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     Abstract   The chapter discusses the interactions 
of relatively low molecular weight and largely 
lipophilic secondary plant metabolites with insects 
and some other invertebrates. This includes com-
pounds stored within plant tissues that are toxic 
to insects by a range of mechanisms. It covers 
metabolites that are both constitutively produced 
and those that are induced in response to defence 
signalling stimuli including insect attack. Also 
included are volatile compounds released from 
plants that act as signals (semiochemicals) detected 
by herbivorous insects and those that interact with 
insects at higher trophic levels. Finally, plant to 
plant communication is described.    

  Metabolites with Toxic Modes of Action  

  General Properties of Plant Toxicants 

 The production of chemicals that are capable 
of deterring insect pests by toxic activity is an 
important survival strategy for plants. Structurally, 
such toxicants are usually compounds that are 

non-volatile, due to their molecular weight or 
hydrophilicity. If they accumulate in the tissue 
of healthy plants prior to insect attack, they 
are considered to be constitutive (Stamp,  2003 ; 
Wittstock and Gershenzon,  2002) . Alternatively, 
they may only be present, or present in much 
higher concentrations, after plants have encoun-
tered attack, or after exposure to natural plant or 
insect derived defence activators. In this case 
they are considered to be induced toxicants 
(Walling,  2000) . Induction provides economic 
advantage to the plant as metabolic energy has to 
be diverted from primary metabolism for toxin 
production. In addition, insect herbivores are less 
likely to develop resistance to induced defence 
products as they will be subjected to less exposure 
to them. However, the balance between these two 
strategies may depend on the likelihood of the 
plant coming under attack. Those that encounter 
more frequent colonisation by pests may be 
forced to rely more heavily on constitutive rather 
than induced defence, despite its greater energetic 
cost to the plant (McKey,  1979) . Also, defence 
metabolites are often restricted in their distribu-
tion, both spatially and temporally and plant organs 
associated with survival or reproduction tend to 
contain the highest concentrations of constitutive 
defence metabolites (Wittstock and Gershenzon, 
 2002) . They may be developmentally regulated, 
being present at highest concentrations when the 
plant is young and less able to protect itself 
against predators, or they may be concentrated 
around the region of contact with the invader. 
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15 Compounds may be stored in specialised subcel-
lular compartments from which they are released, 
or normally present in inactive forms, ensuring 
the most economically efficient means of maxi-
mum contact with the invader, whilst protecting 
the host from its own toxic substances (discussed 
in detail in the following section) (Koroleva et al., 
 2000 ; Hallahan,  2000 ; Grubb and Abel,  2006 ; 
Sicker et al.,  2000 ; Neal et al.,  1990) . 

 Plant defence may rely on strategies relating 
to high levels of apparency, as with trees, where 
weakly acting toxicants are present in high con-
centrations, as is the case with phenolic com-
pounds. Non-apparent defence, for example, in 
annuals, relies on highly active compounds that 
are present in low concentrations (Feeny,  1976) . 
Alkaloids, the largest and most diverse family 
of plant defence metabolites, are frequently 
involved in non-apparent defence (Schuler, 
 1996 ; De Luca and St Pierre,  2000 ; Steppuhn 
et al.,  2004 ; Velozo et al.,  1999) . These com-
pounds are present in many plant families, 
including cereals and solanaceous plants, most 
notably of the genus Nicotiana. 

 Insecticidal activities of plant metabolites 
can be demonstrated by their effect on insects 
when added to artificial diets (De Boer and 
Hanson,  1987 ; Broadway and Duffey,  1988 ; 
Snook et al.,  1997 ; Jassbi et al.,  2006) . However, 
comparative quantification between the toxicity 
of metabolites applied artificially and amounts 
measured in whole plant extracts are potentially 
misleading because of the lower intrinsic 
acceptability of artificial diets. Compounds 
within plants may have additional effects that 
deter insects indirectly, and these defence mech-
anisms are discussed later in this chapter (see 
Section “Higher Trophic Level Interactions”). 

 Plant toxicants may interact with specific 
molecular targets within the herbivore, includ-
ing proteins, such as enzymes (Feeny,  1976 ; 
Rhoades and Cates,  1976 ; Downs et al.,  2003) , 
structural proteins (Morimoto et al.,  2001) , ion-
channels and receptors (Wittstock et al., 

 1997 ;Wink,  2000) , and a toxicant may derive its 
potency by mimicking the structure of endog-
enous ligands or other plant compounds, such 
as amino acids (Wink,  2003) . Alkaloids derive 
their bioactivity from their ability to affect neu-
rotransmitter activity (Zenk and Juenger,  2007)  
and nicotine, for example, is a nicotinic acetyl-
choline receptor agonist (Itier and Bertrand, 
2001). Due to their bioactivity alkaloids have 
been developed for use as powerful drugs and 
halucegens. Non specific compounds may also 
disrupt biomembranes and thereby destroy the 
activity of ion channels or receptors, that reside 
within them (Osbourn,  1996) . The action of 
phenolics tends also to be non-specific and fre-
quently involves inactivation of a range of pro-
teins by the formation of hydrogen bonded 
complexes via their multiple hydroxyl groups 
(Bennet and Wallsgrove,  1994 ; Nickolson and 
Hammerschmidt,  1992) .  

  Storage and Release of Plant Toxicants 

 The potential advantages to the plant of storing 
toxicants in discreet compartments as inactive 
precursors have been described. In this section 
the biological properties, regulation and distri-
bution of some well characterised examples of 
such metabolites will be discussed. 

 A family of plant toxicants that clearly falls 
into this category are the cyanogenic glucosides 
(Fig.  1a ) (Bennet and Wallsgrove,  1994 ; Seigler, 
 1991) . These amino acid derived compounds 
are stored as glucosides within the vacuole and 
are present in representatives from all vascular 
plants orders. Although they are constitutively 
produced throughout the life of the plant, young 
or developing tissues (including seeds or nuts) 
contain the highest concentrations (Conn, 
 1981) . Cyanide is released when the glucoside 
is hydrolysed by a glucosidase (Seigler,  1998) , 
which, in addition to its role as a respiratory 
poison, may also have antifeedant activities. 
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Furthermore, consumption of cyanide produc-
ing compounds can be an advantage to certain 
herbivores (see Section “Sequestration of 
Toxins by Herbivores Against Predators”) as 
they defend insects from their own predators 
(Spencer,  1988) . The associated carbonyl com-
pounds have also been shown to be directly 
toxic to insects.  

 The glucosinolates are a diverse group of 
nitrogen and sulphur-containing defence com-
pounds, also derived from amino acids (Fig.  1b ). 
They are found primarily in species of the order 
Brassicales (for reviews, see Grubb and 
Abel,  2006 ; Fahey et al.,  2001 ; Halkier and 
Gershenzon,  2006)  and are thought to have 
evolved from the cyanogenic glycosides. They 
are also stored as inactive parent molecules in 
the vacuole and specialised cells (Koroleva et al., 
 2000) . They are derived from eight different 
amino acids, and in thale cress,  Arabidopsis 

thaliana , the most common precursors are 
methionine, tryptophan and phenylalanine. 
Biosynthesis involves three distinct stages: 
construction or elongation of side chains added 
to a primary protein amino acid (Textor et al., 
 2004) , core structure elaboration and secondary 
side chain modification (Grubb and Abel, 
 2006) . These stages, which have been largely 
confirmed by both biochemical and molecular 
genetic studies, are responsible for the diversity 
of this family of metabolites and more than 120 
different structural forms have been identified. 
In the healthy plant gene expression and reporter 
gene fusion analysis has indicated that the path-
way is expressed most highly in reproductive 
and young developing tissues and in sulphur 
rich cells in the immediate vicinity of the vascu-
lar tissues (Koroleva et al.,  2000) . Their biosyn-
thesis is up regulated by herbivory (Kim and 
Jander,  2007 ; Agrawal and Kurashige,  2003) , 
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  Fig. 1    The general structure of cyanogenic glucosides ( a ) and glucosinolates ( b ) structure. In ( b ), the 
R group is derived from amino acids and is highly variable. It may be aliphatic, aromatic or heterocyclic       
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15 or plant defence activators (Doughty et al., 
 1995)  and down regulated during sulphur deple-
tion (Bones and Rossiter,  1996) . 

 The toxicity derived from of the glucosi-
nolates is produced in response to cell damage 
when the glycosidic bond is hydrolysed, by spe-
cific  b -thioglucosidases termed myrosinases. 
These enzymes are contained within neighbour-
ing idioblasts or myrosin cells and they release 
unstable thiohydroximate-O-sulfate products 
(Grubb and Abel,  2006) . These products yield a 
range of biologically active isothiocyanates, 
thiocyanates, nitriles oxazolidine-2-thiones and 
epithioalkanes. Both glucosinolates and to a 
greater extent their catabolites, particularly the 
organic isothiocyanates, are toxic to insects but 
some specialist herbivores are able to detoxify 
them (Ratzka et al.,  2002)  (see Section “Seque-
stration of Toxins by Herbivores Against 
Predators”). Isothiocyanates have also been 
shown to attract specialist parasitoids when 
released from plants (Pope et al.,  2008)  (see 
Section on “Synomones”). 

 Another group of plant defence secondary 
metabolites are the hydroxamic acids or ben-
zoxazinones. These compounds are chiefly pro-
duced in cereals and they are involved in 
defence against a broad range of insect pests, 
pathogens and weeds. (Kluge et al.,  1997 ; 
Niemeyer,  1988 ; Wu et al.,  2001) . Their role in 
plant defence was first fully recognised in 1969 
when the correlation between susceptibility 
to the European corn borer,  Ostrinia nubilalis , 
and benzoxazinone concentration in maize, 
 Zea mays , plants was established (Klun and 
Robinson,  1969) . Similarly, a correlation 
between elevated tissue concentration in wheat, 
 Triticum aestivum , and reduced growth rate of a 
number of aphid species including the rose-
grain aphid,  Metopolophium dirhodum , the grain 
aphid,  Sitobion avenae  and the bird cherry 
oat aphid,  Rhopalosiphum padi  has been found 
(Argandona et al.,  1980 ; Thackaray et al.,  1990) . 
Their toxicity to aphids has been demonstrated 
in artificial diets (Argandona et al.,  1980) . 

The compounds contain a very reactive carbo-
nyl group that may enable them to interact with 
a range of molecular targets (Niemeyer et al., 
 1989 ; Friebe et al.,  1997) . 

 In cereals, the benzoxazinones accumulate in 
young seedlings throughout the plant tissues but 
decrease in concentration during the later stages of 
growth (Thackaray et al.,  1990) . They are also pro-
duced in other plant species (Sicker et al.,  2000)  
including dicots (Schullehner et al.,  2008) , and in 
some plants the concentration of the compounds 
remains high as the plant matures (Baumeler et al., 
 2000) . Like another family of plant defence com-
pounds, the avenacins, Fig.  2  (1), that are produced 
in oats,  Avena  spp. (Osbourn,  1996)  the genes in 
the benzoxazinone pathway are clustered together 
in a single genomic locus (Frey et al.,  1997 ; Gierl 
and Frey,  2001) . The most generally toxic of the 
compounds in  Z. mays  and hexaploid wheat is 
2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, 
Fig.  2  (2),whereas in some diploid wheat and rye, 
 Secale cereale , its non methoxylated precursor, 
2,4-dihydroxy-1,4-benzoxazin-3-one is the major 
component. These compounds are biosynthesised 
on the endoplasmic reticulum and stored in the 
vacuole as inactive glucosides (Sicker et al., 
 2000) . Upon tissue damage by the pest or patho-
gen the glucoside is released from the vacuole, 
although active release via a vacuolar membrane 
transporter may occur. In both foliar and root tissue 
cytoplasmic glucosidases then catabolise the glu-
coside to release the active compound (Esen,  1992 ; 
Sue et al.,  2006) . This process in roots may precede 
rapid release of the compounds into the rhizosphere 
where they deter soil borne pathogens.  

 Trichomes are glandular structures situated 
on regions of the plant surface, including the 
leaves, where the biosynthesis and storage of a 
range important secondary metabolites, includ-
ing terpenes, flavones and phenolics occurs 
(Bisio et al.,  1999 ; Combrinck et al.,  2007 ; 
Hallahan,  2000) . After insect attack, or in 
response to pant defence activators (see Section 
Regulation of Plant Toxicants by Natural 
Activators) these stored compounds are released 



15 Role of Natural Products in Nature: Plant–Insect Interactions 325

to protect the plant against herbivory (Jassbi et al., 
 2008 ; Schie et al.,  2007) . Cotton,  Gossypium  
spp., for example stores terpenoids in glands at 

the leaf surface and these are released when the 
glands are ruptured upon attack (Elzen et al., 
 1985 ; Loughrin et al.,  1994) .  
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15   Regulation of Plant Toxicants by Natural 
Activators 

 The vast majority of toxicants display some 
level of induction or increase in concentration 
after insect attack or exposure to phytohormones 
that act as disease resistance elicitors. Examples 
of toxicants that are increased in concentration 
due to release from non toxic precursors have 
already been described but accumulation of an 
active compound may also be due to an up regu-
lation of expression of biosynthetic genes. These 
changes are mediated by signalling compounds 
released from the insect or from the plant in 
response to the insect to enhance the defensive 
capacity of the attacked host. The major plant 
signalling compound or phytohormone (also 
generally classified as a plant secondary metab-
olite) that is believed to mediate plant response 
to chewing insects is jasmonic acid and its 
methyl ester, methyl jasmonate, Fig.  2 (3). The 
role of jasmonates in the induction of plant 
defence is well established (Creelman and 
Mullet,  1997) , and it has been the subject of 
much scientific interest (see reviews Leon et al., 
 2001 ; Farmer et al.,  2003 ; Wasternack,  2007) . 
However, not all major plant defence metabo-
lites increase upon jasmonate treatment 
(Keinänen et al.,  2001)  and other compounds, 
including abscisic acid (Peña-Cortés et al.,  1989)  
and ethylene (O’Donnell et al.,  1996)  are also 
released after insect attack and these compounds 
have been shown to act synergistically in insect 
defence (Leon et al.,  2001) . Conversely, insect 
induced ethylene production can block the jas-
monate response under some circumstances. In 
tobacco,  Nicotiana attenuate , leaves, for example, 
ethylene reduces the positive effect of jasmonic 
acid on the accumulation of nicotine (Winz and 
Baldwin,  2001) . 

 Although these phytohormones are released 
after mechanical wounding, the effects of her-
bivory are distinct, involving additional 
responses that can be triggered by chemical 
elicitors in insect oral secretions. These elicitors 

include fatty acid-amino acid conjugates, which 
themselves induce the production jasmonic acid 
and ethylene. 

 The most extensively studied of these is 
volicitin, Fig.  2  (4), an N-linolenoylamino acid 
conjugate isolated from regurgitate from the 
beet armyworm caterpillar,  Spodoptera exigua  
(Alborn et al.,  1997 ; Halitschke et al.,  2001) . 
This compound, and further related molecules 
have been shown to induce the release of 
volatiles, including terpenoids and indole, 
which may compete with the hydroxamic acid 
pathway, and their role in plant defence will 
be discussed later (see Section on “Negative 
Interactions”). Little is known about compounds 
in aphid saliva that are responsible for induction 
of plant defence, although a number of metabo-
lites toxic to aphids are induced by feeding 
(Ding et al.,  2000 ; Kim and Jander,  2007 ; 
Gianoli and Niemeyer,  1998 ; Velozo et al., 
 1999) , including alkaloids, hydroxamic acids 
and glucosinylates. Analysis of the proteome of 
saliva from the green peach aphid,  Myzus persi-
cae , has enabled a number of enzymes to be 
identified that may play a significant role in the 
induction of the defence response in the host 
plant (Harmel et al.,  2008) . Gene expression 
analysis suggests that in  A. thaliana  the plant’s 
response to aphids is different from its response 
to chewing insects (Walling,  2000 ; de Vos et al., 
 2007 ; Moran et al.,  2007) , and pathways regu-
lated by another phytohormone, salicylic acid, 
Fig.  2  (5), appear to be primarily involved. This 
is even more noticeable with the phloem feed-
ing nymph of the silverleaf white fly,  Bemisia 
argentifolii . It appears that this insect may either 
evade jasmonate-induced defences by avoiding 
the tissue damage that activates the response or it 
may introduce effectors that suppress jasmonate-
dependent defences (Zarate et al.,  2007) . 
However, there is evidence that jasmonate, eth-
ylene, abscisic acid and gibberellic acid also 
play significant role in aphid defence (Thompson 
and Goggin,  2006) . Moreover, it is generally 
accepted that although chewing insects that 
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cause wounding preferentially trigger jasmonate 
regulated responses and phloem-feeding insects 
and biotrophic pathogens trigger salicylate 
pathways there is considerable overlap, trade 
off and cross talk between the two signalling 
pathways (Bostock,  2005 ; Beckers and Spoel, 
 2006) .   

  Behaviourally and Developmentally 
Active Components  

  Host Recognition 

 Chemicals, known as semiochemicals, are com-
pounds produced by plants that play a pivotal 
role in their selection by insects as hosts due to 
their ability to exert behavioural or develop-
mental effects. They may be released into the 
atmosphere and used as cues by herbivorous 
insects to locate their hosts or they may be 
involved in the modulation of insect feeding. 
Alternatively, they may protect the plant by 
attracting insects that prey on or parasitize her-
bivorous pests.  

  Aerial Plant Attractants (Kairomones) 
and the Potentiation of Pheromones 

 The first stage in host recognition by herbivo-
rous insects is the perception of volatile semio-
chemicals released from the plant. Kairomones, 
are chemical substances produced and released 
by a living organism that benefit the receiver 
and disadvantage the emitting organism. Hence 
the definition applies to plant volatiles that are 
used by herbivores to locate their plant hosts. 
(Visser,  1988 ; Pickett et al.,  1998 ; Bengtsson 
et al., 2005). Insects are able to detect general 
plant volatiles but just as they possess neurones 
that enable them to taste individual plant 
compounds (see Section on “Contact Action 
Including Phagostimulants”), so they possess 

sensory neurons tuned to host volatile com-
pounds that enable them to recognise specific 
plant species. Using electroantenography and 
single olfactory neuron recordings coupled to 
gas chromatography it is possible to identify 
volatile compounds released by plants that are 
detected by insect olfactory neurons (Pickett, 
 1990) . The activity of these compounds can 
then be further tested in bioassays to confirm 
their behavioural role. A comprehensive list of 
the common volatiles released by plants and the 
range of different insect species that respond to 
them have been recently reviewed (Bruce et al., 
 2005) . 

 In some cases insect neurons are able to dis-
tinguish between different structural types of the 
same family of compounds, for example, selec-
tive detection of aromatic isothiocynates (Pickett 
et al.,  1998) . This phenomenon has now been 
found to extend to other insect plant systems, 
and several examples of this degree of selectivity 
are described in Pickett et al.  (1999) . However, 
there appears to be insufficient structural range 
in the compounds released by plants to enable 
insects to locate narrow taxonomic groups of 
plants. Coupled to this, insects possess neurons 
that detect a range of compounds present in the 
volatile emissions of many plants. It has been 
observed that olfactory cells that detect specific 
plant volatiles are paired with those that detect 
other identified plant volatiles. This has led to 
the hypothesis that insects can detect their hosts 
on the basis of the ratios of certain volatiles 
emitted, as opposed to specific compounds. It 
has now been demonstrated that blends of com-
pounds attract phytophagous insects (Bruce et al., 
 2005)  and if the ratios are changed, attraction 
fails to occur. In a recent study a mixture of com-
pounds ( a -terpene, Fig.  2  (6),  (E)- ocimene, (7), 
decanal, (8), nonanal, (9), geranylacetone, (10), 
benzyl alcohol, phenylacetaldehyde and methyl 
salicylate assembled in the same ratio as was 
released by tomato plants,  Lycopersicon esculen-
tum , attracted the tobacco hornworm,  Manduca 
sexta  (Fraser et al.,  2003) . However, although 
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15 the wheat midge,  Sitodiplosis mosellana , an oli-
gophagous insect, is attracted by the correct 
blend of  T. aestivum , volatiles, small changes in 
the relative composition removes the effect in 
wind tunnel bioassays (Birkett et al.,  2004) . 

 The ability of plant volatile emissions to 
affect insects’ responses to their own pherom-
ones (Dawson et al.,  1987) , in particular sex 
pheromones, has long been recognised (Blight 
et al.,  1984) . It is appropriate for insects to 
encounter their mates in the vicinity of their 
food source and if the attractivity of a pherom-
one is enhanced by interaction with a plant 
volatile the chance of encounters will be 
increased. There are now several examples of 
the synergistic affects of volatile plant second-
ary metabolites and insect sex pheromones 
(Landholt and Phillips,  1997 ; Sadek and 
Anderson,  2007) , but the effect also extends to 
the potentiation of aggregation or dispersal 
pheromones (Dawson et al.,  1987 ; Witzgall 
et al.,  2008) . These observation are being used 
to develop improved methods of control of pest 
populations. For example, serricornins, which 
are insect derived sex pheromones, more effec-
tive as traps for the beetles  Stegobium pan-
iceum  and  Lasioderma serricorne  when applied 
in the presence of dried red chilli,  Capsicum 
frutescens  L, volatiles, which enhanced the 
effect of the sex pheromone (Mahroof and 
Phillips,  2008) . 

 There is also evidence that insects are capa-
ble of sequestering plant compounds, including 
alkaloids, and using them both in defence and to 
attract members of the opposite sex. Male 
 Estigmene acrea  moths consume plant derived 
pyrollizidine alkaloids to produce a sex pherom-
one, hydroxydanaidal, Fig.  2  (11) (Jordan et al., 
 2005 ; Edgar et al.,  2007)  and certain beetles 
species also sequester plant compounds for 
similar purpose. Fruit flies,  Drosophila mela-
nogaster , utilise methyl eugenol, Fig.  3  (12), as 
a sexual attractant (Raghu and Clarke,  2003) , 
and euglossine bees collect plant compounds to 
use as aggregates (Lunau,  1992) . However, 

there remains controversy over the degree to 
which insects sequester compounds and to 
which they are synthesise  de novo  within their 
own tissues.   

  External Attraction Due to Stress Perception 

 Some insects have evolved to be attracted to 
volatiles released from stressed or dead plants 
taking advantage of the weakened defense 
mechanisms but sustained nutritional quality of 
the plant tissue (Ginzel and Hanks,  2005 ; Miller, 
 2006 ; Pureswaran et al.,  2004 ; Kalberer et al., 
 2001 ; Kendrick and Raffa,  2006) . The release 
of a combination of ethylene and  a -pinene, Fig. 
 3  (13), has been shown to attract longhorn bee-
tle,  Xylotrechus longitarsis , to its host 
(Morewood et al.,  2002) . Damage of a plant by 
conspecific or heterospecific insects also influ-
ences host-plant selection by herbivorous 
insects (Schindek and Hilker,  1996 ; Fernandez 
and Hilker,  2007) . The willow beetle,  Phratora 
vulgatissima , preferentailly selects willow, 
 S  alix  spp., plants in plantations (Peacock et al., 
 1999)  possibly due to the effect of plant cues 
induced by feeding and attractants released by 
the herbivores themselves. Artificiality dam-
aged plants attract herbivores, due to the release 
of increased amounts of green leaf volatiles 
(Peacock et al.,  2001 ; Karban and Baldwin, 
 1997)  which are a mixture of volatiles biosyn-
thesised from 18 carbon fatty acid precursors. 
They include ( E )-2-hexenal, Fig.  3  (14), ( Z )-3-
hexenal, (15), hexanal, ( Z )-3-hexenol and hex-
anol, (16), (Hatanaka,  1993)  and the ratio of 
these components may play a role in host–plant 
selection (Bruce et al.,  2005) .  

  Contact Action Including Phagostimulants 

 Compounds that elicit feeding by insects via 
sensory rather than nutritional mechanisms fall 
into this category. Phagostimulants are detected 
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by contact gustatory receptors on sensory neu-
rones (Chapman,  2003)  that detect chemicals in 
solution and airborne molecules (rarely suffi-
ciently concentrated to produce a response). 
The process is termed “gustation” or “contact 
chemoreception” as opposed to taste (Wieczorek 
and Koppl,  1978) . 

 Presumably, the purpose of phagostimula-
tion is to facilitate the recognition of food by the 
insect and to enable it to acquire sufficient nouri-
shment. Insects detect amino acids (Simpson 
et al.,  1990)  and sugars (Schoonhoven and van 
Loon,  2002 ; Glendinning et al.,  2000)  but their 
response may be modulated by the presence of 
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15 other metabolites (Endo et al.,  2004) . However, 
it does not appear that essential amino acids 
have a greater phagostimulatory effect than 
those that are nonessential. 

 Non dietary metabolites that can act as 
phagostimulants include glucosinolates, which 
have already described here as toxic to many 
insect species. However, these compounds ena-
ble certain specialist feeders that possess gusta-
tory neurons sensitive to them to locate their 
host plants (Blight et al.,  1989)  and to feed 
without competition. However, the interactions 
between insect herbivores and glucosinolates 
can be complex (Li et al.,  2000 ; Lambrix et al., 
 2001) . Certain flavonoids can act as stimulants 
or repellents, dependent on the plant or insect 
species, with some having a dual role (Matsuda, 
 1978) . Feeding choice appears to depend on 
small differences in chemical structure 
(Onyilagha et al.,  2004)  and glycosides, includ-
ing those of indole and flavonol, may also func-
tion as probing stimulants (Kim et al.,  1985 ; 
Adjei-Afriyie et al.,  2000 ; Takemura et al., 
 2002) . 

 Other non dietary compounds have been 
implicated to have a role in specific host recog-
nition through detection by gustatory neurons 
(Schoonhoven and van Loon,  2002 ; van 
Drongelen,  1979 ; Rees,  1969 ; Montgomery and 
Arn,  1972) , although, given the degree of host 
recognition cues required to explain the attrac-
tion of insects to a specific host, the number of 
gustatory cells identified that can recognise host 
chemicals remains insufficient.  

  Rhizosphere Interactions Including Nematode 
Location of Roots 

 Many cyst nematode species have been shown 
to move towards roots by orientation along con-
centration gradients of root exudates to which 
they are attracted, and root diffusates have been 
shown to contain factors that induce phagos-
timulation (Rolfe et al., 2000), movement or 

hatching of nematode egg cysts (Devine and 
Jones,  2000 ; Devine and Jones,  2003) . 

 Compounds involved in such long distance 
attraction must be sufficiently stable to enable 
them to build up concentration gradients within 
the soil (Perry,  2005) . They would also be expected 
to be hydrophilic, to facilitate movement through 
aqueous soil media, in contrast to the air borne 
hydrophobicvolatile compounds that attract 
insects. However, there is some evidence that vol-
atile compounds may also play an important role 
in nematode host localisation (Robinson,  2002) .  Z. 
mays , seedlings release the volatile sesquiterpene 
( E )-caryophyllene, Fig.  3  (17), into the soil from 
their roots in response to feeding by the root-
attacking herbivore, the western corn root worm, 
 Diabrotica virgifera virgifera . This compounds 
attracts the entomopathogenic nematode, 
 Heterorhabditis megidis  that feeds on the herbiv-
ore.  Z. mays  varieties that produce ( E )-
caryophyllene show reduced infestation by the 
herbivore in field trials (Rasmann et al.,  2005; 
Gershenzon et al., 2005) . Testing of the effect of 
selected monoterpenoids and alkaloids found in 
roots on chemotaxis, motility, viability and hatch 
of nematodes with contrasting life styles shows 
that nematodes respond differently to the individ-
ual compounds. Phenolics and flavonols repel to 
some species and ferulic acid strongly inhibits 
motility (Wuyts et al.,  2006) . A hydrophobic fruc-
tose related compound, that attracts the beet cyst 
nematode  Heterodera schachtii  has been purified 
from white mustard seed,  Sinapis alba , roots 
(Rühm et al.,  2003) . 

 There is evidence that phytohormones, in par-
ticular auxin, may influence nematode invasion 
of their host and facilitate establishment of feed-
ing sites (Curtis,  2007) . These phytohormones 
may exert their affect by inducing changes in the 
nematode cuticle (Akhkha et al.,  2002) , causing 
alterations in water uptake and cell signalling. 
Dopamine and salicylic acid have also been 
shown to attract nematodes (Wuyts et al.,  2006) . 

 Solanoeclepin A, Fig.  3  (18), is a complex 
compound derived from a triterpenoid steroid 
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structure with nine chemical steriocentres. The 
compound is released from roots of young 
potato,  Solanum tuberosum . Biological activity 
tests demonstrate that synthetic derivatives of 
the compound induce premature hatching of 
potato cyst nematode,  Globodera pallida , juve-
niles and therefore may have the potential to be 
used as an environmentally compatible strategy 
for pest control (Netherlands Organization For 
Scientific Research,  2001) .  

  Non-host Avoidance and Stress 
Perception in Hosts 

 Initial detection by insects and other inverte-
brates of unsuitable hosts can involve the percep-
tion of deterrent volatile compounds released 
from their leaves. Such emissions benefit the sur-
vival of the emitter and are hence known as allo-
mones. The second stage of non host avoidance 
involves the encountering of unfavourable sec-
ondary defence metabolites within plant tissues.  

  Negative Interactions (e.g. Allomones) 

 Initially it was assumed that plant derived vola-
tiles acted only as insect attractants but now it is 
clear that they can also have a repellent effect 
(Pickett et al.,  1999)  due to stimulation of spe-
cific neurones that detect non-host semiochemi-
cals (Hori,  1996 ; Hori and Kamatsu,  1997 ; 
Guerrero et al.,  1997) . Highly specific neurones 
for isothiocyanates that act as repellents have 
been found in insects for which brassica are 
non-hosts, for example, the damson-hop aphid, 
 Phorodon humuli , and the black bean aphid, 
 Aphis fabae  (Nottingham et al.,  1991) .  A. fabae  
olfactory neurones respond to the repellent 
compound (1 R ,5 S )-myrtenal, Fig.  3  (19), released 
from the nonhost herb savory,  Satureja montana  
(Hardie et al.,  1994) . 

 Where an insect requires more than one host 
to complete its life cycle, its migration from one 

host to another may be orchestrated by the 
release of repellent volatiles from the primary 
host (Pickett and Glinwood,  2007) . In aphid 
species these alterations in host preference 
may be accompanied by changes in winged or 
wingless forms that may differ in their response 
to certain plant semiochemicals. The spring 
migrant of  R. padi , is repelled by volatiles from 
its winter host, the bird-cherry,  Prunus padus , 
and here methyl salicylate may be the active 
component. The winter host for  A. fabae , the 
spindle tree,  Euonymus europeaus , repels the 
insect species in the spring, but attracts it in the 
autumn for the sexual colonization stage 
(Pettersson et al.,  1994) . The life cycle of the 
lettuce aphid,  Nasonovia ribis-nigri , has led to 
the identification of a further deterrent com-
pound,  cis -jasmone, Fig.  3  (20). In spring the 
aphid is repelled by its winter host, the black 
currant,  Ribes nigrum , when the volatiles 
released from the plant contain high concentra-
tions of the compound. Although  cis -jasmone is 
a metabolite of methyl jasmonate, it stimulates 
a specific olfactory neurone and is also repellent 
to other aphid species (Birkett et al.,  2000) . There 
is also evidence that  cis -jasmone can act as an 
inducer of plant defence and when applied to  T. 
aestivum  plants it causes an increase in the con-
centration phenolic and hydroxamic acids 
(Moraes et al.,  2008) . 

 Stressed or herbivore attacked plants have 
altered volatile emission profiles and they may 
then be perceived as non hosts by approaching 
insects that would normally colonise them 
(Pickett et al.,  2003) . This includes the emission 
of green leaf volatiles, the first stage of the plants 
response to herbivory (Turlings et al.,  1995) , fre-
quently followed by the production of terpenoids 
(Takabayashi and Dicke,  1996 ; Halitschke et al., 
 2001) , including monoterpenes (( E )- ocimene) 
and sesqueterpenes ((-)-germacrene D), Fig.  3  
(21). The plant’s response is partly dependent on 
the nature of the herbivore and although interac-
tions between plants and chewing insects are 
well documented (Karban and Baldwin,  1997 ; 
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15 Walling,  2000) , less is known about plant 
responses to sucking or piercing insects 
(Du et al.,  1998 ; Williams III et al.,  2005)  (see 
Section on “Regulation of Plant Toxicants by 
Natural Activators”). A recent study of the inter-
actions between different types of herbivorous 
insects and plant defence volatiles showed that 
tobacco,  Nicotiana tabacum , releases terpenoids 
and nicotine after caterpillar regurgitate treat-
ment. Colonisation by western flower thrips, 
 Frankliniella occidentalis , was reduced on the 
regurgitate treated plants, possibly due to the 
production of nicotine (Delphia et al.,  2007) . 

 The aphid alarm pheromone, ( E)-  b -
farnesene, Fig.  3  (22), is released from aphids in 
response to predator attack, but it is also pro-
duced by some plants in response to herbivory, 
although its effect may be masked by other vol-
atile emissions. The wild potato,  Solanum ber-
thaultii , releases sufficiently high and pure 
levels of the compound from the trichomes to 
induce avoidance behaviour in  M. persicae  
(Gibson and Pickett,  1983) . Transgenic  A. thal-
iana  plants, expressing an ( E)-  b -farnesene syn-
thase gene are also unattractive to these aphids 
(Beale et al.,  2006) . Transformation of  A. thal-
iana  plants with a dual linalool/nerolidol syn-
thase produced plants constitutively containing 
40- to 60-fold higher levels of linalool, Fig.  3  
(23), and its glycosylated and hydroxylated 
derivatives and lower levels of nerolidol, Fig.  4  
(24). The high expressing transgenic plant sig-
nificantly repelled  M. persicae  in dual-choice 
assays (Aharoni et al.,  2003) .   

  Contact Action Including Antifeedants 

 Antifeedants, as the converse of phagostimu-
lants, stimulate deterrent neurones within the 
insect taste receptor system (Chapman,  2003)  
and some compounds possess both activities 
(Onyilagha et al.,  2004  and references therein). 
Plant tissues contain both stimulatory and deter-
rent compounds and insects select their hosts on 

the basis of the balance between the two, with 
the deterrent molecules carrying the most 
weight. (Chapman,  2003) . 

 Metabolites present in the phloem of conifer-
ous trees (Scots pine,  Pinus sylvestris , and 
Norway spruce,  Picea abies ,) can affect the 
feeding behaviour of the conifer bark beetle,  Ips 
typographus  (Faccoli et al.,  2005) . This has been 
attributed to phenolic compounds and host plant 
phenolics, including catchetin, Fig.  4  (25), taxi-
folin, (26), and resveratrol, (27), have been com-
pared to a nonhost compound,  E -conophthonin, 
Fig.  4  (28), in  in vitro  feeding experiments. The 
antifeedant effects of the phenolics was greater 
in males than in females and the nonhost com-
pound had the greatest antifeedant properties. 
The authors suggest that females may have 
developed resistance to the antifeedants by 
extended feeding on resistant trees at a stage 
where the tree’s hypersensitive response, and 
hence antifeedant production, is most active. 
Males, on the other hand, are more sensitive. 
This may be because, as the pioneers, they have 
to select the suitable host for colonisation and 
are therefore more sensitive to repellents. In 
addition, they spend less time feeding on living 
trees gaining less opportunity to develop resist-
ance than females (Faccoli and Schlyter,  2007) . 

 The bean aphid,  Megoura crassicauda , 
discriminates between its host,  Vicia faba , 
and a non-host, the vetch,  Vicia hirsute , by 
tasting specific chemicals during stylet 
penetration. ( E )-2-methyl-2-butene-1,4-diol 
4- O - b -D-glucopyranoside, Fig.  4  (29), in the 
vetch plant is responsible for the observed 
non-host avoidance by the aphid, and it is 
present in sufficiently high concentrations to 
overcome the effect of feeding stimulants (Ohta 
et al.,  2006) . Some terpenoids have been shown 
to be detected by and to deter insects. Using an 
 in vitro  assay system, Omar et al.  (2007)  have 
identified five terpenoid compounds from the 
bark of a tropical plant,  Lansium domesticum , 
that act as antifeedants against the rice weevil, 
 Sitophilus oryzae , at very low concentrations.   
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  Fig. 4    Chemical structures of compounds 24–32       

  Higher Trophic Level Interactions  

  Sequestration of Toxins by Herbivores Against 
Predators 

 Some herbivorous insects consume and sequester 
plant toxins within their tissues to provide 
protection from predators, either instead of, or 

in addition to, their own defence mechanisms 
(Pickett et al.,  1999 ; Macias et al.,  2007) . This 
sophisticated strategy frequently leads to highly 
species specific interactions between host plant 
and sequestering herbivore. A considerable 
degree of co-evolutionary development can 
occur, rendering this phenomenon ideal for the 
study of the processes underlying natural selec-
tion. Pioneering work by Miriam Rothschild 
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15  (1972)  has led to significant discoveries in more 
recent years, and it is clear that the sequestra-
tion of toxins has been effectively exploited by 
Lepidoptera and is often associated with apose-
matic coloration. This can lead to learnt avoid-
ance behaviour by predators or mimicry by 
other herbivores (Brower,  1969) . The chemical 
structures of the compounds sequestered by 
moth and butterfly species is posted on the 
Annual reviews of Entomology web site (  www.
annualreviews.org    ) and a review (Nishida, 
 2002)  provides a comprehensive description of 
many of the intriguing ways that these insects 
make use of plant compounds to enhance their 
survival and reproductive capacity. 

 Some pyrrolizidine alkaloids stored for 
defence (Bernays et al.,  1977) , are used to bio-
synthesise hormones (Nishida et al.,  1996) , or are 
converted to other toxic substances (Brown, 
 1984) . The monarch butterfly,  Danaus piexip-
pus , exploits cardiac glycosides for defence 
against vertebrate predators (Roeske et al.,  1975)  
and glucosinolates are also favoured by some 
insects for this type of defence (Aliabadi et al., 
 2002 ; Aplin et al.,  1975 ; Müller et al.,  2001) . 

 The production of substances that attract 
herbivores is not of obvious evolutionary bene-
fit to plants. Nonetheless, it is clear that there is 
a complex interplay between the insects and 
their hosts and plant induced defence can be 
converted into a benefit for specialist herbiv-
ores by a process of adaptation to toxins that 
were originally defensive.  

  Induced Stress Volatiles for Increased 
Predation and Parasitism (Synomones) 

 Synomones are semiochemicals that benefit 
both the emitting and receiving organism. It has 
been recognised for some time that many plants 
release volatiles in response to herbivore attack 
that are capable of attracting insect predators, or 
parasitoids (parasitic insects that kill their hosts) 
and this process represents an efficient form of 

indirect defence for the host plant (Du et al., 
 1996 ; Dicke et al.,  2003 ; Turlings and Wäckers, 
 2004) . Wind tunnel bioassays that demonstrate 
that  A. ervi , is equally deterred by  V. faba  
plants infested by the pea aphid herbivore, 
 Acyrthosiphon pisum , as by those that have 
been infested but have had the aphids removed, 
demonstrate existence of emissions that func-
tion in this way (Du et al.,  1996) . Many plants 
exploit this form of indirect defence, including 
legumes, brassicas and a range of cereal species 
(Dicke et al.,  1998 ; Takabayashi and Dicke, 
 1996 ; Heil,  2008) . Several species of spiders, 
caterpillars and aphids have been shown to 
induce their host plants to attract their predators 
or parasitoids (Turlings et al.,  1995 ; Pickett and 
Glinwood,  2007 ; De Moraes et al.,  1998) . 

 Green leaf volatiles and terpenoids are 
released from healthy and mechanically dam-
aged plants (Mattiacci et al.,  1994 ; Shiojiri 
et al.,  2001)  but their emissions increase upon 
herbivory and these compounds are one of 
the herbivore-induced synomones that attract 
carnivores (Takabayashi and Dicke,  1996 ; 
Takabayashi et al.,  1994) . An intriguing aspect 
of this tritrophic phenomenon is that the preda-
tory insects can identify the precise nature of 
the herbivore feeding upon the same host. 
Female  A. ervi  are more attracted to  V. faba  
plants previously infested with host than non 
host aphids (Du et al.,  1996) .  Cardiochiles nig-
riceps , a parasitic wasp, can distinguish  N. tab-
acum , cotton,  Gossypium  spp, and  Z. mays  
plants infestated by its host aphid,  Heliothis 
virescens , from plants infested by the closely 
related non-host aphid,  Helicoverpa zea . (De 
Moraes et al.,  1998) . The diamond back moth, 
 Cotesia plutellae , discriminates between cab-
bage plants,  Brassica oleracea , infested with 
 Plutella xylostella  (host) and plants infested 
with  Pieris rapae  (nonhost) aphids (Shiojiri 
et al.,  2000) . Analysis of the volatiles released 
showed both qualitative and quantitative differ-
ences in the compounds produced in response 
to the two aphids (Agelopoulos and Keller, 
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 1994 ; Shiojiri et al.,  2001) . Compounds released 
from these plants in differing amounts included 
( Z )-3-hexen-1-ol, linalool,  cis -jasmone, humu-
lene, ( E , E )- a -farnesene, ( E )-ocimene and ( E )-
caryophyllene. Similar compounds, but in 
different ratios, are released by apple plants, 
 Malus  spp, infested by two different spider 
mites,  Panonychus ulmi  and  Tetranychus urticae  
(Takabayashi and Dicke,  1996)  enabling the 
predatory mite,  Phytoseiulus persimilis , to dis-
tinguish between the two species.  V. faba , plants 
produce higher levels of similar compounds in 
response to the aphid host of  A. ervi  than its non 
host, but one compound, 6-methyl-5-hepten-2-one, 
Fig.  4  (30), appears to have a particularly 

profound effect on the wasp’s behavior (Guerrieri 
et al.,  1999 ; Pickett and Glinwood,  2007)  

 The release of volatiles from plant leaves that 
attract third trophic level insects can be systemic 
(Dicke et al.,  1990) . The upper leaves of  V. faba  
plants infested with  A. pisum , become attractive 
to the parasitoid,  A. ervi , at least 2 days later than 
infested leaves (Guerrieri et al.,  1999 ; Pickett 
and Glinwood,  2007) . This suggests that a 
mobile signal, possibly transported through the 
vascular system is responsible although more 
rapid volatile signalling may also occur (See 
Fig.  5  and the following section). 

 The production by phylogenetically diverse 
plant species and the exploitation by parasitoids 

attraction of
predators

attraction of
parasitoids

vascular
signal

avoidance by
herbivores

volatile
signal

toxins

volatiles

sequestration
of plant 
metabolites

priming for 
resistance

  Fig. 5    A diagrammatical representation of the above ground interactions between plants and insects. 
Feeding by both sucking and chewing insects induces the accumulation of compounds, including those that 
are directly toxic (basal leaf, orange stars), to defend themselves against the herbivorous insects. The 
release of volatile emissions is also induced and these cause approaching herbivores to avoid the plant 
( grey arrows ) but attract parasitoids and predators ( green arrows ). Volatile emissions also prime neigh-
bouring parts of the plant (upper leaf) for resistance so that when these leaves are challenged herbivores 
they respond more rapidly to attack. Signals are released into the plants vascular system from insect infested 
leave that induce the production of defence compounds, including volatiles, from neighbouring, uninfected 
leaves ( red arrows ). However, some insects consume these compounds and store them within their tissues 
to deter their own predators (second leaf)       
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15 of highly specific chemical signals, keyed to 
individual herbivore species, indicate that the 
interaction between plants and the natural 
enemies of the herbivores that attack them is a 
highly sophisticated process.    

  Plant: Plant Interactions  

  Induction of Direct and Indirect Defence 
(Parasitoid or Predator Attraction) by External 
Signals, Both Aerially and Through 
the Rhizosphere 

 In addition to their role in defence against her-
bivores, both directly and involving the third 
trophic level, it has been believed for some time 
that plant derived volatiles released upon her-
bivore attack can induce insect resistance in 
neighbouring plants (Baldwin and Schultz, 
 1983 ; Karban and Baldwin,  1997 ; Tscharntke 
et al.,  2001) . In view of the fact that volatile 
compounds released from herbivore attacked 
plants include recognised plant defence signal-
ling compounds, such as methyl jasmonate, 
methyl salicylate, and ethylene (Farmer,  2001) , 
this is perhaps unsurprising. The rapid release 
of herbivory induced green leaf volatiles can 
also affect the expression of genes involved in 
defence pathways in neighbouring plants and 
can alter their secondary metabolite profiles 
including the induction of the release of terpe-
noids (Bate and Rothstein,  1998 ; Arimura et al., 
 2002 ; Farag and Pare,  2002 ; Ruther and Kleier, 
 2005) . These effects can be between plants of 
the same or different species (Karban et al., 
 2003)  and can involve both deterrence of feed-
ing by herbivores and attraction of their preda-
tors or parasitoids (see Fig.  5 ). 

 The concept has been received with some 
scepticism as on occasions the observed effect 
has required unrealistically high levels of com-
pounds, which are often synthetic or purified 
rather than applied in the ratios released from the 
plant. Frequently, methods have tested effects in 

sealed containers (bell jars) which may cause a 
depletion of CO 2  resulting in non-specific stress 
responses. The responses in the receiver plants 
are consider too weak to be of any physiological 
significance, sufficient replication or reproduci-
bility is often lacking and evidence of the robust-
ness of the phenomenon under field conditions is 
limited. Furthermore, receiver plants located 
more than 20 cm away from the emitter plant 
cease to respond (Karban et al.,  2003) . The rela-
tive merits and short comings of the experimen-
tal approaches and the conclusions drawn from 
them have been the subject of a comprehensive 
review (Dicke and Bruin,  2001) . 

 The phenomenon continues to be the focus 
of scientific interest (Baldwin et al.,  2006)  and 
has involved the study of a wide range of plant/
insect systems. Recent investigations have 
included analysis of the relationship between 
the release of converted exogenously applied 
volatiles (green leaf volatiles) and their  de novo  
biosynthesis by the receiving plant (Yan and 
Wang,  2006)  and synergistic effects (Ruther and 
Kleier,  2005) . Transgenic approaches are also 
now being applied (Paschold et al.,  2006)  and 
this has revealed that green leaf volatiles or  cis -
alpha-bergamotene, Fig.  4  (31), may suppress 
induced defence in neighbouring plants under 
certain circumstances. 

 Communication between damaged and healthy 
plants can also take place below ground, lead-
ing to affects on above ground herbivory 
and parasitoid attraction in neighbouring 
plants.  V. faba , and lima bean,  Phaseolus lunatus , 
plants exposed to root exudates from plants 
damaged by  A. pisum , or  T. urticae , were more 
attractive to carnivorous enemies of the herbiv-
ores (Dicke and Dijkman,  2001 ; Guerrieri et al., 
 2002) . Also, root exudates from  V. faba  plants 
infested by  A. pisum , cause intact neighbouring 
plants to become more attractive to parasitoids 
(Chamberlain et al.,  2002) . Plant-plant com-
munication affecting herbivore resistance has 
also been demonstrated between healthy 
plants. Barley,  Hordeum vulgare  ,  culti-
vars experience less aphid settling when 
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exposed to volatiles from other barley cultivars 
(Pettersson et al.,  1999) . Root exudate collected 
from couch grass,  Elytrigia repens , a pernicious 
weed known to release a number of biologically 
active compounds from its roots (see references 
in Glinwood et al.,  2003)  induces resistance 
to  R. padi  when added to  H. vulgare , roots. 
The most active ingredient in the exudate was 
found to be 6-hydroxy-1,2,3,4-tetrahydro- b -
carboline-3-carboxylic acid, Fig.  4  (32). Root 
colonisation of  Z. mays , plants by the parasitic 
weed,  Striga hermatothica , reduces susceptibil-
ity of the maize plant to infestation by the stem 
borer,  Chilo partellus  (Khan et al.,  2007) . 

 Because neighbouring plants compete for 
resources, it is not clear how the emitting plant 
can benefit from this form of plant-plant com-
munication. Possibly, the volatile signals are 
really intended for other leaves on the same 
plant, rather than leaves on neighbouring plants. 
The transmission of an air borne signal would 
be faster than one transmitted through the 
plant’s vascular system and the latter route 
would be too slow to provide a defence response 
in time to protect adjacent leaves effectively 
from attack by chewing insects (Heil and Ton, 
 2008) . Further more, if the release of volatiles 
by damaged leaves was intended for leaves of 
the same plant, this would address the anomaly 
that the plant to plant effects require the plants 
to be very close (Karban et al.,  2003) . Leaves of 
hybrid poplar,  Populus deltoides  ×  nigra , dam-
aged by the gypsy moth,  Lymantria dispar , lar-
vae have been shown to release volatiles that 
enhance defense against the larvae in neigh-
bouring leaves. This has confirmed that dam-
aged leaves can transmit resistance to leaves of 
the same plant (Frost et al.,  2007) .  

  Priming Effects 

 The benefits to the plant of inducible as opposed 
to constitutive defence have already been 
discussed in this chapter with respect to conser-
vation of the plant’s energy resources and the 

reduction of the likelihood of the development 
of resistance within the insect population. The 
ability of damaged or herbivore infested plants 
to induce direct or indirect defence in neigh-
bouring plants has been described above. 
However, a further novel aspect of plant defence 
involves the ability of plants that have received 
prior exposure to certain signals to respond more 
rapidly to a subsequent encounter by a insect 
pest (Conrath et al.,  2006) . The existence of this 
phenomenon, known as “priming”, would indi-
cate that plants have the capacity for memory, 
better described as “stress imprinting” as the lat-
ter definition would not imply that plants are 
cognisant (Bruce et al.,  2007) . The advantage to 
the plant of such a mechanism would be obvious 
as resources would not be expended but the plant 
would be on guard to respond more effectively. 
The initial priming event would be related to the 
subsequent attacking agent as it would be vola-
tile blends released from damaged plants that 
would indicate a likelihood of damage in the 
near future to the receiving plant by a pest known 
to be in the vicinity. 

 Definitive evidence for the existence of such 
defence mechanisms in plants was first provided 
by Engelberth et al.  (2004) . These authors 
observed that the effects of green leaf volatiles 
on the defence responses of neighbouring plants 
are weaker, more transient and involve the 
induction of a limited selection of defence genes 
in the receiving plant compared to direct expo-
sure to methyl jasmonate or herbivory. However, 
they demonstrate that  Z. mays  seedlings treated 
with green leaf volatiles respond both more 
rapidly and more strongly to a subsequent chal-
lenge by mechanical damage or induction with 
 S. exigua , regurgitant. This enhanced response 
involves production of increased amounts of jas-
monic acid and volatile sesquiterpenes. By stud-
ying the effects on gene expression, volatile 
emission and insect behaviour Ton et al.  (2007)  
have also shown that green leaf volatiles released 
from the Mediterranean brocade caterpillar, 
 Spodoptera littoralis , infested plants prime 
neighbouring plants for defence against the same 
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15 insects. The volatile emissions induced faster 
and greater enhancement of expression of sev-
eral defence genes on caterpillar attack, but did 
not induce the gene expression directly. The 
volatile profile was enhanced, caterpillar growth 
negatively effected and there were positive 
effects on the third trophic level. Priming has 
also been demonstrated with other plant species, 
for example volatile compounds released from 
detached sagebrush,  Artemisia tridentate , leaves 
increase the defence response of  N. tobacum  
plants to  M. sexta  attack (Kessler et al.,  2006) . 
The within plants effects described above in 
poplar are also described as priming, and here 
the advantage to the plant of the speed of the 
transmission of the wound signal are self evident 
(Frost et al.,  2007 ; Heil and Ton,  2008) . 

 The underlying mechanisms responsible for 
priming are currently speculative but are the focus 
of much scientific investigation. It has been sug-
gested that signalling metabolites or transcription 
factors may be increased upon exposure to the 
priming agent. Potentially this could represent the 
increased accumulation of an inactive precursor 
(glycoside for example) that could be converted 
to an active defence compound more rapidly than 
the production of the defence compound by  de 
novo  biosynthesis. Epigenetic modifications 
could also occur, such that after priming a genetic 
change is instigated that enables the transcrip-
tional events involved in defence to proceed more 
rapidly upon induction (Bruce et al.,  2007) .   

  Conclusions  

 The interactions between plants and insects are 
highly complex and are subject to continuing 
co-evolutionary changes and developments 
(Wheat et al.,  2007) . Plants have successfully 
exploited the wide range of natural secondary 
metabolites that they produce to defend them-
selves against insects. Although these strategies 
include the accumulation or release of com-
pounds that are directly toxic or repellent to 

herbivores, there are also many examples of the 
ability of plants to further enhance their defen-
sive capacity by the attraction of natural ene-
mies of herbivorous insects. In turn, however, 
pest populations have managed to circumvent, 
or even benefit from, many plant defence prod-
ucts by detoxification or sequestration, enabling 
some specialist feeders to develop their own 
independent ecological niche. 

 The important challenge for the future is to 
establish to what extent these interactions can 
be extended or manipulated to develop envi-
ronmentally compatible pest control. This 
could involve either traditional breeding or 
genetic engineering to introduce defence 
enhancing traits into plants. Such traits could 
include spatially advantageous enhanced con-
stitutive or induced expression of defence com-
pounds or more rapid, sensitive priming 
responses. At this stage field studies to test the 
feasibility of such approaches are at prelimi-
nary stages but there is clear evidence that plant 
released compounds can influence pest behaviour 
in natural situations (De Moraes et al.,  1998 ; 
Rasmann et al.,  2005 ; Steppuhn et al.,  2004 ; 
Thaler,  1999) . Fast through-put molecular tech-
niques, genome mapping and both plant and 
insect whole genome sequence information are 
now becoming available. It can be anticipated 
that with the application of these technologies 
the regulatory mechanisms underlying plant 
defence responses will be unraveled enabling 
progress towards this goal to be achieved. 
However, it remains to be established whether 
the pressures of co-evolution leading to pest 
resistance can be overcome.      
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