagnet) and the ephemeral nature of

the hyperpolarized nuclear spin states. Only a limited

acquisition time window (�1 s) is available to measure

the NMR of ‘pumped’ nuclei before the spins return to

their equilibrium Boltzmann population. Nevertheless,

new pulse sequences for ultra-fast 2D NMR experiments

[37] partly overcome the limitation, and favor adaptation
Current Opinion in Biotechnology 2010, 21:819–826
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Figure 2
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(a) Hemi-phorboxazole A (6). (b) Structures of ‘proton-poor’ alkaloids (H/

C < 2) petrosamine (7) [39] and spiroleucettadine (8) [40].
of DNP to 2D 1H–13C NMR (HSQC, HMBC) of natural

product characterization [38]. One desirable application

of DNP is the enhancement of long-range heteronuclear
1H–13C HMBC correlations (4JCH, 5JCH) where limited

sample, lack of S/N and an unfavorable ratio of H/C in the

empirical formula militate against structure elucidation

by 2D NMR spectra. For example, both the polycyclic

alkaloids, petrosamine (7, Figure 2), from Petrosia sp. [39]

with formula C21H17BrClN3O2 (H/C = 0.8) and spiroleu-

cettadine (8), from Leucetta sp., (C20H23N3O4, H/C = 1.2)

are, ‘meager in H atoms’. Both compounds violate the so-

called ‘Crews Rule’; a required ratio H/C > 2 that allows a

sufficient number of 2D long-range heteronuclear corre-

lations to complete structure elucidation [40]. The correct

structures of both compounds, in fact, were solved by X-

ray crystallography.

Chiroptical techniques: circular dichroism and
absolute configuration
Optical rotation and circular dichroism are traditional

methods for the characterization of chiral optically active

natural products. Advance optical rotation, on the basis of

laser interferometry, can theoretically, allow detection of

picograms of material in low-volume samples (�12–
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40 nL) and low limits of detection of rotation (4 � 10�4

degrees) [41]. Detection of optical rotation, a, by laser

optical methods and flow techniques is adaptable to

HPLC for on-the-fly characterization of chiral molecules

[42,43]. Circular dichroism (CD) is observed when circu-

larly polarized light (CPL) passes through a solution of a

chiral, optically active compound whose molecular struc-

ture contains a chromophore. The advantages of CD over

polarimetry include high-sensitivity, and less interference

from solvent effects and birefringence artifacts. CD may

be thought of as differential molar absorptivity, De, of

chromophores absorbing left and right CPL according to

Eq. (1); the resultant light is elliptically polarized light

and simple linear relationship exists between De and

molar ellipticity, [u]. CD uses dilute solutions that obey

the Beer–Lamber law and is better suited than specific

rotation, [a], for quantitation. The so-called asymmetry

factor, g, (sometimes called ‘anisotropy factor’, Eq. (2)) is a

measure of the magnitude of De as a ratio of e and a

convenient measure of the ‘strength’ of dichroism in

chiral materials.

De ¼ eL � eR 3300De ¼ ½u� (1)

g ¼ jDej
e

(2)

Traditionally, CD has been used in organic spectroscopy

for assignment of absolute configuration by the obser-

vation of Cotton effects (CEs), based either on empirical
‘sector rules’ or on the sign of split-CEs from non-empirical
exciton coupled CD (ECCD) [44]. Two areas of appli-

cation of CD to natural product analysis are of interest:

analytical quantitation of enantiomer composition and

structure elucidation by interpretation of CEs. HPLC

detection by LC–MS–CD, using optical rotation detec-

tors and CD detectors has been used for chiroptical

analysis of dichroic compounds [45]. Because De is rela-

tively small compared to e, the sensitivity of CD-HPLC is

dependent upon g (g values are commonly in the range 0–
10�3). Consequently, the sensitivity of the CD-detected

HPLC is lower than traditional fluorescence or UV-

detected HPLC, and better detection limits will be

realized for natural products with higher g values.

Integration of CD-detected HPLC traces, using columns

with chiral stationary phases (e.g. Chiracel1, Chirex1 or

Pirkle-type columns), gives signed peak intensities of

resolved enantiomers whose integrals identify both opti-

cal purity (enantiomeric excess, %ee) and the sign of De
for the major enantiomer [46]. Conversely, CD-detected

HPLC with achiral columns can be used for the deter-

mination %ee of known molecules with well-character-

ized g values by simultaneous measurement of CD and

UV spectra, rationing of the e and De signals and com-

parison with g values of the pure compound [47–49].

HPLC with CD detection has been used in quantifying
www.sciencedirect.com
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enantiomeric ratios for a variety of synthetic molecules,

and has potential applications to natural product analysis,

particularly with compounds that exist as non-racemic

mixtures of enantiomers. This is particularly useful under

variable methods of HPLC analysis of enantiomers or

closely related analogs where, although the elution order

of analytes may change, the sign of the CD signal of

enantiomers remains the same. Because of dynamic range

and sensitivity issues, reliable quantitation of enantio-

mers by HPLC CD on non-chiral stationary phases is

limited to those analytes with optical purities <99%ee

[49].

Peaks in CD spectra, referred to as Cotton effects (CEs),

are observed only in chiral molecules containing chromo-

phores, but the CD spectra of acyclic chiral molecules

which are conformationally mobile with a relatively large

number of degrees of freedom, or where the chromophore

is remote from the elements of asymmetry, may also be

weak or zero. The latter limitation has been overcome

recently with the use of liposomal circular dichroism (L-

CD) in which the sample to be measured is formulated in

uniform, unilamellar liposomes. Under these conditions,

acyclic molecules become ordered within the liposomal

lipid bilayer and CEs are greatly amplified (Figure 3).

The latter has been exploited for enhanced ECCD
Figure 3

Liposomal CD (L-CD). Exciton coupling amplified by ordering or lipid chains

tetraphenylporphyrincarboxylate (TPP) diester (MeOH). (b) L-CD spectrum (

www.sciencedirect.com
determination of both relative and absolute configuration

of tetraphenylporphyrincarboxylate diesters (TPP esters)

of 1,5-diols, 1,7-diols and 1,9-diols [50,51].

Molecules lacking chromophores in their UV–visible

spectra can be interrogated by CD after derivatization.

Within the past year, L-CD has been applied to mol-

ecules containing only a single chromophore located remo-

tely from the asymmetric centers. For example, the

configuration of remote single-methyl-branched and

double-methyl-branched stereocenters in acyclic polyke-

tides has been assigned by L-CD. Plakinic acids I (9), J

(10) [52], K (11) and L (12) [53] (Figure 4) are potent

antifungal agents isolated from a two-sponge association

of Plakortis halichondroides–Xestospongia deweerdtae. The

configuration of stereocenters within the 1,2-dioxane ring

were solved by conventional methods, however, the

remote methyl-branched stereocenters in the side-chain

were more problematic. Reductive free-radical mediated

cleavage of 9–12 with iron (II) chloride, under oxygen-

free conditions, liberated a primary chloroalkane which

was converted in three steps to naphthamide 13 or 14.

The CD of 13 in MeOH showed only baseline spectrum

(cf. Figure 3a), however, when 13 was formulated in

liposomes prepared from distereoyl-sn-glycerophosphati-

dyl choline (DSPC), the CD spectra of 13 and 14,
in liposomal bilayer. (a) CD of a long-chain 1,5-diol

DPSC liposomes). See Refs. [50,51].

Current Opinion in Biotechnology 2010, 21:819–826
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Figure 4

Plakinic acids I–L (9–12) from a Plakortis–Xestospongia sponge association, and derived naphthamides 13 and 14 for liposomal CD (L-CD).
revealed strong exciton coupled CEs that could be

matched to those of a synthetic model compound

[52,53]. Moreover, diastereomeric CE differences

allowed discrimination of all four possible stereoisomers

of 14 and assignment of complete configurations of 9–12.

The success of L-CD relies on ordering of long-chains

within the membrane bilayer as demonstrated by

temperature-dependent CE. Above the gel transition

temperature of DSPC bilayers (TC = 54.58C), the CE

dramatically diminishes — almost to zero — but recovers

upon annealing back to room temperature [53].

L-CD is ideally suited for difficult assignments in long-

chain acyclic natural product molecules containing remo-

tely spaced stereocenters. Although L-CD is a nascent

development, the obvious advantages in chiroptical

analysis of long-chain acyclic polyketides make it an

attractive subject for future exploration and refinement.

What is the future of microscale natural product structure

elucidation? As an illustration, consider the ultimate limit

of detection — a single molecule. Conventional fluor-

escence-detected microscopy can detect the presence of

single molecules, if adorned with appropriate fluoro-

phores. Imaging techniques such as atomic force micro-

scopy (AFM) and scanning tunneling microscopy (STM)

now routinely reveal atomic-level features and patterns

on the surfaces of ordered solids, and even single mol-

ecules deposited upon smooth surfaces. A dramatic
Current Opinion in Biotechnology 2010, 21:819–826
improvement was realized in 2009 with AFM based on

‘Pauli-exclusion’ forces using AFM probes with atomic

precision, fashioned by attachment of a single molecule

(e.g. CO) to the probe tip [54]. The molecular features of

single molecules of pentacene were revealed in unpre-

cedented detail, down to visualization of individual C–H

bonds and contrast levels ordered by p-orbital density.

How soon will we be able to ‘see’ a single natural product

molecule by AFM imaging — visualization and identifi-

cation of atoms from orbital density, bond connectivity

and bond order from interatomic distances, even stereo-

chemistry! — and simply transcribe the details to a writ-

ten structural formula, much as an artist sketches a model?

Conclusions
Applications of modern innovations in organic spec-

troscopy, particularly NMR and CD, have expanded the

reach of the natural product chemist and revealed the

molecular structures of compounds available only in van-

ishingly small amounts. The effect of this range expan-

sion — from sub-millimole to nanomole — broadens the

scope discovery of new natural products to rare organisms,

particularly uncultivated microbes and environmental

samples, and reveals chemodiversity within single speci-

mens. Finally, innovations in AFM that allow visualization

of single molecules, with atomic-level precision, may soon

realize an application to natural products — the provoca-

tive concept of ‘seeing’ a single molecule and solving the

molecular structure of an unknown using no more than

visual inspection of atoms and bonds.
www.sciencedirect.com
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Note added in proof
A systematic investigation of the experimental limits of

small-sample heteronuclear 2D NMR with a commerical

1.7 mm microcryprobe has been appeared [55].

The first structural investigation of a natural product

(cephanolide) A by enhanced AFM microscropy has

appeared [56].
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