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Abstract

Plants have been used as a source of medicine throughout history and continue to serve as the basis for many pharmaceuticals used today.
Although the modern pharmaceutical industry was born from botanical medicine, synthetic approaches to drug discovery have become
standard. However, this modern approach has led to a decline in new drug development in recent years and a growing market for botanical
therapeutics that are currently available as dietary supplements, drugs, or botanical drugs. Most botanical therapeutics are derived from
medicinal plants that have been cultivated for increased yields of bioactive components. The phytochemical composition of many plants has
changed over time, with domestication of agricultural crops resulting in the enhanced content of some bioactive compounds and diminished
content of others. Plants continue to serve as a valuable source of therapeutic compounds because of their vast biosynthetic capacity. A
primary advantage of botanicals is their complex composition consisting of collections of related compounds having multiple activities that
interact for a greater total activity.
© 2008 Elsevier Inc. All rights reserved.
1. Natural products and drug discovery

Historically, natural products have provided an endless
source of medicine. Plant-derived products have dominated
the human pharmacopoeia for thousands of years almost
unchallenged [1]. In 1897, Arthur Eichengrün and Felix
Hoffmann, working at Friedrich Bayer, created the first
synthetic drug, aspirin. Aspirin (acetylsalicylic acid) was
synthesized from salicylic acid, an active ingredient of
analgesic herbal remedies. This accomplishment ushered in
an era dominated by the pharmaceutical industry. In 1928,
penicillin was discovered by Alexander Fleming, adding
microbes as important sources of novel drugs. The role of
plant-derived natural products in drug discovery has recently
been diminished by the advent of structure activity–guided
organic synthesis, combinatorial chemistry, and computa-
tional (in silico) drug design.
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Despite drug discovery technology diversification and
reduced funding for natural product–based drug discovery,
natural products from plants and other biological sources
remain an undiminished source of new pharmaceuticals.
Industrial funding for natural product–based drug discov-
ery has been declining from 1984 to 2003, yet the
percentage of natural product–derived small molecule
patents has remained relatively unchanged [2]. A compre-
hensive review of human drugs introduced since 1981
suggests that, of 847 small molecule–based drugs, 43 were
natural products, 232 were derived from natural products
(usually semisynthetically), and 572 were synthetic
molecules. However, 262 of the 572 synthetic molecules
had a natural product–inspired pharmacophore or could be
considered natural product analogs [3]. Natural products
continue to make the most dramatic impact in the area of
cancer. From 155 anticancer drugs developed since the
1940s, only 27% could not be traced to natural products,
with 47% being either a natural product or a direct
derivation thereof. Only one drug, the anticancer com-
pound sorafenib, could be traced to completely de novo
combinatorial chemistry [3]. The above analysis did not
include biologics and vaccines, which are derived from
nature by definition.
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The decline in natural product–based drug discovery is
often blamed on the advent of high throughput screening
(HTS) [4]. Although well paired with combinatorial
chemistry, HTS is not easily adaptable to complex mixtures
produced from natural sources. This is mainly due to the
high cost per sample, complexity of resupply, difficulty in
isolation and characterization of actives, lack of reprodu-
cibility, and interference from compounds in complex
mixtures [1,2].

Comparative analysis of structural diversity in natural-
product mixtures and combinatorial libraries suggests that
nature still has an edge over synthetic chemistry, despite
the fact that combinatorial libraries use more nitrogen,
phosphorus, sulfur, and halogens. Superior elemental
diversity does not compensate for the overall molecular
complexity, scaffold variety, stereochemical richness, ring
system diversity, and carbohydrate constituents of natural
product libraries [5-8]. It is generally believed that the
complexity of plant-produced secondary metabolites and
the vast number of natural products will constitute a
resource beyond the capacity of current synthetic chem-
istry for a long time [9]. Nevertheless, the relative ease and
low cost to produce combinatorial libraries, the simplicity
and speed of their dereplication (favoring novel bioactive
over known compounds) and deconvolution (characteriza-
tion of unique active molecules), and the compatibility
with HTS continue to fuel their widespread use in modern
drug discovery.
2. Current categories of botanical products in the
United States

The use of botanicals for improving human health has
evolved independently in different regions of the world. The
production, use, attitude, and regulatory aspects of botanicals
continue to vary globally. In the United States, botanicals are
categorized based on intended use, safety, regulatory status,
and degree of characterization. The regulatory aspects of
botanical products are an important issue when considering
standardization and quality assessment because the regula-
tions dictate some degree of the process. The basic regulatory
categories are as follows:

Dietary Supplements, also commonly known as nutra-
ceuticals, are products consisting of dietary components
that are intended to supplement the diet and usually
consist of vitamins, minerals, botanicals, and others.
Dietary supplements are regulated by the Food and Drug
Administration (FDA) under the Dietary Health and
Education Act of 1994 (http://www.cfsan.fda.gov/~dms/
lab-qhc.html), which makes the manufacturer responsible
for ensuring the safety of the products but places the
burden of proof upon the FDA for enforcement. This
creates an unregulated environment where marketing
powers retain control. Unless a dietary supplement
contains a new ingredient, there is not even a mandate
to register the product.
Drugs can be prescription drugs or over-the-counter
drugs. These products require the most rigorous testing
including 3 distinct phases of clinical testing to ensure
safety and efficacy and close scrutiny by the FDA.
Although most early pharmaceutical products were
botanical preparations and at least 25% of the pharma-
ceuticals used today are based on plant-derived products
[10], only pure compounds isolated from plants and
subjected to the same rigors as synthetic pharmaceutical
can be conventional drugs. Botanically derived pharma-
ceuticals that are currently being used today include taxol
and morphine [4].
Botanical Drugs are complex extracts from a plant to be
used for the treatment of disease. The guidelines for this
relatively new regulatory category were released in 2004
(http://www.fda.gov/cder/Guidance/4592fnl.htm). Bota-
nical drugs are clinically evaluated for safety and efficacy
just as conventional drugs, but the process for botanical
drugs can be expedited because of the history of safe
human use. Botanical drugs are highly but not completely
characterized and are produced under the same strictly
regulated conditions as conventional pharmaceuticals.
Botanical drugs, such as senna and psyllium, can be
marketed and sold under the FDA's over-the-counter drug
monograph system [11].
3. Plant domestication and secondary metabolites

Recent archeological records suggest that modern
agriculture started in the Near East 10 000 to 11 000 years
ago with the domestication of figs, cereals, and legumes
[12,13]. At that time, early Neolithic farmers maintained a
subsistence strategy, collecting wild plants for food and
medicine while simultaneously domesticating early crops.
This point in time marked the beginning of the divergence
between medicinal plants and food plants. Centuries of plant
domestication improved flavor, color, yield, uniformity,
disease and pest resistance, reproductive fitness, and
postharvest integrity of crops but has reduced pharmacolo-
gically active compounds from major crops to levels where
average daily consumption cannot produce a measurable
pharmacological effect. The pharmacological side effects of
food, frequently residing in poorly palatable compounds,
were not likely to be preserved or even considered
advantageous by our ancestors. As a result, conventional
plant breeding has often reduced the content of bioactive
compounds in crops (Table 1).

For example, a wild tomato (Lycopersicon esculentum var
cerasiforme) indigenous to Peru produces fruit with very high
levels of the bitter glycoalkaloid tomatine (500-5000 mg/kg
dry weight) [26]. Tomatine plays a role in pest and disease
resistance and also has multiple pharmacological effects in
humans including cholesterol-lowering, immunomodulatory,
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Table 1
Bioactive compounds that have been reduced in modern food crops

Crop Latin name Chemical class Examples Targets Toxicity References

Cassava Manihot esculenta Cyanogenic
glycosides

Linamarin, lotaustralin Cancer Block cellular
respiration

[14]

Celery Apium graveolens Furanocoumarins Psoralen, xanthotoxin,
bergapten

Anticoagulant Photosensitivity [15,16]

Broccoli Brassica napa Glucosinolates Sulforaphane Cancer Goitrogenic [17,18]
Potato Solanum tuberosum Glycoalkaloids α-Chaconine, α-solanine Cancer Neurotoxin [19,29]
Tomato L esculentum Glycoalkaloids Tomatine Cancer Neurotoxin [26-29]
Common bean P vulgaris Glycoproteins Lectins Cancer, HIV Agglutination [30,31]
Soybean G max Isoflavones Genistein, daidzein Breast cancer Estrogenic effects [20,21]
Cotton Gossypium spp Phenolic

sesquiterpenes
Gossypol Cancer, male

contraceptive
Infertility [22,23]

Lettuce Lactuca sativa Sesquiterpene
lactones

Lactucin, deoxylactucin,
lactucopicrin

Inflammation,
malaria

Allergenic [24,25]
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and cardiotonic [27,28]. Its ability to inhibit acetylcholenes-
terase may be responsible for its potentially toxic effects [16].
Not surprisingly, tomatine is considerably lower in sweet
fruited tomato cultivars (∼30 mg/kg) [26], reducing the bitter
flavor but also reducing potential health benefits. Wild potato
species also contain considerably higher amounts of
glycoalkaloids than modern cultivars [29].

Wild bean species (Phaseolus vulgaris) contain many
secondary metabolites that are found in lower levels in
cultivated species including trypsin inhibitors, tannins, and
lectins [30]. These phytochemicals have been called anti-
nutritional because they may interfere with protein diges-
tion, although they have potential human health benefits as a
therapy for cancer, heart disease, and diabetes [31].

Contrary to the trend of reducing bioactives through
centuries of plant breeding, some bioactive compounds have
been fortuitously enhanced in modern food crops because
they impart desirable attributes like color or flavor (Table 2).
Examples include pigments such as carotenoids [43,44] and
flavonoids [45,46], aromatic constituents of volatile oils like
menthol [47,48], and other flavor constituents including
gingerols [49] and capsaicin [50,51].

Modern agriculture has also improved various medicinal
plants through years of selective breeding for bioactive
compounds. For example, foxglove (Digitalis purpurea)
produces digitoxin and digoxin, cardiac glycosides used to
treat congestive heart failure. Modern agriculture has created
Table 2
Bioactive compounds that have been increased in modern food crops

Plant Latin name Chemical

Peppers Capsicum spp Capsaicin
Grapes Vitis spp Flavonoid
Peppermint Mentha x piperita Menthol
Tomatoes L esculentum Lycopene
Hops Humulus lupulus Humulene
Turmeric Curcuma domestica Curcumin
Ginger Zingiberis rhizoma Gingerols
Saffron Crocus sativus Carotenoid
Apricots Prunus armeniaca Carotenoid
uniform cultivars with high digoxin content [52]. Many
common cultivated plants are also the source of compounds
used as building blocks in the semisynthesis of pharmaceu-
ticals. A number of useful phytochemicals are extracted from
soybean (Glycine max) including the sterols stigmasterol,
sitosterol, and campesterol [53]. Sitosterol and campesterol
are esterified into plant stanol and sterol esters, both of which
have been shown to lower serum cholesterol [54]. Stigmas-
terol and sitosterol are used in the semisynthesis of
pharmaceutical steroids including progestagens, androgens,
and corticosteroids [53,55]. Diosgenin, a structurally related
steroid from Mexican yams (Dioscorea spp), is also used in
the semisynthesis of pharmaceutical steroids [53]. The
opium poppy (Papaver soniferum) produces morphinan
alkaloids including morphine, codeine, thebaine, papaverine,
and noscapine [56]. Opioid semisynthetic drugs include
dihydrocodeine, fentanyl, and oxycodone [53]. Opioids are
widely used as powerful analgesics, cough suppressants,
and sedatives.
4. The power of biochemical potentiation

A recent review article defined potentiation as positive
interactions that intensify the potency of a bioactive product
[57]. Additive and synergistic effects are subsets of
potentiation, where 2 or more compounds in a mixture
Targets References

Pain [50,51]
s Cardiovascular disease [32,45]

Decongestant [47,48]
Prostate cancer [33,34]
Anti-inflammatory [35,36]
Inflammation, cancer [37,49]
Antiemetic [38,39]

s Cancer [40,41]
s Cancer [42,43]



Table 3
Bioactive compounds isolated from an extract of A dracunculus L by activity-guided fractionation that inhibit the aldose reductase enzyme, protein tyrosine
phosphatase 1B activity and expression, or phosphoenolpyruvate carboxykinase overexpression [59-61]

Isolated compounds ALR2 PTP-1B PEPCK

4,5-Di-O-caffeoylquinic acid a, b, c Active – –
Davidigenin a, b, d, e Active – –
6-Demethoxydihydrochalcone a, b, c Active – Active
2′,4′-Dihycroxy-4-methoxydihydrochalcone a, b, c, d, e, f Active Active Active
2′,4-Dihydroxy-4′-methoxydihydrochalcone a, b, c, d, e – Active –
Sakuranetin b, c, g – Active –

ALR2 indicates aldose reductase; PTB-1B, protein tyrosine phosphatase 1B; PEPCK, phosphoenolpyruvate carboxykinase.
a Confirmed with nuclear magnetic resonance.
b New compound to A dracunculus.
c Activity reported for the first time.
d Dihydrochalcone.
e New compound to genus Artemisia.
f First report as a constituent of plants.
g Flavonoid.
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interact to provide a combined effect that is equal to the sum
of the effects of the individual components (additive) or
where combinations of bioactive substances exert effects that
are greater than the sum of individual components
Table 4
Examples of potentiating interactions between various natural products with other

Natural products Drug/natural product Target

Cancer
Apple extracts a Vitamin C Liver cancer

Soy extract, genistein Tamoxifen Breast cancer

Tomato powder b Lycopene Prostate cancer

Tomato powder, broccoli
powder, combination of
tomato and broccoli
powders

Lycopene, finasteride Prostate cancer

Antibacterial
Acorus calamus,

Hemidesmus indicus,
Holarrhena antidysenterica,
Plumbago zeylanica
extracts and fractions

Ceftazidime, cefuroxime,
chloramphenicol,
ciprofloxacin, tetracycline

MRSAc

Tetracycline, ciprofloxacin ESβL-producing
E coli

Bidwillon B Mupirocin MRSA

Camellia sinensis,
Lawsonia inermis,
Punica granatum,
Terminalia belerica,
Terminalia chebula extracts

Tetracycline, ampicillin MRSA

MRSA indicates methicillin-resistant S aureus; ESβL, extendend spectrum beta-la
a Apple extracts contain naturally occurring vitamin C.
b Tomato powder contains naturally occurring lycopene.
(synergistic). Potentiation can exist between 2 phytochem-
icals in a single plant extract, 2 phytochemicals from 2
different plant extracts, or between a phytochemical and
synthetic drug. To validate this phenomenon, the bioactive
natural products or drugs in the fields of cancer and antibiotic research

Summary Reference

Apple extracts, containing vitamin C, had greater
antioxidant activity and reduced in vitro tumor
proliferation greater than vitamin C alone.

[65]

Combination of tamoxifen with genistein or soy
extract had synergistic effects on delaying the growth
of MCF-7 tumors in mice.

[66]

Tomato powder inhibited prostate cancer more
than pure lycopene in NMU rats, suggesting that
tomato powder contains compounds in addition to
lycopene that modify prostate carcinogenesis.

[67]

Tomato powder, broccoli powder, and combination
treatments all significantly reduced Dunning rat
prostate tumor size more than finasteride or lycopene.
The tomato/broccoli combination treatment had the
greatest antitumor effect.

[33]

Extracts and fractions from 4 plants demonstrated
synergistic antibiotic activity against various strains
of MRSA when used in combination with each
other and in combination with synthetic antibiotics.

[68]

Extracts and fractions from 4 plants demonstrated
synergistic antibiotic activity against ESβL-producing
E coli when combined with tetracycline or ciprofloxacin.

[70]

When bidwillon B and mupirocin were combined,
synergistic effects were observed for 11 strains of MRSA.

[72]

The C sinensis extract showed synergism with
ampicillin; L inermis, P granatum, T belerica, and
T chebula extracts showed synergism with tetracycline.

[69]

ctomases; NMU, N-methyl-N-nitrosourea.
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phytochemical(s) in a mixture must first be identified and
isolated. Afterward, plant extracts or mixtures of phyto-
chemicals must be tested side by side with the single
bioactive compounds to see which one has greater
bioactivity. Only then can clear conclusions be made
whether or not a mixture of compounds actually intensifies
the potency of a single bioactive product. A good example
of the multicomponent nature of botanicals is illustrated
with an extract from Artemisia dracunculus L that is being
researched as a botanical therapeutic for diabetes and
metabolic syndrome. The extract decreases blood glucose
in hyperglycemic animal models of diabetes and seems to
enhance insulin sensitivity as a mode of action [58]. Based
on 3 of the diabetes-related activities identified for the
extract, together with activity-guided fractionation, 6 active
compounds were isolated and identified (Table 3). There-
fore, the activity of the total extract is the combined result
of at least 6 different compounds and at least 3 different
activities. The precise nature of their interaction has not yet
been defined.

In the field of cancer research, phytochemicals have been
shown to affect various parts of signal transduction pathways
including gene expression, cell cycle progression, prolifera-
tion, cell mortality, metabolism, and apoptosis [62].
Combination chemotherapy has been the mainstay of cancer
treatment for 40 years [63]. It is therefore reasonable to
assume that a mixture of compounds (phytochemical or
synthetic) would have greater bioactivity than a single
compound because a mixture of bioactive compounds has
the ability to affect multiple targets [62,64]. Studies have
documented synergistic anticancer effects of phytochemicals
including quercetin, catechins, reseveratrol, and curcumin
with various cancer drugs and/or other phytochemicals [62].
A few other examples of synergistic anticancer activity are
shown in Table 4. In addition, natural products have been
shown to overcome multiple drug resistance in tumors when
used in combination with other natural products or drugs
[62]. Similar observations have been made in the field of
antibiotic research (Table 4). A number of plant extracts and
natural products have been shown to work synergistically
with existing antibiotics, restoring antibiotic activity against
resistant strains of Staphylococcus aureus (methicillin
resistant), Escherichia coli, and Shigella [70-72].
5. Conclusions

Plants must maintain and protect themselves through
diverse arrays of complex natural products that they make
from the inorganic components of air, soil, and water
because they lack the flight response. Remarkably, the oldest
known living eukaryotic organism, turning 4772 years old in
2007, is a specimen of a bristlecone pine, Pinus longaeva,
growing in the White Mountains of Inyo County, California
[73]. Many other plants can live hundreds of years without
succumbing to diseases or predation. It should come to no
surprise that some of the compounds that have enabled plants
to survive may also be used to maintain the health and well-
being of humans.
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