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Natural products have played a pivotal role in antibiotic drug discovery with most anti-

bacterial drugs being derived from a natural product or natural product lead. However, the

rapid onset of resistance to most antibacterial drugs diminishes their effectiveness con-

siderably and necessitates a constant supply of new antibiotics for effective treatment of

infections. The natural product templates of actinonin, pleuromutilin, ramoplanin and

tiacumicin B, which are compounds undergoing clinical evaluation, represent templates not

found in currently marketed antibacterial drugs. In addition, the new templates present in

the recently discovered lead antibacterials arylomycin, GE23077, mannopeptimycin, mur-

aymycin/caprazamycin, nocathiacin and ECO-0501, are discussed. Despite extensive efforts

to identify antibiotic leads from molecular targets, only the peptide deformylase inhibitor

LBM-415 is currently in clinical trials. It is proposed that new antibacterial assays which

combine cell-based screening with molecular targets could offer better prospects for lead

discovery.
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1. Introduction

The introduction of the sulphonamide antibiotics in the 1930s

and penicillin in the 1940s revolutionised medicinal practice

by dramatically decreasing the fatality rates associated with

bacterial infections [1–3]. These discoveries led to a concerted

search for new antibacterial drugs during the following 30

years and resulted in the discovery of most of the antibacterial

drug classes known today, many of which were derived from

natural product leads (Table 1) [1,4,5]. Given this success, it is

surprising to note that only three new antibacterial classes,

the topical antibiotic mupirocin in 1985, the oxazolidinone

linezolid in 2000 and the lipopeptide daptomycin in 2003, have

entered the market since 1970. Over the past 20 years, there

has been a 56% decline in the number of antibiotics approved

annually by the Food and Drug Administration (FDA) and over

the last decade, only 22 new antibacterial drugs have been

launched (Table 2) [6–9]. The 12 natural product-derived drugs
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belong to five different structure classes (b-lactam, strepto-

gramin, macrolide, tetracycline and daptomycin), while the 10

synthetic drugs launched belong to only two antibacterial

classes, with the quinolone class accounting for nine of these

drugs.

The prevalence of natural product-derived antibacterial

drugs may be due to the evolution of secondary metabolites as

biologically active chemicals that conferred selectional

advantages to the producing organisms. Natural products

also are likely to have evolved to penetrate cell membranes

and interact with specific protein targets [10]. In addition,

natural products have an element of structural complexity

which is required for the inhibition of many antibacterial

protein targets. Relevant reviews on the role of natural

products in modern drug discovery [11,12], natural product-

derived compounds in clinical trials [13] and compounds

in antibacterial clinical trials have been published recently

[14–17].
.
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Table 1 – Antibiotic class with approximate year of clinical introduction, lead derivation, example of drug and mechanism
of action

Antibiotic class Introduction Derivation Example Mechanism

Sulphonamide 1935 Synthetic Sulfapyridine Antifolate

b-Lactam 1941 NP-derived Penicillin Bacterial cell wall

Bacterial peptide 1942 NP-derived Bacitracin

Polymixin

Bacterial cell wall

Bacterial cell membrane

Aminoglycoside 1944 NP-derived Streptomycin Protein synthesis

Cephalosporin 1945 NP-derived Cephalosporin Bacterial cell wall

Nitrofuran 1947 Synthetic Nitrofurantoin Various

Hexamine 1947 Synthetic Methenamine mandelate Release of formaldehyde

Chloramphenicol 1949 NP-derived Chloramphenicol Protein synthesis

Tetracycline 1950 NP-derived Chlortetracycline Protein synthesis

Isoniazid 1951 Synthetica Isoniazid Fatty acid biosynthesis

Viomycin 1951 NP-derived Viomycin Protein synthesis

Macrolide 1952 NP-derived Erythromycin Protein synthesis

Lincosamide 1952 NP-derived Lincomycin Protein synthesis

Streptogramin 1952 NP-derived Virginiamycin Protein synthesis

Cycloserine 1955 NP-derived Cycloserine Bacterial cell wall

Glycopeptide 1956 NP-derived Vancomycin Bacterial cell wall

Novobiocin 1956 NP-derived Novobiocin DNA synthesis

Ansamycin 1957 NP-derived Rifamycin RNA synthesis

Nitroimidazole 1959 Synthetic Tinidazole DNA synthesis

Ethambutol 1962 Synthetic Ethambutol Bacterial cell wall

Quinolone 1962 Synthetic Nalidixic acid DNA synthesis

Fusidane 1963 NP-derived Fusidic acid Protein synthesis

Diaminopyrimidine 1968 Synthetic Trimethoprim Antifolate

phosphonate 1969 NP-derived Fosfomycin Bacterial cell wall

Pseudomonic acid 1985 NP-derived Mupirocin Protein synthesis

Oxazolidinone 2000 Synthetic Linezolid Protein synthesis

Lipopeptides 2003 NP-derived Daptomycin Bacterial cell membrane

a Isoniazid is based on the structure of nicotinamide (vitamin B2).
The rapid onset of resistance to most antibacterial drugs

has diminished their effectiveness and, as a consequence, a

continual search for novel antibacterials needs to be under-

taken to replenish antibacterial drug pipeline [18,19]. However,
Table 2 – Antibacterial drugs launched since 1995 by year wit

Year Generic name (trade name)

1995 Cefozopran (Firstcin1)

1997 Cefcapene pivoxil (Flomox1)

1997 Faropenem (Farom1)

1997 Flurithromycin (Ritro1)

1998 Cefoselis (Wincef1)

1998 Trovafloxacin (Trovan1)

1999 Dalfopristin and quinupristin (Synercid1)

1999 Gatifloxacin (Tequin1)

1999 Moxifloxacin (Avelox1)

2000 Linezolid (Zyvox1)

2001 Ertapenem (InvanzTM)

2001 Telithromycin (Ketek1)

2002 Biapenem (Omegacin1)

2002 Balofloxacin (Q-Roxin1)

2002 Pazufloxacin (Pasi1, Pazucross1)

2002 Prulifloxacin (Sword1)

2002 Voriconazole (Vfend1)

2003 Daptomycin (CubicinTM)

2004 Gemifloxacin (Factive1)

2004 Fosfluconazole (Prodif1)

2005 Doripenem (Finbax1)

2005 Tigecycline (TygacilTM)
despite the clear need for new antibacterial drugs with novel

mechanisms of action, many pharmaceutical companies have

chosen to reduce or completely cease their antimicrobial R&D

efforts [18–25].
h reference to their structure class and derivation

Class Classification

b-Lactam – cephalosporin NP-derived

b-Lactam – cephalosporin NP-derived

b-Lactam – penem NP-derived

Macrolide – erythromycin NP-derived

b-Lactam – cephalosporin NP-derived

Quinolone Synthetic

Streptogramin NP-derived

Quinolone Synthetic

Quinolone Synthetic

Oxazolidinone Synthetic

b-Lactam – carbapenem NP-derived

Macrolide – erythromycin NP-derived

b-Lactam – carbapenem NP-derived

Quinolone Synthetic

Quinolone Synthetic

Quinolone Synthetic

Quinolone Synthetic

Daptomycin NP

Quinolone Synthetic

Quinolone Synthetic

b-Lactam – carbapenem NP-derived

Tetracycline NP-derived
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This review focuses on new natural product antibacterial

templates of compounds currently in clinical trials and

selected examples of compounds undergoing preclinical

evaluation. In addition, the future prospects of natural

product-derived compounds in antibacterial research are

discussed.
2. Antibacterial compounds in clinical
development

14 of the 19 candidates (Table 3, Figs. 1 and 2) undergoing

antibacterial clinical evaluation are derivatives of known

drugs: one rifamycin derivative 3 of the ansamycin class,

seven b-lactams (cephalosporins 4, 5, 6, carbapenems 7, 8 and

9 and penem 10), two vancomycin-type glycopeptide deriva-

tives 11 and 12, two erythromycin-type macrolide derivatives

13 and 14, one streptogramin mixture 18 and 19 and one

tetracycline derivative 20. The remaining five, details of which

are discussed below, are of interest because they contain

antibacterial templates not previously found in drugs mar-

keted for human use.

Bacterial peptide deformylase (PDF) is responsible for

removing the N-formyl group from the N-terminal methionine

following translation, contains three highly conserved cata-

lytic domains and is a metallo hydrolase [26,27]. PDF is an

essential gene for bacterial survival and does not share close

homology with any mammalian equivalent [28]. In 2000,

workers from Vicuron reported that actinonin 2, a known

Streptomyces-derived antibiotic, was a potent inhibitor of PDF

[29]. Actinonin 2 was identified by searching for natural

products that possess a hydroxamate metal chelating group

and methionine-like structure after several synthetic transi-

tion and/or substrate analogue-based inhibitors were found to

be inactive in whole cell assays [29]. Applying a combinatorial

chemistry approach to the lead optimisation of actinonin 2 led
Table 3 – Natural product-derived compounds in antibacterial

Name (synonym) Class (lead

LBM415 (NVP-PDF-713) 1 New classa (ac

Rifalazil (ABI-1648, KRM-1648) 3 Ansamycin (ri

Ceftobripole medocaril (BAL-5788) 4 b-Lactam – ce

PPI-0903 (TAK-599) 5 b-Lactam – ce

RWJ-442831 6 b-Lactam – ce

CS-023 (R1558) 7 b-Lactam – ca

Tebipenem pivoxil (ME1211) 8 b-Lactam – ca

ME1036 (CP5609) 9 b-Lactam – ca

Faropenem daloxate 10 b-Lactam – pe

Dalbavancin 11 Glycopeptide (

Telavancin (TD-6424) 12 Glycopeptide (

Cethromycin 13 Macrolide (ery

EP-013420 14 Macrolide (ery

Retapamulin (topical) (SB-275833) 15 New class (ple

Pleuromutilin derivative (565154) New class (ple

Ramoplanin 17 New class (ram

NXL103 (XRP2868)–RPR132552A 18 and RPR202698 19 Streptogramin

PTK 0796 20 Tetracycline

Tiacumicin B (PAR-101, OPT-80) 21 New class (tia

a Class not previously found in antibacterial drugs marketed for human
to the identification of several promising compounds, such as

VRC3375 [30,31], VRC4307 [32] and LBM-415 (NVP-PDF-713) 1

[33–35]. LBM-415 1 is currently in Phase I clinical evaluation by

Novartis in collaboration with Vicuron. British Biotech (now

Vernalis) also identified a related PDF inhibitor BB-3497

independently by the screening of a chemical library of

potential metalloenzyme inhibitors [36]. Resistance to PDF

inhibitors has been observed through mutation of the

deformylase enzyme [37,38]. Recent papers have reported

that LBM-415 1 has excellent antibacterial activity and a low

level of bacterial mutation rate [34,35] but is susceptible to

efflux from Haemophilus influenzae [39].

Pleuromutilin 16 is a fungal metabolite discovered in the

1950s that exerts its antimicrobial activity by binding to the

50S bacterial ribosome [40]. GlaxoSmithKline have been

evaluating a pleuromutilin derivative, retapamulin (SB-

275833) 15, in Phase III clinical trials as a topical antibiotic

for skin infections and expect to file a new drug application

(NDA) by the end of 2005 [41–43]. Another pleuromutilin

derivative (code 565154) is in Phase I clinical trials as an oral

antibiotic [40]. Although there are no pleuromutilin 16

derivatives in human clinical use, two semi-synthetic deri-

vatives tiamulin and valnemulin, are widely used as anti-

biotics for the treatment of swine diseases.

Ramoplanin is a lipopeptide antibiotic complex isolated

from Actinoplanes sp. ATCC33076, which consists of factors A1,

A2 and A3 that have similar antibacterial profiles [44,45]. The

major component, factor A2 17, is in clinical trials and is

known as ‘‘ramoplanin’’. In preclinical studies, ramoplanin 17

displayed excellent activity against methicillin-resistant Sta-

phylococcus aureus (MRSA), vancomycin-resistant Enterococci

(VRE) and Clostridium difficile [46]. Oscient Pharmaceuticals is

evaluating ramoplanin 17 for the treatment of C. difficile-

associated diarrhoea (CDAD) in Phase II trials and was granted

fast track status for this use by the FDA in February 2004 [47].

Oscient have also evaluated ramoplanin 17 for the treatment
clinical trials (current 30 July 2005)

compound) Development status Developer

tinonin 2) Phase I Novartis

famycin B) Phase II ActivBiotics

phalosporin Phase III Basilea and J&J

phalosporin Phase I Cerexa

phalosporin Phase I J&J

rbapenem Phase II/Phase I Roche/Sankyo

rbapenem Phase II Meiji Seika Kaisha

rbapenem Phase I Meiji Seika Kaisha

nem Phase III Replidyne

A40926) NDA Vicuron

vancomycin) Phase III Theravance

thromycin) Phase III Advanced Life Sciences

thromycin) Phase I/Phase I Enanta/Shionogi

uromutilin 16) Phase III GlaxoSmithKline

uromutilin 16) Phase I GlaxoSmithKline

oplanin) Phase II Oscient

Phase I Novexel

Phase I Paratek

cumicin) Phase II Par

use.
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Fig. 1 – Chemical structures of compounds 1–16 in antibacterial clinical trials. Part 1.
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Fig. 2 – Chemical structures of compounds 16–21 in antibacterial clinical trials. Part 2.
of VRE, but no clinical trials are currently in progress.

Ramoplanin 17 is thought to exert its antibacterial activity

by binding to the peptidoglycan intermediate Lipid II (C35–

MurNAc–peptide–GlcNAc) and disrupting bacterial cell wall

synthesis [45]. The lipid side chain has been shown to be

necessary for antibacterial activity, but not important for Lipid

II binding.

Tiacumicin B (PAR-101, OPT-80, lipiarmycin A3 and

clostomicin B1) 21 is the major component of the tiacumicin

antibiotic complex produced by Dactylosporangium aurantiacum

spp. hamdenensisNRRL 18085 [48–51]. Tiacumicin B 21 exerts its

antibacterial activity through inhibition of RNA synthesis [52],

possesses broad-spectrum Gram-positive antibacterial activ-

ity and is especially active against various Clostridium species

[53–56]. Tiacumicin B 21 is being evaluated in Phase II clinical

trials by Par Pharmaceuticals for the treatment of CDAD and

fast track status has been granted by the FDA for this

indication [57,58].
3. New antibacterial templates

Drugs which contain new antibacterial templates with novel

mechanisms of action should have advantages over known

antibacterials in the fight against multi-drug resistant bacteria

and the emergence of new pathogens. The following com-
pounds, arylomycin 22, GE23077 23, mannopeptimycin 24,

muraymycin 25, caprazamycin 26, nocathiacin 27 and ECO-

0501 28, potentially represent such new classes of antibacter-

ial agents (Fig. 3).

The arylomycin antibiotic complex, which showed activity

against Gram-positive bacteria, was first reported from

Streptomyces sp. Tü 6075 in 2002 [59,60]. In 2004, Paetzel

et al. reported the X-ray crystal structure of arylomycin A2 22

in a complex with Escherichia coliType I signal peptidase (SPase)

D2–75, which established the mechanism of action of these

antibiotics [61]. SPase is a membrane-bound serine endopep-

tidase that catalyzes the cleavage of the amino-terminal signal

peptide from secretory and membrane proteins [62]. SPase I is

considered an attractive antibacterial target because it is

essential for bacterial viability and growth. Shortly after

Paetzel’s paper was published, workers at Lilly confirmed that

related compounds to the arylomycins were competitive

inhibitors of SPase I with Ki values of 50–158 nM, but only

displayed moderate activity against a panel of Gram-positive

and -negative bacteria [63]. However, they were able to

demonstrate that these compounds blocked protein secretion

and noted that the arylomycins may represent an important

new lead for the development of a novel class of broad-

spectrum antibiotics [63].

GE23077 is a mixture of four major cyclic heptapeptide

factors A1, A2 23, B1 and B2, which were isolated from
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Fig. 3 – Chemical structures of new antibacterial templates.
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Actinomadura sp. [64–66]. The GE23077 complex was identified

while screening for inhibitors of DNA-directed RNA polymer-

ase (RNAP), which has a central role in DNA transcription and

makes it an essential enzyme in bacterial cells. RNAP is the

target of the rifampicin group of antibiotics and the clinical

candidate tiacumicin B 21. The factors A and B are closely

related and differ only by the presence of an amide with 2-

methyl-2-butenoic acid (factor A) and 3-methyl butanoic acid

(factor B) and epimers of a-amino-malonic acid unit. Although

all the factors display potent inhibitory activity against

Escherichia coli and Bacillus subtilis RNAPs (IC50 0.02 mg/ml),

their antimicrobial activity is weak and restricted to only a few

pathogens such as Moraxella catarrhalis, Neisseria gonorrhoeae

and Mycobacterium smegmatis. It was suggested that the weak

whole cell activity was due to poor penetration across the

bacterial membrane or, to a lesser extent, because of bacterial

efflux. Results from a medicinal chemistry programme that

was aimed to improve bacterial membrane penetration and

antibacterial activity of GE23077 factors has been reported

recently [67].

Workers from Wyeth have isolated a series of related

antibiotics, mannopeptimycins a to e, from Streptomyces

hygroscopicus LL-AC98, which have activity against MRSA

and VRE [68,69]. Interestingly, the AC98 antibiotic complex

was discovered in the 1950s at Wyeth and described in 1970

[70], but their structures were elucidated only after a

programme was initiated to examine old antibiotics. The

mannopeptimycins (e.g. mannopeptimycin e 24) are thought

to interfere with the late stages of cell wall biosynthesis by

inhibition of transglycosylation through binding to Lipid II [68].

The presence and location of the isovaleryl group is important

for antibacterial activity and SAR studies have identified semi-

synthetic analogues such as AC98-6446 29 which possess

improved antibacterial activity and safety profiles [68,71–73].

The uridyl peptide (or lipo-uridyl) antibiotic class has been

shown to inhibit bacterial translocase, an enzyme which

catalyzes the transfer of peptidoglycan precursor, phosphoryl-

MurNAc pentapeptide, from uridine 50-monophosphate in the

cytosol to the membrane-bound C55-undecapenyl phosphate

lipid carrier [74]. Members of this antibacterial class with two

adjacent nucleosides attached to the uridyl moiety include the

liposidomycins (discovered 1985), FR-900493 (1989) and the

newly reported muraymycins (2002) and caprazamycins (2003)

[74]. The muraymycins (e.g. muraymycin A1 25) were

identified by workers at Wyeth from Streptomyces sp. and

have been reported to have good Gram-positive, but weak

Gram-negative antibacterial activity [75,76]. Two reports of

synthetic derivatives of muraymycins from Wyeth have been

published [77,78]. The caprazamycins were isolated from

Streptomyces sp. MK730-62F2 and possess activity against acid-

fast bacteria including Mycobacterium tuberculosis and M. avium

[79,80]. The caprazamycins (e.g. caprazamycin A 26) are

closely related to the liposidomycins, which also selectively

inhibit bacterial translocase I (MraY) and display activity

against Mycobacterium [74]. Workers at Aventis have described

the synthesis of simpler derivatives of liposidomycins, named

the riburamycins, which retain biological activity [74,81].

The interest in thiopeptide antibiotics started with the

isolation of micrococcin in 1948 and thiostrepton in 1954 and

these and related compounds, which belong to five distinct
structural classes a–e, have excellent Gram-positive antibac-

terial activity [82]. Their mechanism of action is through

interference with protein synthesis, either by binding to the

L11 binding domain on the 23S ribosomal RNA or by binding to

elongation factor Tu. Thiostrepton is the most thoroughly

studied thiopeptide antibiotic and has an antibacterial profile

similar to penicillin, but suffers from rapid resistance and poor

aqueous solubility. In 2002, workers at Bristol-Myers Squibb

described the isolation of nocathiacin I (BMS-249524, identical

to MJ347-81F4-A) 27, a series e type thiopeptide antibiotic

related to nosiheptide, from Nocardia sp. ATCC 202099 [82–85].

Nocathiacin I 27 was identified by screening natural product

extracts against a multiple drug resistant strain of Enterococcus

faecium and was found to be more water soluble at low pH

compared to other thiopeptide antibiotics. A medicinal

chemistry programme was undertaken to identify compounds

with improved water solubility while retaining antibacterial

activity, but these compounds have not progressed beyond

preclinical studies [86–88].

Recently, workers at Ecopia have reported the structure

and biological activity of a novel antibiotic ECO-0501 28, that

was isolated from the vancomycin-producer Amycolatopsis

orientalis ATCC 43491 [89–91] after genome scanning for novel

biosynthetic pathways [92,93]. More details of genome scan-

ning can be found in Ecopia’s paper on the isolation of the

antifungal ECO-02301 from Streptomyces aizunensis NRRL B-

11277 [94]. ECO-0501 28 has shown activity against Gram-

positive bacteria, including MRSA and VRE, and was effective

in vivo [90]. Although ECO-0501 28 contains a polyene moiety,

it has a good safety profile [90] and is proposed to exert its

antibacterial activity through a potentially novel cell mem-

brane and/or cell wall target [91].
4. Future prospects

Despite the past success of antibiotic drug discovery, at least

in the industrially developed world, infectious diseases

remain the second-leading cause of death worldwide.

Bacterial infections cause 17 million deaths globally, parti-

cularly in children and the elderly. Of particular concern are

the increasing and relentless resistance of nosocomial

pathogens such as Staphylococcus aureus to mainline anti-

biotics and the emergence of multi-drug resistant Gram-

negative bacteria. The pace of drug resistance has outstripped

the discovery of new antimicrobial agents and there is an

urgent need for new antibiotic drugs with novel mechanisms

of action. The question is about how we tackle the problem

more effectively in the future, particularly given the fact that

since 1970, only three new classes of antibiotics have been

marketed (Table 1).

The paucity of new antibiotic classes in the clinic does not

appear to be the result of a lack of trying, at least until recently.

Over the past decade, the genomes of more than 140 bacteria

have been sequenced and with this effort have come a stream

of novel antimicrobial drug targets, many of which have been

developed into high throughput screens [95]. Despite the

efforts of many companies to identify antibiotic leads for these

targets, only one candidate, the PDF inhibitor LBM-415 1

[26,27,33–35,37–39], appears to be in clinical trials.
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Theoretically, there are no reasons why clinically effective

inhibitors cannot be found for such targets. The reasons for

the lack of success are multifactorial and include:
� W
asted attempts to transform ‘‘hits’’ obtained from in vitro

target-based high throughput screening into whole cell

active agents.
� R
eliance on synthetic compound libraries that were com-

piled with little or no consideration given to essential ‘‘drug-

like’’ properties (a mistaken focus on quantity and not

quality).
� S
ignificantly diminished use of natural products as a source

of novel, relevant chemistry for lead optimisation.
� C
ommercial disincentives for large pharmaceutical compa-

nies to invest in antimicrobial R&D.

Whilst conventional whole cell screening for inhibitors of

microbial growth is unlikely to reveal new chemical templates

very readily, the development of cell-based antimicrobial a-

ssays that respond to the inhibition of specific targets offers

better prospects [96]. Reporter gene assays for inhibitors of

transcription, translation, cell wall and other biosynthetic p-

athways have been reported. Assays have also been described

in which expression of an antisense RNA confers specific s-

ensitivity to compounds targeting the corresponding gene

product [97]. This approach enables the development of high

throughput cell-based screens for any essential gene, inde-

pendent of its biochemical function. In addition to targets

essential for bacterial cell growth, targeting resistance mec-

hanisms (b-lactamases, bacterial efflux pumps) or essential

pathogenesis factors offer attractive options [98].

Exposure of antimicrobial screens to drug-like chemical

diversity, including the relatively complex chemical scaffolds

and rich functional group display found in natural products, is a

key success requirement [19,99,100]. Natural products are a

logical starting point for discovering new drugs to treat

infectious diseases. Significant advances in compound separa-

tion technology and structure elucidation mean that these

former bottlenecks in the discovery process no longer exist

[11,12]. The major challenge that remains for natural product-

based drug discovery is thewillingness of medicinal chemists to

take up the task of optimising relatively complex, often chiral

chemical scaffolds with arrays of diverse functional groups.

Finally, much debate and lines of print have been devoted

to how pharmaceutical companies may be encouraged to

invest more into antimicrobial R&D activities [18,20–25].

Groups such as the Infectious Diseases Society of America

have suggested various incentives that include shortening the

approval process for new antibiotics, offering patent exten-

sions, classifying antibiotics as ‘‘orphan drugs’’, providing tax

credits, limiting liability for adverse effects and offering

advanced purchasing commitments by government [18].
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[51] Āmura S, Imamura N, Oiwa R, Kuga H, Iwata R, Masuma R,
et al. Clostomicins, new antibiotics produced by
Micromonospora echinospora subsp. armeniaca subsp. nov. I.
Production, isolation, and physico-chemical and biological
properties. J Antibiot (Tokyo) 1986;39(10):1407–12.

[52] Sergio S, Pirali G, White R, Parenti F. Lipiarmycin, a new
antibiotic from Actinoplanes III. Mechanism of action. J
Antibiot (Tokyo) 1975;28(7):543–9.

[53] Swanson RN, Hardy DJ, Shipkowitz NL, Hanson CW,
Ramer NC, Fernandes PB, et al. In vitro and in vivo
evaluation of tiacumicins B and C against Clostridium
difficile. Antimicrob Agents Chemother 1991;35(6):1108–11.

[54] Ackermann G, Loffler B, Adler D, Rodloff AC. In vitro
activity of OPT-80 against Clostridium difficile. Antimicrob
Agents Chemother 2004;48(6):2280–2.

[55] Credito KL, Appelbaum PC. Activity of OPT-80, a novel
macrocycle, compared with those of eight other agents
against selected anaerobic species. Antimicrob Agents
Chemother 2004;48(11):4430–4.

[56] Finegold SM, Molitoris D, Vaisanen ML, Song Y, Liu C,
Bolanos M. In vitro activities of OPT-80 and comparator
drugs against intestinal bacteria. Antimicrob Agents
Chemother 2004;48(12):4898–902.

[57] Optimer Pharmaceuticals. Press release; 2005. Available at
http://www.optimerpharma.com/.

[58] Par Pharmaceutical. Press release; 2005. Available at
http://www.parpharm.com/.
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