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Abstract Cancer chemoprevention is defined as the use

of natural or synthetic agents that reverse, suppress or

arrest carcinogenic and/or malignant phenotype progres-

sion towards invasive cancer. Phytochemicals obtained

from vegetables, fruits, spices, herbs and medicinal plants,

such as terpenoids, carotenoids, flavanoids, phenolic com-

pounds, and other groups of compounds have shown

promise in suppressing experimental carcinogenesis in

various organs. Recent studies have indicated that mecha-

nisms underlying chemopreventive action may include

combinations of anti-oxidant, anti-inflammatory, immune-

enhancing, and anti-hormone effects. Further, modification

of drug-metabolizing enzymes, and influences on cell

cycling and differentiation, induction of apoptosis, and

suppression of proliferation and angiogenesis that play a

role in the initiation and secondary modification of neo-

plastic development, have also been under investigation as

possible mechanisms. This review will highlight the bio-

logical effects of terpenoids as chemopreventive agents on

breast epithelial carcinogenesis, and the utility of inter-

mediate biomarkers as indicators of premalignancy.

Selected breast chemoprevention trials are discussed with a

focus on strategies for trial design, and clinical outcomes.

Future directions in the field of chemoprevention are pro-

posed based on recently acquired mechanistic insights into

breast carcinogenesis.
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Introduction

Breast cancer is the second most prevalent cancer world-

wide. In the United States, breast cancer accounts for 26%

of all cancers in women and is second only to lung cancer

as a cause of cancer-related deaths. An estimated 182,460

new cases of invasive breast cancer will be diagnosed

among women in the United States and an estimated

67,770 additional cases of in situ breast cancer will be

added to the statistics in 2008. In addition to the diagnosis

of new cases, approximately 40,480 women are expected to

die from diagnosed breast cancer in 2008 [1]. Although still

disconcertingly high, these numbers represent a downward

trend that continued to decline by more than 2% per year

since 1990. This trend has been credited to progress in the

early detection and treatment of the disease [1]. Unfortu-

nately, the severe morbidity of these cancers, reflected in

the poor 5-year relative survival rate (only 14%), has not

been improved by current treatments that include surgery,

radiotherapy, hormone therapy and adjuvant chemothera-

pies [2]. The addition or withdrawal of estrogenic

substances from a patient’s milieu as part of the prevention

or treatment of cancer has been a part of modern medicine

for over 100 years. Although breast cancer research has

developed at a rapid pace over the last decade, the curative

potential of currently available therapies remains

disappointing.

Primary cancer preventive strategies are those aimed at

removing exposure to carcinogens, such as chemicals in

the case of tobacco; electromagnetic-associated radiation

such as protection from sun ultra violet (UV) exposure; or

multifactorial in cases of poor diet and obesity. A variety

of approaches have been employed in cancer chemopre-

vention. These include changes in diet, supplementation

with specific vitamins and minerals, or administration of
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pharmacologic compounds and identification and removal

of preneoplastic lesions. More than 400 drugs, vitamins,

hormones and other agents have been identified that might

help in preventing cancer. Clinical trials are underway to

investigate an increasing number of agents. Most of these

trials involve healthy individuals with a higher-than-

average risk of cancer [3, 4]. The development of cancer

occurs over years and involves multiple genetic and

phenotypic alterations. Chemoprevention is based on the

premise that intervention is possible during the initiation,

promotion and progression steps of carcinogenesis by the

administration of one or more naturally occurring and/or

synthetic compounds, as an alternative to treatment of

cancer cases after clinical symptoms have appeared [5, 6].

For use as a chemopreventive agent among the general

population, a compound must have minimal or no toxic-

ity. Agents that show promise for this purpose include

dietary constituents or their analogs, as well as medici-

nals, such as nonsteroidal anti-inflammatory drugs

(NSAIDs) [7–9]. Fruits and vegetables contain an abun-

dance of terpenoids, phenolic substances and other natural

anti-oxidants that have been associated with protection

from and treatment of chronic diseases such as cancer and

heart disease. Terpenoids are a group of substances that

occur in nearly every natural food. This class of com-

pound has been shown to be beneficial to maintain and

improve health, and include several subclasses such as

monoterpenes (limonene, carvone and carveol), diterpenes

(retinoids), triterpenes (oleanic acid and ursolic acid), and

tetraterpenes (a- and b-carotene, lutein, lycopene, zea-

xanthine and cryptoxanthine). These subclasses have been

shown to possess an array of mechanisms of action that

affect (among others) oxidative stress, carcinogenesis and

cardiovascular diseases [10].

Chemopreventive agents

Cancer chemopreventive agents are divided into two

principal categories: blocking agents that prevent the

mutagenic initiation of the carcinogenic process and

suppressing agents that prevent the further promotion or

progression of lesions that have already been established

[11]. Some agents are classified in both categories. A vast

amount of information has been accumulated which

demonstrates that chemical carcinogens act via common

mechanisms. The ultimate carcinogenic forms of procar-

cinogens are often positively charged electrophilic

species. Some carcinogens, termed ‘‘direct acting’’ exist

in this form or assume it in solution. Others require

metabolic activation. Blocking agents can be placed into

three groups according to their mechanisms of action.

One group acts simply by inhibiting the activation of a

carcinogen to its ultimate carcinogenic form. An example

of this type of inhibition is the prevention of symmetrical

dimethylhydrazine-induced neoplasia of the large bowel

by disulfiram [12]. A second group of blocking agents is

effective by virtue of inducing increases in activity of

enzyme systems having the capacity to enhance carcin-

ogen detoxification. The third group of blocking agents

has the capacity to act by scavenging the reactive forms

of carcinogens. Physiological nucleophiles, such as glu-

tathione (GSH) fall into this group. Since mutation

continues as part of the entire chronic process of carci-

nogenesis, the distinction between the two categories, at

least in part the dimension of time is artifactual. Exten-

sive information is available that endogenous metabolism

as well as exposure to exogenous agents can have major

influences on the process of carcinogenesis [13]. Since

chemoprevention is to have a practical impact on the

control of cancer, it is necessary to develop a funda-

mentally pharmacologic approach to the problem. In the

face of the intense mutagenic pressure that drives the

process of carcinogenesis, it will be necessary to use

agents that either are potent anti-mutagens or can sig-

nificantly alter patterns of gene expression. a-Tocopherol

and c-tocopherol prevent formation of carcinogen from

precursor compounds [14]. Diterpene kahweol palmitate

is a naturally occurring compound which is a blocking

agent, whereas retinoids, carotenoids, and sterols are

suppressing agents [15, 16]. Large and diverse groups of

naturally occurring terpenoids have demonstrated breast

cancer chemopreventive effects (Table 1).

Terpenoids

Terpenoids, also referred to as terpenes, are the largest

group of natural compounds that play a variety of roles in

many different plants. All terpenoids are synthesized from

two five-carbon building blocks. Based on the number of

building blocks, terpenoids are commonly classified as

monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20),

sesterterpenes (C25), triterpenes (C30), tetraterpenes (C40)

and polyterpenes. Terpenoids, also known as isoprenoids,

are perhaps the most diverse family of natural products

synthesized from plants, serving a range of important

physiological functions. Over 40,000 different terpenoids

have been isolated from plant, animal and microbial spe-

cies [17, 18]. A wide range of terpenoids has demonstrated

pharmacological activity against human ailments such as

cancer (taxanes from Taxus brevifolia and terpenoid indole

alkaloids, including vincristine and vinblastine from

Catharanthus roseus) [19, 20], human immunodeficiency

virus (coumarins including calanolide A from Calophyllum

lanigerum) and malaria (artemisinin from Artemisia annua)

[21].
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Table 1 Terpenoids tested in breast cancer

Terpenoids Chemical structure Source References

Monoterpenes

d-Limonene (1)

1

Lemons, oranges, grapefruit, caraway,

bergamot, dill, spearmint

[24]

Perillyl alcohol (2)
CH2OH

2

Diterpenes

Retinol (3)

COOH

3

Carrot, spinach, pumpkin, broccoli, mango,

papaya, cherry, tomato, cabbage, corn,

watermelon, lettuce

[46, 47]

Trans-retinoic acid (4)

OH

4

Triterpenes

Oleanic acid (5)

O

OH

HO 5

Olives, figs, rosemary [73, 75]
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Monoterpenes

Monoterpenes are best known as secondary plant metabo-

lites and constituents of essential oils, floral scents and

defensive resins (both constitutive and induced) of aro-

matic plants [22, 23]. Monoterpenes are formed from

geranyl diphosphate catalyzed by different terpene cyc-

lases. Many monoterpenes are non-nutritive dietary

components found in the essential oils of citrus fruits,

cherry, mint, and herbs [24]. A number of dietary mono-

terpenes have anti-tumor activity, exhibiting not only the

ability to prevent the formation or progression of cancer,

but the ability to regress existing malignant tumors [25].

d-Limonene is the most abundant monocyclic monoterpene

found in nature, and it occurs in a variety of trees and

herbs. It is a major constituent of peel oil from oranges,

citrus and lemons, and the essential oil of caraway.

d-Limonene is a well-established chemopreventive and

therapeutic agent against many tumor cells [10, 26] and has

chemopreventive activity against rodent mammary cancer

during the initiation phase as well as the promotion/pro-

gression phase [27] (Table 2).

The mevalonate pathway, also known as the cholesterol

pathway, produces cholesterol and a number of nonsterol

products, and pools of farnesyl diphosphate and other

phosphorylated products of the mevalonate pathway are

essential to the post-translational processing and physio-

logical function of small G-proteins, nuclear lamins, and

growth factor receptors. Inhibitors of enzyme activities

providing those pools, namely, 3-hydroxy-3-methylglutaryl

coenzyme A (HMG-CoA) reductase and mevalonic acid

pyrophosphate decarboxylase, and of enzyme activities

requiring substrates from the pools, the protein pren-

yltransferases, have potential for development as novel

chemopreventive and chemotherapeutic agents [28]. d-

Limonene inhibits the post-translational isoprenylation of

cellular proteins with apparent selectivity that dislodge all

Ras isoforms from the membrane and alter the interaction

of Ras-guanosine-50-triphosphate (GTP) with downstream

targets, a class of proteins that includes a subset of cellular

growth control-associated proteins that are active only after

post-translational modification [29]. This provides a cor-

relation between d-limonene-mediated inhibition of HMG-

CoA reductase and protein prenyltransferases [29]. Mam-

mary tumors that regressed following exposure of the hosts

to a diet containing 10% d-limonene had increased levels

of both mannose-6-phosphate (M-6-P)/insulin-like growth

factor (IGF)-II receptors and transforming growth factor

(TGF)-b1 and the increase in M-6-P/IGF-II receptor

appeared to result from alterations at both transcriptional

Table 1 continued

Terpenoids Chemical structure Source References

Ursolic acid (6)

O

OH

HO

CH3

H3C

CH3

CH3H3C

H3C CH3

6

Tetraterpenes

Carotene (7)

7

Tomatoes, oranges, carrot, peas,

sprouts, green beans, corn

[86, 88]

Lycopene (8)

8
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and post-transcriptional levels [30]. Subsequent studies

confirmed the monoterpene-induced increase in M-6-P/

IGF-II receptor mRNA in regressing mammary tumors

[31]. Perillyl alcohol, a hydroxylated analog of limonene,

exhibits chemopreventive activity against rat mammary

tumors [32]. TGF-b type 1 and 2 receptors mRNAs in

mammary carcinomas responding to perillyl alcohol were

significantly increased when compared to levels in sur-

rounding tissues [33]. Perillyl alcohol transiently induced

the expression of growth associated genes, c-jun and c-fos,

components of activator protein (AP)-1. The impact of

perillyl alcohol on c-fos and c-jun expression and c-jun

Table 2 Effect of terpenoids on breast cancer chemoprevention and their possible mechanisms

Terpenoids Biological effects Mechanisms References

Monoterpenes

d-Limonene

and Perillyl

alcohol

Inhibit the growth of MCF-7, T47D

and MDA-MB-231 cells

\G0/G1 phase; ;cyclin D1 [26]

Inhibit rat mammary tumors :M-6-P/IGF-II; :TGF-b1; ;ras;

:CYP-2B1; :CYP-2C; :apoptosis;

:redifferentiation

[27, 30, 32]

Sesquiterpenes

Farnesol Inhibits the growth of MCF-7 cells ;ER [42]

Diterpenes

Retinoic acid Induces apoptosis in MCF-7 cells \G0/G1 phase; :RAR-b; ;ER;

;PR; ;pS2

[55, 56]

N-(4-hydroxyphenyl)

retinamide and

retinyl acetate

Inhibit rat mammary tumor; reduce

cancer incidence, multiplicity

;TEBH; ;CIS [57, 59]

Calcium glucarate Inhibits the growth of MCF-7 cells \G0/G1 phase; :TGF-b; ;PKC [60]

Inhibits rat mammary tumors :differentiation

Triterpenes

Asciatic acid Inhibits the growth of MCF-7

and MDA-MB-231 cells

\S/G2 + M phase; :apoptosis [80, 81]

Pristimerin Inhibits the growth of MDA-MB-231 cells :apoptosis [92]

Withaferin A Inhibits the growth of MCF-7 cells ;Cyclin D1; ;NF-jB [94]

Inhibits rat mammary tumors :apoptosis [95]

CDDO Induces apoptosis in MCF-7 cells \G0/G1-S phase; ;cyclin D1; ;HER2;

:PPARc; ;COX-2; ;NF-jB; :caveolin-1

[97]

CDDO-Me Induces apoptosis in and inhibits the growth

of 4T1 cells

\G2/M phase; ;STAT3; ;Src; ;Akt; ;c-myc [98]

Betulinic acid Inhibits the growth of MCF-7 cells :Bax; ;Bcl-2; ;cyclinD1; :apoptosis [104]

AMR Induces apoptosis in and inhibits the growth

of MCF-7 and MDA-468 cells

\G2/M phase; :p53; :Bax; ;Bcl-2;

:caspases; :cytochrome c; :PARP cleavage;

:DNA fragmentation

[113, 114]

AMR-Me Induces apoptosis in and inhibits the growth

of MCF-7 cells

\G2/M phase; :p53; ;Bax; ;Bcl-2;

:caspases; :JNK; :p38; :PARP cleavage;

:DNA fragmentation

[115]

Tetraterpenes

b-Carotene Inhibits the growth of MCF-7 and

MDA-MB-468 cells

;PCNA; ;Ki67 [122, 123]

Lycopene Inhibits the growth of MCF-7 cells \G0/G1 phase; ;PCNA; ;Ki67;

:BRCA1, BRCA2 mRNA and

protein; :RARalph;

:Cx43; :GSTP1

[130]

Induces apoptosis in MDA-MB-231 cells \G0/G1 phase; :RARalph; :Cx43 [130]

Lutein Inhibits mice mammary tumors :GJIC; :pim-1; :differentiation;

:apoptosis; :T-cells

[131–140]

Vitamin E succinate Induces apoptosis in MCF-7

and MDA-MB-435 cells

\G0/G1 phase; ;DNA synthesis; ;Ki67;

:differentiation; :p21; :ERK1/2; ;Her2/neu;

:cytokeratin 18; :PARP cleavage

[146]
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phosphorylation was dose-dependent [34]. d-Limonene and

perillyl alcohol suppressed the incorporation of radiola-

beled mevalonate into small G-proteins and this action has

been attributed to the inhibition of farnesyl protein trans-

ferase activity [35]. Phase I studies of d-limonene [36], and

phase I [37] and II [38] studies of perillyl alcohol revealed

dose-limiting toxicities, such as nausea, vomiting, anor-

exia, and eructation.

The monoterpenoids carveol, uroterpenol, and sobrerol

have demonstrated chemopreventive activity against

mammary cancer in rats when fed during the initiation

phase [39]. The chemopreventive effects of monoterpenes

during the initiation phase of mammary carcinogenesis are

due to the induction of phase II carcinogen-metabolizing

enzymes, resulting in carcinogen detoxification through a

blocking mechanism. The post-initiation phase chemopre-

ventive and chemotherapeutic activities of monoterpenes

may be due to the induction of tumor cell apoptosis, tumor

redifferentiation, and/or inhibition of the post-translational

isoprenylation of cell growth-regulating proteins [39, 40].

Sesquiterpenes

The sesquiterpene farnesol found in lemongrass, chamo-

mile, and lavender shows promise as a more potent

compound than either d-limonene or perillyl alcohol in

vivo, and is in development for clinical breast cancer

prevention [41]. Farnesol has been selected for clinical

development through the National Cancer Institute’s Rapid

Access to Preventive Intervention Development (RAPID)

program. In MCF-7 cells stably transfected with an estro-

gen receptor (ER) reporter gene, farnesol induces a

decrease of ER levels and increases progesterone receptor

expression while stimulating ER-mediated gene transacti-

vation [42]. Parathenolide (PTL) is a sesquiterpene lactone

found as the major active component in Feverfew

(Tanacetum parthenium), an herbal medicine that has been

used to treat migraine and rheumatoid arthritis for centu-

ries. PTL has been found to have anti-tumor activity, and

inhibits DNA synthesis and cell proliferation in different

cell lines [43, 44].

Diterpenes

The diterpenes represent a large group of terpenoids with a

wide range of biological activities, isolated from a variety

of organisms. One of the simplest and most important

acyclic diterpenes is phytol, a reduced form of geranylg-

eraniol. Among diterpenes, vitamin A or retinol is the most

important compound. Retinoids, a class of over 3,000

natural derivatives and synthetic analogs of vitamin A, are

powerful modulators of epithelial carcinogenesis [45, 46].

About 1,500 different retinoids have been synthesized by

modifying the ring structure, the side chain, or the terminal

group of the molecule in attempts to obtain greater anti-

carcinogenic activity and less toxicity. The naturally

occurring retinoids include: retinol, the alcohol of vitamin

A; retinoic acid, the carboxylic acid; retinal, the aldehyde;

and 13-cis-retinoic acid, an isomer of retinoic acid. Reti-

noids, including vitamin A (retinol) and its active

metabolite, retinoic acid, play important roles in inhibiting

cell proliferation, and promoting morphogenesis and dif-

ferentiation [47, 48], and in cellular and humoral immunity

[49, 50].

There have been many studies demonstrating chemo-

prevention and chemotherapy with retinoids and their

derivatives in a variety of rodent mammary gland, prostate,

bladder, skin and liver tumor models [51, 52]. Retinoid

receptors are expressed in normal and malignant epithelial

breast cells, which are critical for normal development.

Although the mechanism underlying breast cell growth

inhibition by retinoids has not yet been completely eluci-

dated, experimental evidence suggests that it is likely to

involve multiple signal transduction pathways and to result

from direct and indirect effects on gene expression. Bind-

ing of retinoids to the nuclear receptors, namely retinoic

acid receptor (RAR)-a, -b and -c and retinoid X receptor

(RXR)-a, -b and -c, which are ligand-activated transcrip-

tion factors, leads to regulation of several cellular

processes, including growth, differentiation and apoptosis

[53]. Several retinoids are able to inhibit the AP-1 tran-

scription pathway, which is activated upon growth factor

signaling [54] and is involved in breast cancer cell prolif-

eration and transformation [55]. In addition, growth

inhibition of breast cancer cells by retinoic acid has been

associated with induction of the expression of RAR-b,

which may act as a tumor suppressor and appears to be

down-regulated in breast cancer tissue and cell lines and,

conversely, upregulated in normal mammary epithelial

cells [56].

The glucuronide derivative of N-(4-hydroxyphenyl)re-

tinamide exhibited higher anti-tumor action in vivo against

7,12-dimethylbenz(a)anthracene (DMBA)-induced mam-

mary tumors in rats, and had lower toxicity than its parent

compound [57]. This suggests that the conjugate may have

an in vivo chemopreventive advantage over the parent re-

tinamide. N-(4-hydroxyphenyl)retinamide inhibited N-

methyl-N-nitrosourea (MNU)-induced mammary tumori-

genesis in rats given grain-based diet but enhanced

carcinogenesis in rats given a casein-based semipurified

diet due to the interactions between N-(4-hydroxy-

phenyl)retinamide and the diet resulting in lower levels of

circulating N-(4-hydroxyphenyl)retinamide [58]. Selenium

with retinyl acetate augmented the chemopreventive effect

of retinyl acetate, whereas selenium alone had no effect on

mammary carcinogenesis [59]. Calcium glucarate, glucaric
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acid and its derivatives exhibited chemopreventive activity

in the mammary gland in mice and increased detoxification

of carcinogens and tumor promoters/progressors by inhib-

iting b-glucuronidase and preventing hydrolysis of their

glucuronides [60, 61]. They are present in low concentra-

tions in the diet and showed no toxicity even at a

concentration of 5% in the diet of rats [60, 61]. The syn-

thetic retinoid, fenretinide, has been studied extensively as

a chemopreventive agent against breast cancer and is less

toxic than many other retinoids [62]. Clinical studies

indicate that breast cancer patients aged over 55 years with

a higher percentage of adipose tissue had higher plasma

levels of the fenretinide metabolite, N-(4-methoxy-

phenyl)retinamide [63]. Retinoid provides resistance to

chemical carcinogenic challenge, while vitamin A defi-

ciency in humans has been associated with an increased

incidence of cancer in the breast [64]. Some studies showed

that vitamin A may have a protective effect [65], an

adverse effect [66], or no effect [67] against breast cancer.

The mechanisms of anti-carcinogenic action of retinoids

are believed to lie at the level of gene expression [68].

Retinoids modulate cell differentiation by increasing the

expression of some oncogenes and their elaborated growth

factors [69]. Retinoic acid positively regulated c-myc

expression during its growth inhibitory effects in MCF-7

human breast carcinoma cells [70].

Sesterterpenes

Terpenes having 25 carbons and five isoprene units are rare

relative to the other classes. Extracts of the marine sponge

Thorectandra sp. have been found to contain sesterterp-

enes, thorectandrols A, B, C, D, and E, luffarin R, luffarin

V and palaolide. Thorectandrol A and B and palauolol have

tested for in vitro cytotoxic activity against human breast

cancer MCF-7 cells and all three compounds inhibited the

growth of the MCF-7 cells [71].

Triterpenoids

Triterpenoids represent a group of natural substances,

which include steroids and consequently sterols [72].

Squaline is the immediate biological precursor of all trit-

erpenoids. The large groups of steroids including sterols

are present in very small amounts in bacteria but in large

amounts in plants and animals while hapanoids are very

abundant in prokaryotes where they replace cholesterol

[73]. Triterpenoid have shown to possess anti-inflamma-

tory and anti-carcinogenic properties [74]. Phytosterols,

especially sitosterol, are plant sterols that have been shown

to exert protective effects against many types of cancer

[75]. They have been reported to protect against cancer

development. However, the mechanism of this protection

remains unknown even though several have been proposed.

Many triterpenoids have shown promising effects when

applied as anti-neoplastic agents [76]. Asiatic acid, a plant-

derived triterpenoid compound, was extracted from the

tropical medicinal plant Centella asiatica [77]. It has been

found to prevent UVA-mediated photoaging, inhibit b-

amyloid-induced neurotoxicity, and possess anti-ulcer and

anti-hepatofibric activities [78, 79]. It also has been

reported to exhibit a cytotoxic effect against HepG2 cells

by Ca2+ release and p53 up-regulation and inhibited the

growth of human MCF-7 and MDA-MB-231 breast cancer

cells, which were accumulated in the S/G2 + M phase of

the cell cycle, and underwent apoptosis in a dose- and time-

dependent manner [80, 81].

Celastrol, a quinone methide triterpene derived from the

medicinal plant Tripterygium wilfordii, has been used to

treat chronic inflammatory and autoimmune diseases and

known to inhibit the proliferation of a variety of tumor

cells, including those from leukemia, gliomas, and prostate

cancer [82]. Celastrol is also known to modulate the

expression of proinflammatory cytokines, MHC-II antigen,

inducible nitric oxide synthase (iNOS), adhesion molecules

in endothelial cells, proteasome activity, topoisomerase II,

potassium channels and heat shock response [83–85].

Celastrol is significantly active against MCF-7 human

breast cancer cells with ED50 value of 0.34 lg/ml [86].

Celastrol methyl ester derivative pristimerin is found in

various species belonging to Celastraceae and Hippo-

crateaceae. Some of these plants, such as Maytenus

chuchuhuasca and Maytenus laevis, have been used tradi-

tionally in the treatment of arthritis and skin cancer in

South America [87, 88]. Pristimerin exhibited anti-micro-

bial, anti-inflammatory, anti-peroxidation, and anti-tumor

effects [89] and has been reported to be effective in pre-

venting inflammatory responses in several animal models

[90]. In addition, pristimerin inhibited the induction of

iNOS in macrophages by suppressing nuclear factor (NF)-

jB activation, an effect which may be responsible for its

anti-inflammatory activity [91]. Pristimerin induced cas-

pase-dependent apoptosis in the human breast cancer cell

line MDA-MB-231 and the nontumorigenic human mam-

mary epithelial cell line MCF-10A is less sensitive to

pristimerin [92]. Withaferin A is a steroidal lactone major

constituent of the medicinal plant Withania somnifera,

consumed as a dietary supplement around the world and

used in the treatment of tumors and inflammation in several

Asian countries [93]. Withaferin A and its derivatives

exhibited half maximal inhibitory concentration (IC50)

values ranging from 0.24 to 11.6 lg/ml against MCF-7

human breast cancer cells. Withaferin A inhibited human

umbilical vein endothelial cell (HUVEC) proliferation

(IC50 = 12 nM) at doses that are significantly lower than

those required for tumor cell lines through a process
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associated with inhibition of cyclin D1 expression which

are relevant to NF-jB-inhibitory activity [94]. In addition,

withaferin A has been shown to exert potent anti-angio-

genic activity in vivo at doses that are 500-fold lower

compared to one that exerted anti-tumor activity in vivo

[95], which highlights the potential use of this natural

product for breast cancer treatment or prevention.

Several hundreds of new synthetic triterpenoids based

on oleanolic acid have been synthesized recently and 2-

cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO),

its methyl ester (CDDO-Me) and 1-(2-cyano-3,12-dioxo-

oleana-1,9-dien-28-oyl) imidazole (CDDO-imidazolide)

have potent anti-inflammatory, anti-oxidative, and anti-

proliferative activities. They also suppress induction of

iNOS by inflammatory stimuli, suppress induction of

cyclooxygenase-2 (COX-2), induce an entire set of anti-

oxidative enzymes, inhibit activity of the transcription

factor NF-jB by directly inhibiting its activating kinase,

IjB kinase [96–98], inhibit phosphorylation of signal

transducers and activators of transcription (STAT) factors,

which is required for transcriptional activity of the STATs

and they inhibit the ability of tumor necrosis factor (TNF)-

a to induce expression of vascular endothelial growth

factor [99]. Synthetic triterpenoid CDDO is a highly potent

inhibitor of the proliferation of several ER-positive and

ER-negative human breast cancer cell lines. Furthermore,

CDDO at nanomolar levels blocks de novo synthesis of two

inflammatory enzymes that have recently been implicated

in the carcinogenic process, namely iNOS and inducible

COX-2 [100]. Ursolic acid and oleanolic acid are penta-

cyclic triterpenoids, which naturally occur in many

medicinal herbs and plants used for medicinal purposes in

many Asian countries. Recent research revealed that sev-

eral pharmacological effects could be attributed to ursolic

acid and oleanolic acid, such as anti-tumor and anti-

inflammatory activities [101]. Treatment with ursolic acid

suppressed phorbol-12-myristate-13-acetate (PMA)-medi-

ated induction of COX-2 protein and synthesis of

prostaglandin E2 by inhibiting the protein kinase C (PKC)

signal transduction pathway in human mammary epithelial

cells [102]. Ursolic acid blocked PMA-induced transloca-

tion of PKC activity from cytosol to membrane and the

activation of extracellular signal-regulated kinases (ERKs),

C-jun N-terminal kinases (JNKs) and p38 mitogen-acti-

vated protein kinases (MAPKs) [97]. Ursolic acid also

inhibited the in vivo formation of mammary DMBA-DNA

adducts and the initiation of DMBA-induced mammary

tumorigenesis in female rats [103].

Betulinic acid (BA), a pentacyclic triterpene isolated

from birch bark and other plants, selectively inhibits the

growth of human cancer cell lines and does not exhibit

toxicity in animals at higher concentrations. BA derivatives

that are markedly more potent than BA for inhibiting

iNOS, activating phase II cytoprotective enzymes, and

inducing apoptosis in human breast cancer cells and in

Bax/Bak-/- fibroblasts, which lack two key proteins

involved in the intrinsic mitochondrial-dependent apoptotic

pathway. Higher plasma and tissue levels of 1-(2-cyano-3-

oxolupa-1,20(29)-dien-28-oyl)imidazole (CBA-Im), a new

BA analogue, were observed compared with the levels of

BA at concentrations that were active in vitro [104]. These

findings suggest that BA may be a useful platform for drug

development, and the enhanced potency and varied bio-

logical activities of CBA-Im make it a promising candidate

for further chemoprevention or chemotherapeutic studies.

Apple phytochemical extracts have been shown to have

potent anti-oxidant property and anti-proliferative activity

against human cancer cells and to prevent mammary can-

cers in rats in a dose-dependent manner [105, 106].

Triterpenoids, 2a-hydroxyursolic acid and 3b-trans-p-cou-

maroyloxy-2a-hydroxyolean-12-en-28-oic acid isolated

from apple peels displayed potent anti-proliferative activity

against MCF-7 cancer cells [107].

Legumes, especially black beans (Phaseolus vulgaris L)

are widely consumed in the world, and are a staple in Central

America as a major source of protein, energy, vitamins and

minerals. Triterpenoids like 3-O-[(b-D-glucopyranosyl)

(1 ? 2)-b-D-galactopyranosyl(1 ? 2)-b-D-glucuronopyr-

anosyl]olean-12-en-3b, 22b,24-triolmethylester,3-O-[a-L-

rhamnopyranosyl(1 ? 2)-b-D-glucopyranosyl(1 ? 2)-b-D-

glucuronopyranosyl]olean-12-en-3b,22b,24-triol methyl ester,

3-O-[b-D-glucopyranosyl(1 ? 2)-b-D-glucuronopyranosyl]

olean-12-en-3b,22b,24-triol, 3-O-[b-D-glucopyranosyl

(1 ? 2)-b-D-galactopyranosyl(1 ? 2)-b-D-glucuronopyr-

anosyl]olean-12-en-22-oxo-3b,24diol, and 3-O-[a-L-rhamno

pyranosyl(1 ? 2)-b-D-glucopyranosyl(1 ? 2)-b-D-glucur-

onopyranosyl]olean-12-en-22-oxo-3b,24-diol methyl ester

isolated from black beans demonstrated potent anti-tumor

activity in MCF-7 cell culture [108]. Triterpenes 3-epi-

sodwanone K, 10,11-dihydrosodwanone B isolated from

Axinella sp. inhibited both hypoxia-induced and iron che-

lator (1,10-phenanthroline)-induced hypoxia-induced factor

(HIF)-1 activation in T47D breast tumor cells [109]. Frie-

delin, friedelan-1,3-dione and lup-20(29)-en-3b-ol are

triterpenoids isolated from the stem bark of Mesua daphni-

folia showed strong inhibitory effects against human

ER-negative breast cancer MDA-MB-231 cells [110].

25-Hydroxy-3-oxoolean-12-en-28-oic acid (Fig. 1A),

commonly known as amooranin (AMR), is a triterpene acid

with a novel structure isolated by Rabi [111] from the stem

bark of Amoora rohituka, a tropical tree growing wild in

India. Recent studies by Rabi and colleagues [112–114]

showed that multiple breast cancer cell lines respond to

AMR in growth suppression assays. Mechanistic studies

suggest that AMR suppresses growth factor signaling,

induces cell cycle arrest, and promotes apoptosis [113,
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114]. AMR-induced apoptosis in several human breast

cancer cells are associated with the cleavage of caspase-8,

-9, and -3; Bid and ER stress; release of cytochrome c from

the mitochondria; cleavage of poly (ADP-ribose) poly-

merase (PARP); and DNA fragmentation with a

concomitant upregulation of p53 and Bax, and down-reg-

ulation of Bcl-2 [113, 114]. Multiple tumor suppressors and

oncogenes were identified as being regulated by AMR to

mediate these tumor-suppressing activities [113]. In animal

studies, intraperitoneal administration of AMR signifi-

cantly reduced tumor size in MNU-induced mammary

adenocarcinoma in rats with a concurrent prolongation of

mean survival time in tumor-bearing animals [111].

Because the anti-neoplastic activity of the plant-derived

compound AMR is relatively weak, new analogues of this

molecule have been prepared by chemical transformations

in an attempt to identify more potent agents. One of these

analogues, AMR-Me (Fig. 1B), was found to inhibit pro-

liferation of several breast cancer cells with greater potency

than the parent compound AMR [112]. Preliminary

screening of AMR-Me in in vitro experiments revealed an

astonishing potency against breast cancer MCF-7 cells with

concentrations down to the nanomolar range. Killing of

MCF-7 cells proceeded more effectively (IC50 = 0.5 lM)

than killing of normal breast epithelial cells, which

required a 25-fold increase in the concentration of AMR-

Me (IC50 = 12.5 lM). Moreover, AMR-Me has recently

been reported by Rabi et al. [115] to be a potent inhibitor of

cell growth by inducing MCF-7 cells to undergo apoptosis

through a mitochondrial apoptotic pathway associated with

DNA fragmentation and PARP degradation, preceded by

changing the Bax:Bcl-2 ratios, cytochrome c release, and

subsequent induction of caspases. AMR-Me also stimu-

lated two different MAPK signaling pathways of p38

MAPK and JNK for amplifying the apoptosis cascade

[115]. All these studies indicate that AMR-Me is a prom-

ising drug with potential to be used for human breast

cancer prevention.

Tetraterpenoids

Carotenoids belong to the category of tetraterpenoids,

derived from a 40-carbon polyene chain, which could be

considered the backbone of the molecule. The hydrocarbon

carotenoids are known as carotenes, while oxygenated

derivatives of these hydrocarbons are known as xantho-

phylls. b-Carotene is a tetratepenoid distributed widely

throughout the plant kingdom and is the predominant

pigment in orange-flashed melan (Cucumismelo L) varie-

ties [116]. Carotenoid group include a-carotene, b-

carotene, lycopene, lutein, astaxanthin, cryptoxanthin and

zeaxanthin [117]. Interest in b-carotene as a potential anti-

cancer agent was established in the 1980s from the results

of both case–control and cohort studies showing a consis-

tent association for foods high in b-carotene and reduced

risk of prostate cancer [118]. They possess anti-oxidant

action as one of the presumed mechanisms of cancer pre-

ventive effects. Tomatoes are the major source of lycopene

commercially. Although lycopene is the most abundant

carotenoid in tomatoes, tomatoes also contain other

potentially beneficial carotenoids such as a-carotene, b-

carotene, lutein, phytoene, and phytofluene [119]. Carote-

noids and vitamin E have been the focus of numerous

studies because they may offer cellular protection against a

variety of free radicals that can damage DNA. b-Carotene

is the most commonly studied carotenoid with three studies

reporting a non-significant inverse association with higher

concentrations [120–122]. b-Carotene can also indirectly

reduce the risk of breast cancer through conversion to

retinol (pro-vitamin A) because retinol and related

compounds are involved in the regulation of cell growth

and differentiation. More recently, two studies evaluated

additional carotenoids, namely b-cryptoxanthin, lutein,

and lycopene [122, 123]. There was a significant dose

response of reduced risk of breast cancer with higher

lutein and b-cryptoxanthin concentrations and a threshold

effect for lycopene [122, 123]. The overall influence of

Fig. 1 Chemical structure of

(A) AMR and (B) AMR-Me
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b-cryptoxanthin, lutein, and lycopene on the enhancement

of immune function, cellular protection against DNA

damage, stimulation of gap junctional intercellular com-

munication (GJIC), induction of detoxifying enzymes, and

inhibition of cellular proliferation have been reported

[124, 125]. a-Carotene may decrease the activity of cyto-

chrome P450 1AA, an activator of procarcinogens, and it is

effective in protecting lipid membranes from damage by

free radicals and reactive species [126].

Lycopene is the most efficient quencher of singlet

oxygen species, whereas lutein and zeaxanthin are scav-

engers of radical oxygen species [127]. Diet supplemented

with lycopene at a concentration of 5.0 9 10-5 ppm sig-

nificantly suppressed the mammary tumor development,

which was associated with the decrease in the mammary

gland activity of thymidylate synthetase, and serum levels

of free fatty acid and prolactin. Body weight was little

affected and no deleterious side effects of lycopene were

detected. All results show that lycopene could be promising

as a chemopreventive agent for mammary and other types

of tumors [128]. Rats injected with lycopene-enriched

tomato oleoresin or b-carotene (10 mg/kg, twice per week)

for 2 weeks prior to tumor induction by DMBA and for an

additional 16 weeks after carcinogen administration and

high performance liquid chromatography analysis of

carotenoids extracted from several tissues showed that both

carotenoids were absorbed into blood, liver, mammary

gland, and mammary tumors. The tomato oleoresin-treated

rats developed significantly fewer tumors, and the tumor

area was smaller than that of the unsupplemented rats.

Rats receiving b-carotene showed no protection against

the development of mammary cancer [129]. The anti-

proliferative properties of lycopene, the major tomato

carotenoid, were compared with those of a- and b-carotene.

Lycopene, delivered in cell culture medium from stock

solutions in tetrahydrofuran, strongly inhibited prolifera-

tion of mammary MCF-7 human cancer cells with IC50 of

1–2 lM. a-Carotene and b-carotene were far less effective

inhibitors and the inhibitory effect of lycopene was

detected after 24 h of incubation, and it was maintained for

at least 3 days. In contrast to cancer cells, human fibro-

blasts were less sensitive to lycopene, and the cells

gradually escaped growth inhibition over time. In addition

to its inhibitory effect, lycopene also suppressed IGF-I-

stimulated growth. IGFs are major autocrine/paracrine

regulators of mammary growth [130].

In animal models of breast cancers, lutein has been

demonstrated to exhibit chemopreventive activity [131].

The mechanisms for a potential protective role of xantho-

phylls against carcinogenesis may include selective

modulation of apoptosis, inhibition of angiogenesis,

enhancement of GJIC, induction of cell differentiation,

prevention of oxidative damage, and modulation of the

immune system [132–135]. Oxidative metabolites of

lutein, thought to arise from lutein’s anti-oxidant mecha-

nism of action, have been isolated and characterized from

extracts of human serum and plasma [136]. However,

lutein enhanced the recovery of cells from oxidative

challenge by stimulating DNA strand break repair [137].

Protecting the immune system could enhance cell-mediated

immune responses and consequently, resistance to tumor

formation. In mice fed lutein-containing diets, lutein

uptake by the spleen suggests a role for lutein in modu-

lating immunity [138]. Lutein has been shown to enhance

antibody production in response to T-dependent antigens in

spleen cells in vitro, as well as in mice in vivo [139]. The

numbers of immunoglobulin M- and G-secreting cells

increased in vivo with lutein administration when mice

were primed with T-dependent antigens [139]. Dose-rela-

ted increases in the expression of the pim-1 gene, which is

involved in early activation of T-cells, has been observed

in splenic lymphocytes of mice fed lutein, but not b-car-

otene or astaxanthin [140].

Vitamin E is a general term used indiscriminately to

refer to a group of eight different naturally occurring

compounds known as tocopherols and tocotrienols, as well

as synthetic vitamin E (a chemical mixture composed of

12.5% authentic RRR-a-tocopherol and 87.5% stereoiso-

mers, namely, seven molecules produced during the

manufacturing process that have the same number and

types of atoms found in RRR-a-tocopherol linked in the

same order but differing in their spatial arrangement) [141].

They are common in almonds, peanut oil and walnuts,

which may explain why diets rich in these foods have

consistently been shown to reduce the incidence of cancer

[142, 143]. Much of the broad involvement of vitamin E in

human metabolism is due to its role as the body’s primary

lipid soluble anti-oxidant. Tocopherols and tocotrienols are

part of the body’s highly effective anti-oxidant defense

system, which consists of a network of anti-oxidants,

interacting with and supporting each other. Anti-oxidants

such as vitamin C, coenzyme Q10 and GSH are needed for

effective recycling of tocopherols and tocotrienols. The

unique power of both tocopherols and tocotrienols is their

ability to break the chain reaction of lipid peroxidation by

neutralizing peroxyl radicals to prevent the spread of free

radical damage in cell membranes. Tocotrienols are more

potent scavengers of the peroxy radical than a-tocopherol

and provide far better protection against lipid peroxida-

tion [144, 145]. Vitamin E succinate (VES) inhibits the

growth of human breast cancers in culture by induction of

DNA synthesis arrest, cellular differentiation, and apopto-

sis [146]. Inhibition of cell proliferation involves a G0/G1

cell-cycle block, mediated in part by MAP2K1 and ERK1

and upregulation of the key cell-cycle regulatory pro-

tein p21waf1/cip1 [147]. Induction of differentiation is
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characterized by morphological changes, elevated b-casein

mRNA, expression of milk lipids, elevated cytokeratin 18

protein, and downregulation of Her2/neu protein expres-

sion [148]. Differentiation is mediated in part by activation

of MAP2K1, ERK1/2, and phosphorylation of the tran-

scription factor c-jun [149]. Of the multiple apoptotic

signaling events modulated by VES, especially noteworthy

are its ability to convert Fas/Fas ligand nonresponsive

human breast cancer cells to Fas/Fas ligand responsiveness

and to convert TGF-b nonresponsive breast cancer cells to

TGF-b responsiveness. The restored signaling pathways

converge on prolonged activation of JNK/c-jun, followed

by translocation of Bax protein to the mitochondria,

induction of mitochondria permeability transition, followed

by cytochrome c release into the cytoplasm, activation of

caspases-9 and -3, cleavage of PARP, and apoptosis [150].

Treatment of MDA-MB-435 breast cancer cells with a-

tocopherol ether analog (TEA) restores both Fas/Fas ligand

and TGF-b signaling pathways, which converge on JNK,

followed by induction of apoptosis [151]. Of the vitamin E

forms, d-tocopherol; a-, c-, and d-tocotrienol; and deriva-

tives VES and a-TEA selectively induce cancer cells to

undergo apoptosis. The effect of palm tocotrienols and

tocopherols on two human breast cancer cells lines,

estrogen-responsive MCF-7 and estrogen-nonresponsive

MDA-MB-435 was studied. It was found that tocotrienols

inhibited cell growth strongly in both the presence and

absence of estradiol. The c- and d-fractions of tocotrienols

were most effective at inhibiting cell growth, while a-

tocopherol was least effective [152]. In another study, d-

tocotrienol was shown to be the most potent inducer of

apoptosis in both estrogen-responsive and estrogen-nonre-

sponsive human breast cancer cells, and d-tocopherol and

a-tocotrienol were found to be least effective [153].

Although there are some agreement between inhibition of

cell growth and induction of apoptosis in these studies, the

differential results observed otherwise could be due to

variations in two separate experimental conditions.

Breast cancer chemoprevention trials

The most promising research into breast cancer prevention

was provided by four randomized placebo-controlled

studies using the selective estrogen receptor modulator

(SERM), tamoxifen [154]. Tamoxifen, a triphenylethylene,

was introduced into clinical use on the basis of its now

well-recognized estrogen antagonist activity in the breast

by inhibiting the binding of estrogen-to-ERs. In addition to

its effects in the breast, tamoxifen has an estrogen agonist

effect in bone, liver, and uterus that may explain the

favorable effects on inhibiting bone loss, improving serum

lipid concentrations, and its effect of increasing the inci-

dence of uterine cancer [154]. Tamoxifen was shown to

induce regression of advanced breast malignancies. Com-

plications of tamoxifen therapy include endometrial cancer

and thromboembolic events, which are serious albeit rare.

More common side effects include hot flashes, fluid

retention, vaginal discharge, vaginal bleeding, and altered

menses [155]. Estradiol induces the tumor-suppressor gene

BRCA1 through an increase in DNA synthesis, which

suggests that BRCA1 may serve as a negative modulator of

estradiol-induced growth. Both prospective and retrospec-

tive genetic epidemiologic studies have demonstrated that

women who carry mutations in either BRCA1 or BRCA2

genes are at very high risk for developing both breast and

ovarian cancer. These women would seem to be ideal

candidates for the use of tamoxifen as primary prevention

of breast cancer, but there are no prospective data yet

available that relate directly to these women [156]. The

overall risk-to-benefit ratio for the use of tamoxifen in

prevention remains unclear and longer follow-up of the

current trials is required. Raloxifene is another SERM that

has been shown clinically and experimentally to be anti-

estrogenic in the breast and uterus. Raloxifene hydrochlo-

ride is a SERM that has anti-estrogenic effects on breast

and endometrial tissue and estrogenic effects on bone, lipid

metabolism, and blood clotting [157]. It is a benzothio-

phene with characteristics similar to but distinct from the

triphenylethylene SERMs such as tamoxifen. During the

past decade, a number of clinical trials have been con-

ducted to assess the benefit of raloxifene on osteoporosis

and fracture. After the publication of the results of the

Breast Cancer Prevention Trial (BCPT) these osteoporosis

trials also reported data related to the incidence of invasive

breast cancer among women taking raloxifene compared to

those taking placebo. The Multiple Outcomes of Raloxif-

ene Evaluation (MORE) trial showed a reduction in breast

cancer incidence of 76% in women treated for osteoporo-

sis. Raloxifene seems to have a more favorable adverse

effect profile than tamoxifen, especially regarding the

uterus. These two SERMs are currently undergoing direct

comparison in the Study of Tamoxifen and Raloxifene

(STAR), which started in 1999.

Modulation of intermediate and endpoint biomarkers

by terpenoids

Study of markers of risk and surrogate endpoint bio-

markers (SEBs) holds great promise for cancer

chemoprevention [158, 159]. The criteria for biomarker

relevance are that they must be differentially expressed in

normal and high-risk tissue, be closely linked to the

causal pathway for cancer, be modified by the chemo-

preventive agent and with a shorter latency than cancer

and finally, be assayed easily and with quantitative reli-

ability. Studies reported in the literature have shown that
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terpenoids have the potential to modify certain proteins

and transcription factors, which could be used as inter-

mediate and endpoint markers to evaluate the efficacy of

the test compound. Accumulating evidence indicates that

COX-2 inhibitors may be involved in breast cancer pre-

vention [160]. Interest in breast cancer chemoprevention

with COX-2 inhibitors has been stimulated by epidemio-

logical observations that the use of aspirin and other

NSAIDs is associated with the reduced incidence of

breast cancer. Two isoforms of COX have been identified:

COX-1, the constitutive isoform, and COX-2, the induc-

ible form of the enzyme. COX-2 can undergo rapid

induction in response to chemical carcinogens [161]. It

has been suggested that COX-2 overexpression may lead

to increased mutagenesis, mitogenesis, angiogenesis,

inflammatory reaction and deregulation of apoptosis [162,

163]. Therefore the inhibition of COX-2 might have a

general cancer preventive effect via anti-inflammatory

activity and decrease angiogenesis. The triterpenoid

CDDO-Me has already been proven effective in inhibiting

COX-2 in breast cancer cells, and blocked the growth of

breast cancer cells in mice.

In chemically induced mammary carcinogenesis models,

especially those which are initiated by DMBA, investiga-

tions focused on pathogenic changes after DMBA

administration to elucidate the mechanisms of carcino-

genesis and DMBA-DNA adduct formation in mammary

tissue. Most chemical carcinogens need activation by body

enzymes to be transformed to a species that readily binds to

genetic DNA to form DNA adducts [164]. Carcinogen-

DNA adduct formation is an important DNA damage

marker that predicts the possibility of cancer development.

Carcinogen-DNA adducts can be repaired by body

enzymes. The unrepaired adducts will be fixed after one

cell cycle and the unrepaired, fixed DNA damage will be

responsible for mutation and consequent breast cancer

development. Therefore, preventing carcinogen-DNA

adduct formation is a key step in breast cancer prevention

at the initiation step of carcinogenesis [165].

Histology-based biomarkers are on the causal pathway

to cancer and include preinvasive intraepithelial neoplasias

such as carcinoma in situ of the breast, cervix, and prostate

[166]. These lesions may be valid as SEBs for cancer

incidence. Breast cancer initiates as the premalignant stage

of atypical ductal hyperplasia (ADH), progresses into the

preinvasive stage of ductal carcinoma in situ (DCIS), and

culminates into the potentially lethal stage of invasive

ductal carcinoma (IDC). COX-2 can undergo rapid induc-

tion in response to chemical carcinogens [166]. Histologic

parameters defined by computer-assisted nuclear mor-

phometry represent an extension of the pathologist in

quantitating the nuclear morphologic characteristics of the

cancer phenotype.

Cellular and molecular biomarkers are presumed to have

biological relevance to carcinogenesis, including measures

of proliferation, apoptosis, differentiation, and growth

factor-mediated signal transduction. Some of these are

proving to be closely correlated with changes in preinva-

sive lesions, telomerase activity and thus could serve as

potential SEBs for breast cancer. Recent evidence suggests,

however, that under certain circumstances, overexpression

of the ornithine decarboxylase can function as an oncogene

and contribute to the invasive potential of epithelial cancers

[167]. Several lines of evidence support the biological role

of the IGF family of ligands/receptors in the proliferation

of breast cancer cells [168]. DNA microarray analysis

shows that glutathione peroxidase (Gpx) 2 was commonly

up-regulated in mammary carcinomas induced by the three

carcinogens, MNU, DMBA and 2-amino-1-methyl-6-

phenylimidazo [4,5-b] pyridine (PhIP) due to activation of

ER-a via the Raf/Ras/MAPK cascade. In addition, it has

been reported that the forced suppression of Gpx2

expression by siRNA resulted in significant growth inhi-

bition in rat and human mammary carcinoma cell lines

with wild type p53 cells indicating that Gpx2 may be a

novel target for the prevention and therapy of breast cancer

[169].

Conclusion

The future of terpenoid research remains open to innova-

tion, with a specific need to emphasize important beneficial

properties for human health. The biological role of terpe-

noids in the prevention and perhaps treatment of cancer and

other chronic diseases is being studied and more informa-

tion constantly added that improves our understanding of

the mechanisms associated with these compounds.

Although the anti-oxidant properties of some terpenoids

have been extensively studied, their role as anti-cancer

agents needs further investigation. The simple reason for

this dearth of information could be that tumors have many

molecular targets that function aberrantly in concert, and

therefore requires extensive research. Cancer chemopre-

ventive agents should be safe and non-toxic. It would be

best if promising agents can be screened by first identifying

biomarkers in breast cancer cells that will quickly tell

researchers whether or not potential chemopreventive

drugs are having any effect. Validation of SEBs for clinical

cancer is essential to reduce the scope and duration of

chemoprevention trials. This is important because long-

term chemoprevention trials are expensive and take a long

time to conduct. Tamoxifen is highly effective in pre-

venting ER-positive breast cancer, but has no effect on the

risk of ER-negative disease. Its use in patients, who

develop ER-negative disease can, in fact, be harmful due to
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its adverse effects. Identification of women most at risk of

developing ER-positive disease could therefore lead to a

more effective chemoprevention strategy. In a randomized

trial of fenretinide to prevent a second breast malignancy in

women with early breast cancer, the investigators observed

no significant effect after five years of treatment. Research

must be initiated in order to identify other agents that may

be effective for patients at risk of developing ER-negative

breast cancer.
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