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Flavonoids are a family of polyphenolic compounds which are widespread in nature (vegetables) and are consumed as part of
the human diet in significant amounts. There are other types of polyphenols, including, for example, tannins and resveratrol.
Flavonoids and related polyphenolic compounds have significant antiinflammatory activity, among others. This short review
summarizes the current knowledge on the effects of flavonoids and related polyphenolic compounds on inflammation, with
a focus on structural requirements, the mechanisms involved, and pharmacokinetic considerations. Different molecular
(cyclooxygenase, lipoxygenase) and cellular targets (macrophages, lymphocytes, epithelial cells, endothelium) have been
identified. In addition, many flavonoids display significant antioxidant/radical scavenging properties. There is substantial
structural variation in these compounds, which is bound to have an impact on their biological profile, and specifically on
their effects on inflammatory conditions. However, in general terms there is substantial consistency in the effects of these
compounds despite considerable structural variations. The mechanisms have been studied mainly in myeloid cells, where
the predominant effect is an inhibition of NF-κB signaling and the downregulation of the expression of proinflammatory
markers. At present there is a gap in knowledge of in vitro and in vivo effects, although the pharmacokinetics of flavonoids has
advanced considerably in the last decade. Many flavonoids have been studied for their intestinal antiinflammatory activity
which is only logical, since the gastrointestinal tract is naturally exposed to them. However, their potential therapeutic
application in inflammation is not restricted to this organ and extends to other sites and conditions, including arthritis,
asthma, encephalomyelitis, and atherosclerosis, among others.

Keywords asthma, inflammatory bowel disease, arthritis, pharmacokinetics, atherosclerosis, mechanism of action

INTRODUCTION

Polyphenols, including flavonoids, are bioactive compounds
that display a number of biological activities which have been re-
viewed before (Middleton et al., 2000). In particular, flavonoids
are renowned for their antioxidant/antiradicalary properties, and
the SAR has been extensively characterized (Amic et al., 2007).
We will focus on the antiinflammatory/immunomodulatory ac-
tions of flavonoids. While antioxidant defense undoubtedly
plays a role in many of flavonoid actions, they will be con-
sidered here only from a mechanistic point of view. In general,
though, structural requirements differ for antioxidant and anti-
inflammatory activities (Loke et al., 2008b).

Address correspondence to Fermı́n Sánchez de Medina, Department of
Pharmacology, CIBERehd, School of Pharmacy, Campus de Cartuja s/n,
18071 Granada, Spain. Tel.: 34 958 241747. Fax: 34 958 248964. E-mail:
fsanchez@ugr.es

The canonical structure of flavonoids is made up of a 3-
ring core as depicted in Fig. 1. Positioning of the B ring in
3 instead of 2 gives rise to isoflavones, of which genistein is
the most known compound. Depending on the presence of a
3-OH group and a double bond at 2, the flavone, flavanol, and
flavanone families are generated. Anthocyanidins have a fully
aromatized C ring and as a result they are positively charged.
Tannins are also related to flavonoids but are usually present
as high molecular weight polymers. Chalcones are related aryl
ketonic compounds in which the C ring does not exist. There are
enormous structural variations as different substitutions come
into play into this scheme. It should be noted that flavonoids are
found in nature predominantly in glycosylated form, which in
itself is another source of structural variation and has a profound
impact in pharmacokinetic and pharmacodynamic properties
of these compounds. Resveratrol is comparable to a chalcone
but has a 2-carbon bridge and no ketone group. Curcumin is
only loosely related to flavonoids in that it is a polyphenolic
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Figure 1 Chemical structure of some of the flavonoids and related polyphe-
nolic compounds featured in this review. The flavonoid structure is composed
of 3 rings, giving rise to the core flavone. The ring nomenclature is depicted in
the flavone structure. Flavonols have an additional 3-OH, while anthocyanidins
lack the 4-keto group and are fully aromatized and chalcones have an “open”
C ring. Flavanones (not shown) are devoid of a 2–3 double bond. Catechins,
including EC, ECG, and EGCG, lack both the keto group and the double bond.
Considerable variation is introduced by distinct chemical substitutions, specially
hydroxylation and glycosylation. Resveratrol resembles the flavonoid structure
to a certain extent, but curcumin is only loosely related to the flavonoids.

aromatic compound found in vegetables. We will deal with sensu
strictu flavonoids as well as related compounds, because of their
interest and overall relation.

This minireview will focus on recent advances in the proper-
ties of these agents that are relevant to the treatment of inflam-
matory diseases. In vivo experiments will be presented classified
by disease targeted, while in vitro studies will be presented sep-
arated by cell type. A consideration on pharmacokinetic issues
will be presented first.

PHARMACOKINETICS

A substantial body of evidence has accumulated in the last
few years regarding the pharmacokinetic profile of flavonoids.
In vitro experiments using the standard Caco-2 cell model have
revealed that aglycones, such as baicalein, wogonin, oroxylin-A,
liquiritigenin, or isoliquiritigenin can be absorbed easily, while
the glycosides have much lower permeability (Dai et al., 2008).
In addition, some glycosides are extruded by P-glycoprotein
(multidrug resistance-associated protein-1 or MDR1, gene sym-
bol ABCB1), multidrug resistance-associated proteins (MRPs,
ABCCs), or breast cancer resistance protein (BCRP, ABCG2)
(Walgren et al., 2000a; Brand et al., 2008). However, it should
be remembered that the epithelium produces the efficient glu-
curonidation and/or sulfation of these compounds, greatly re-
ducing bioavailability (Steinert et al., 2008; Dai et al., 2008;
Brand et al., 2008). Enzymatic cleavage by luminal bacteria

also compromises flavonoid absorption, although deglycosyla-
tion seems to precede this (Hein et al., 2008).

Quercetin glycosides are substrates of the intestinal glucose
transporter (SGLT-1) in the rat, which facilitates their absorp-
tion in the small intestine (Gee et al., 1998). This may account
for the higher absorption of various quercetin glycosydes over
quercetin (or rutin) in humans (Hollman et al., 1995). Simi-
larly, the bioavailability of daidzein-7-O-beta-d-glucoside may
be favored in glycosylated form (Rufer et al., 2008). In general
rhamnosides are believed to be absorbed to a lesser extent than
other glycosides. However, in the oocyte heterologous expres-
sion system, none of the 27 glycosylated and unglycosylated
flavonoids were found to be absorbed via human SGLT1. How-
ever, the transporter was inhibited competitively by many of
them (Kottra and Daniel, 2007). To further complicate matters,
Walgren et al. (2000a; 2000b) reported effective absorption of
quercetin 4′-beta-glucoside by SGLT1 in Caco-2 cells (i.e., by
the human isoform), although this is greatly offset by apical
MRP2 (Multidrug Resistance Associated Protein 2, also known
as ABCC2) extrusion.

Flavanones such as hesperetin, naringenin, and eriodictyol
are absorbed from the gastrointestinal tract (Kanaze et al., 2007;
Gardana et al., 2007; Miyake et al., 2000) and it has been claimed
that they are taken up by epithelial cells via a H+-linked trans-
porter and by transcellular passive diffusion (Kobayashi and
Konishi, 2008), which is probably operative for all unglycosy-
lated flavonoids.

Oral absorption of quercetin was reported quite a few years
ago (Ueno et al., 1983), approaching 20%. It has since been
confirmed in humans (Egert et al., 2008; Moon et al., 2008),
rats (Santos et al., 2008), and pigs (Bieger et al., 2008). Other
orally absorbed flavonoids are luteolin in the rat (Ying et al.,
2008), narirutin and hesperidin (Brett et al., 2009), genistein
in rats (Zhou et al., 2008b), flavan-3-ols ((-)-epigallocatechin –
EGC– and (-)-epicatechin –EC–) (Auger et al., 2008), curcumin
(Vareed et al., 2008), and the synthetic flavonoid NV-52 (Howes
et al., 2008) in humans, and resveratrol in rats (Wenzel et al.,
2005). Flavonoids bind to serum albumin with an affinity that
depends on the B ring hydroxylation (Xiao et al., 2008).

Therefore, flavonoids are generally absorbed by the oral
route, but intraluminal and first-pass metabolism, together with
active extrusion mechanisms, reduce bioavailability substan-
tially, and the main fraction of bioavailable flavonoid is in me-
tabolized form. The rule of thumb is that in vitro actions should
never be extrapolated to in vivo effects. In some cases metabo-
lites may be as active as the parent compound, or even more, but
this is relatively exceptional. In general, when antiinflammatory
effects are studied in vivo, the route of administration is either
oral/intragastric or parenteral, but no direct comparison is avail-
able. For example, for the assessment of antiarthritic activity in
rodents, resveratrol, nobiletin, genistein (Verdrengh et al., 2003),
procyanidins, and (-)-epigallocatechin-gallate (EGCG) (Imada
et al., 2008) are administered by injection, while hesperidin and
quercitin are active by the oral route (Mamani-Matsuda et al.,
2006).
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EFFECTS OF FLAVONOIDS AND OTHER POLYPHENOLS ON INFLAMMATION 333

Table 1 Effects of polyphenols on different diseases

Flavonoid RA IBD EAE Res Ath IR Br Mtb Sk TS

apigenin • •
baicalein • • •
catechin • •
chrysin •
curcumin •
ECG •
EGCG • • • • •
fisetin •
flavopiridol •
genistein • • •
hesperidin •
hesperidin • •
kaempferol •
luteolin • •* •
morin • •
myricetin • •
nobiletin • •
quercetin • • • • •
quercitrin •
resveratrol • • • •** • • • • • •
rutin • • • •
silibinin •
Therapeutic effect in the different disease models is shown. *Depending on
model. RA: rheumatoid arthritis; IBD: inflammatory bowel disease; EAE: Res:
asthma except **COPD; Ath: atherosclerosis; IR: ischaemia-reperfusion; Br:
brain inflammation; Mtb: metabolic syndrome; Sk: skin inflammation; TS:
toxic shock. Some actions are based mostly on in vitro effects.

IN VIVO STUDIES

There have been quite a few studies performed in vivo with
natural polyphenols (see Table 1 for a summary).

Rheumatoid Arthritis

A number of flavonoids and related polyphenols are active
in rheumatoid arthritis models, i.e., collagen- and adjuvant-
induced arthritis, including rutin, quercetin, resveratrol,
nobiletin, hesperidin, alpha-glucosylhesperidin, catechin, the
chalcone derivative 1-(2,4-dichlorophenyl)-3-(3-(6,7-
dimethoxy-2-chloroquinolinyl))-2-propen-1-one (known
as CIDQ), EGCG (and green tea polyphenols), flavopiridol,
genistein, and others (Li et al., 2008; Tang et al., 2007; De
Leon et al., 2003; Kawaguchi et al., 2006; Kometani et al.,
2008; Verdrengh et al., 2003; Murakami et al., 2007; Imada
et al., 2008; Kauss et al., 2008a; Wang et al., 2008a; Morinobu
et al., 2008; Elmali et al., 2007; Mamani-Matsuda 2006).
The mechanisms are ill defined, but include inhibition of
osteoclast/macrophage differentiation and function (Murakami
et al., 2007; Kauss et al., 2008a), estrogen modulation (Wang
et al., 2008a), downregulation of NFAT (Morinobu et al., 2008),
inhibition of ADAMTS (A Disintegrin-like and Metalloprotease
(reprolysin type) with ThromboSpondin type 1 motif) 2/5 and
protease expression in synovial fibroblasts and chondrocytes
(Imada et al., 2008; Lin et al., 2003; Ishiwa et al., 2000),

antiproliferative (Sekine et al., 2008) or proapoptotic (Byun et
al., 2008) actions on synovial fibroblasts, and general immune
depression (Li et al., 2008). Nobiletin counteracts osteoporosis
when given parenterally to ovariectomized rats, also suggesting
estrogen-related effects (Murakami et al., 2007). A recent
small clinical trial with a hesperidin derivative with improved
solubility yielded promising results (Kometani et al., 2008).

Experimental Allergic Encephalomyelitis

Experimental allergic encephalomyelitis is a widely used
model of multiple sclerosis. It is induced in mice by injection
of Freund’s adjuvant and a myelin glycoprotein, producing a
Th1/Th17 immunological reaction that results in brain derange-
ment. Some flavonoids have been tested in this model, includ-
ing resveratrol, baicalin, genistein, and silibinin (Zeng et al.,
2007; Singh et al., 2007a; Min et al., 2007a; De Paula et al.,
2008). Resveratrol induces apoptosis of preferentially activated
but also quiescent T cells via actions on the estrogen and aryl
hydrocarbon receptors (Singh et al., 2007a). In the other cases
the mechanism was largely undetermined.

Inflammatory Bowel Disease

Since flavonoids are naturally ingested as part of the nor-
mal diet, it is logical that they have been studied frequently
as possible modulators of intestinal inflammation. Various di-
etary polyphenols have been shown to exert intestinal antiin-
flammatory activity (reviewed in (Shapiro et al., 2007; Ballester
et al., 2006)). These include rutin and quercitrin, glycosides of
quercetin (Galvez et al., 1997; Sanchez de Medina et al., 1996;
Kwon et al., 2005b), resveratrol (Martin et al., 2004; Martin et
al., 2006), EGCG (Abboud et al., 2008; Lin et al., 2007; Ran
et al., 2008), a green tea polyphenol extract (Mazzon et al.,
2005; Oz et al., 2005; Varilek et al., 2001), curcumin (Nones
et al., 2009a; Camacho-Barquero et al., 2007; Jian et al., 2005;
Ukil et al., 2003; Sugimoto et al., 2002; Zhang et al., 2006; Jiang
et al., 2006; Salh et al., 2003), theaflavin-3,3′-digallate (Ukil
et al., 2006), 2′,4′,6′-tris(methoxymethoxy) chalcone (Lee et
al., 2007c), piceannetol (3,5,3′,4′-tetrahydroxy-trans-stilbene)
(Kim et al., 2008a), genistein (Seibel et al., 2008), morin (Galvez
et al., 2001), hesperidin (Xu et al., 2009; Crespo et al., 1999), and
diosmin (Crespo et al., 1999). The flavonoid synthetic deriva-
tives NV-52 (an inhibitor of thromboxane synthase) and DA-
6034 (Howes et al., 2007; Nam et al., 2008) are also active.
Resveratrol is effective also in the animal model of necrotizing
enterocolitis, a disease that affects predominantly formula-fed
premature newborns and is associated with significant mortality
(Ergun et al., 2007). There is one single study on small intesti-
nal inflammation, showing lack of clinical efficacy of quercetin
despite the demonstrated immunomodulatory effects at the ep-
ithelial level (Ruiz et al., 2007a). One intriguing study showed
that orally administered luteolin actually worsens dextrane
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sulfate sodium (DSS) colitis in mice, while ameliorating colitis
in IL-10 KO mice (Karrasch et al., 2007a). By using transgenic
mice expressing green fluorescent protein under the control of
the NF-κB promoter, this group formulated the hypothesis that
in DSS colitis luteolin blocked epithelial protective NF-κB pro-
teins, while subepithelial actions predominated in IL-10 KO
mice. The basis of this hypothesis is that DSS elicits colitis pri-
marily by disruption of the epithelial layer, while IL-10 mice
develop colonic inflammation in a more progressive and subtle
fashion originating from immunological imbalance. There are
various inflammatory bowel disease models which are used for
preclinical drug testing that differ in their immune and patholog-
ical characteristics, raising the possibility of this type of anal-
ysis, although this approach is not regularly applied, probably
because of the problems implied. For instance, dietary rutin sup-
plementation failed to ameliorate colitis in MDR1A knockout
mice (Nones et al., 2009b), while it is beneficial in acetic acid,
trinitrobenzenesulfonic acid (TNBS), and DSS induced colitis
(Galvez et al., 1997; Kwon et al., 2005b), but the implications
of this discrepancy, if any, are difficult to ascertain.

The intestinal antiinflammatory activity of curcumin has been
associated with a reduction in the activation of p38 MAPK but
not JNK in vivo (Camacho-Barquero et al., 2007). In virtually all
studies, however, a mechanism of action was not defined, owing
to the broad impact of the flavonoids on inflammatory parame-
ters measured in these studies, which typically include morpho-
logical parameters, myeloperoxidase activity, glutathione, and
cytokines (TNF, IL-1β, IL-6). Rutin and quercitrin have been
proposed to act as quercetin prodrugs, preventing premature ab-
sorption of the aglycone in the small intestine and releasing it in
the colon (Fig. 2) (Kwon et al., 2005b; Comalada et al., 2005).
This is based on the inability of quercetin to ameliorate DSS
colitis and in the demonstrated release of quercetin from gly-
cosydes by bacteria. This further suggests a local action of the
flavonoid. Nevertheless, a number of other flavonoids are active
when given in the unglycosylated form (see above).

One interesting article studied the deleterious effect of in
utero and postnatal exposure to isoflavones on adult life col-
itis, an unexpected result (Seibel et al., 2008). This raises the
possibility that phytoestrogen dietary enrichment or supplemen-
tation may have deleterious effects on the offspring, certainly
an important issue that will require further experimentation.

Asthma

The antiallergic potential of flavonoids has been reviewed
(Kawai et al., 2007). Typical parameters examined in drug
testing in asthma models such as the ovalbumin sensitization
model include functional performance (bronchoconstriction and
bronchial hyperreactivity), anti-IgE, eosinophil infiltration, and
cytokines (IL-4, IL-5, IFN-γ ). Luteolin has been found to re-
duce ovalbumin-specific IgE levels in serum, to increase IFN-γ
and to decrease IL-4 and IL-5 levels in the bronchoalveolar fluid
at doses as low as 0.1 mg/kg (Das et al., 2003). Luteolin, which

was given orally, was effective both pre- and post-induction,
and it also alleviated bronchoconstriction and hyperreactivity.
In the same model diets enriched in apigenin or chrysin lower
total IgE, IL-4, and cytokine production (IL-4 and IL-13) by
splenocytes ex vivo (Yano et al., 2007). In fact, dietary apigenin
reduces IgE as well as RANTES in normal mice as well (Yano
et al., 2006). Thus 3 different flavones are active in experimen-
tal asthma. On the other hand, the flavonol quercetin and its
glycoside rutin have been tested in a guinea pig variant of the
ovalbumin model, where they both lower airway resistance and
reduce histamine, phospholipase A2 and eosinophil peroxidase
levels, and neutrophil/eosinophil infiltration (Jung et al., 2007).
However, they were not as effective as dexamethasone. The
beneficial effect of quercetin was confirmed in a separate study,
showing diminished eosinophil but not neutrophil infiltration
and no effect on IL-5 (Rogerio et al., 2007a). Isoquercitrin, an-
other quercetin glycoside, had a somewhat higher effect, since
it additionally lowered neutrophils and IL-5 (Rogerio et al.,
2007a). Other quercetin derivatives are also active, including 3-
O-methylquercetin 5,7,3′,4′-O-tetraacetate and quercetin 3-O-
methyl ether (selected for their improved potency as inhibitors
of phosphodiesterase 3/4), with an extended therapeutic impact
that includes protection against induced bronchoconstriction,
reduction of eosinophil infiltration and a decrease in IL-2, IL-4,
IL-5, IFN-γ , and TNF (Jiang et al., 2007). It should be noted
that the i.p. route was used in this study, although the doses were
quite small. Narirutin, a flavanone glycoside, is also active in this
model, reducing eosinophil counts in the peripheral blood and
bronchoalveolar lavage fluid, IL-4 and IgE (Funaguchi et al.,
2007). Nobiletin, a polymethoxylathed flavone, is also effective
given intraperitoneally but it is less potent (Wu et al., 2006a).
Resveratrol has been tested successfully in a chronic obstructive
pulmonary disease model (Zhou et al., 2008a). Taken together,
these data indicate that various different flavonoid derivatives
have the capacity to modulate Th2 driven inflammation, al-
though the mechanism is again imprecise. Possible cell targets
include airway epithelial, macrophage, and lymphocytes, among
others (see below).

Atherosclerosis

Polyphenols have received a great deal of attention in the pre-
vention of cardiovascular disease, stemming from the so-called
French paradox, which has been justified tentatively in terms of
the antioxidant protection afforded by polyphenols present in
wine and vegetables. Clearly, a high flavonoid diet appears to be
of benefit, but whether polyphenols themselves account for this
effect or may exert it on their own remains an unsolved ques-
tion. Perhaps the compound most avidly studied in this regard
is resveratrol. For instance, resveratrol has been shown to exert
protective effects in the ApoE deficient mice model (Do et al.,
2008), acting on blood lipid levels and also at the atheroscle-
rotic plaque. The mechanism appears to be at least in part an-
tiinflammatory, because the levels of ICAM-1 and VCAM-1
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in atherosclerotic blood vessels were reduced. Resveratrol did
not affect lipid levels, however, in dietary hipercolesterolemic
rabbits (Wilson et al., 1996) or in normal rats (Turrens et al.,
1997), although it ameliorates blood lipids in Zucker rats, a
model of obesity that in advanced age is associated with some
alterations similar to those observed in type II diabetes (Rivera
et al., 2009). In fact, one study showed an extension of
atherosclerosic lesions by resveratrol, with no other significant
effect on lipids or LDL oxidation (Wilson et al., 1996). Thus
resveratrol is unlikely to have cardiovascular protective effects
via changes in the lipidic profile. Resveratrol may inhibit the
production of oxidative species secondary to oxLDL uptake by
macrophages (Vivancos and Moreno, 2008). Apart from the im-
munomodulatory actions described below, resveratrol inhibits
vascular smooth cell proliferation in vitro, via upregulation of
protein kinase G/guanylate cyclase and downstream inhibition
of oxidative stress or endothelin 1 activated ERK (El-Mowafy
et al., 2008a; 2008b). Resveratrol also reduces cellular infiltra-
tion, fibrosis, and expression of inflammatory cytokines in a
model of autoimmune myocarditis (Yoshida et al., 2007).

Other relevant mechanisms are the antioxidant protection
of LDL and the downregulation of CD36, the macrophage
scavenger receptor, as shown for a number of polyphenols,
including morin, myricetin, and fisetin (Lian et al., 2008). Both
actions are expected to reduce foam cell formation and therefore
are considered protective against atherosclerosis. One way
flavonoids can inhibit LDL oxidation is by neutrophil myeloper-
oxidase blockade (see below), an effect that is preserved in at
least some flavonoid metabolites (Loke et al., 2008a), which as a
rule are less bioactive than the intact aglycone precursors (Loke
et al., 2008b). It should be noted also that macrophages located

in atherosclerotic plaques can uptake quercetin conjugates and
convert them back to active quercetin (Kawai et al., 2008a).

A similar LDL protection/downregulation of CD36 mecha-
nism has been described for ECG which, interestingly, appears
to exert it in atherosclerotic lesions specifically (Kawai et al.,
2008b), as do kaempferol and rhamnocitrin (Tu et al., 2007),
quercetin (Terao et al., 2008), and even quercetin-3-glucuronide
(Kawai et al., 2008a). Other protective mechanisms include
activation of the ABCA1 (ATP-binding cassette, sub-family A
(ABC1), member 1) transporter (possibly augmenting HDL)
(Gao et al., 2008); downregulation of NADPHox (Romero
et al., 2009; Steffen et al., 2008); antiatherothrombotic actions
(Jin et al., 2008; Pasten et al., 2007); lowering of MCP-1
(Nagarajan et al., 2008); inhibition of C reactive protein (Kaur
et al., 2007); and downregulation of heat shock proteins (Rosier
Olimpio Pereira and Saes Parra Abdalla 2006). Of course,
polyphenols exert purely vascular effects which will not be
covered here (Grassi et al., 2009). Other than that, the bulk of the
evidence points at an antiinflammatory (rather than antioxidant)
mechanism for flavonoid antiatherosclerotic/cardiovascular
benefit. In general, these effects have been ascribed to different
polyphenols without trying to establish structural requirements.
However, a SAR study related to inhibition of LDL oxidation
by resveratrol and derivatives has been published (Cheng et al.,
2006).

Ischaemia-Reperfusion

Polyphenols combat tissue damage originated by ischaemia-
reperfusion episodes. Examples include resveratrol (Kaplan

Figure 2 Possibilities of flavonoid inmunomodulation, depicted for rutin/quercetin and the intestine. Rutin is antiinflammatory when given by the oral route, an
effect that may be due to local actions on the intestinal mucosa, to systemic actions, or both. Absorption and mucosal effects are believed to occur after glycoside
hydrolysis in the gut lumen, releasing quercetin. The aglycone could also be administered by the parenteral route, which is expected to favor systemic over local
(mucosal) actions. Even within the mucosa, multiple cell types can be theoretically modulated by flavonoids. However, many unglycosylated flavonoids are active
orally in the gut and other organs. Muc: mucosa; SM: submucosa; M: muscular layer and serosa.
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336 R. GONZÁLEZ ET AL.

et al., 2005), theaflavin (Cai et al., 2006), 3-methoxypuerarin
(Zhao et al., 2007), catechin (Rao and Vijayakumar, 2007) and
EGCG (Giakoustidis et al., 2008). Tea catechins protect against
postischemic myocardial remodeling via antiinflammatory ac-
tions (Suzuki et al., 2007). The structure-activity relationship
(SAR) for phosphatidylinositol 3-kinase (PI3K) inhibition in
ischaemia-reperfusion injury has been defined (Palanki et al.,
2007). Again, the protection in this setting is conferred by anti-
inflammatory properties.

Metabolic Syndrome

Some groups have extended the study of cardiovascular pro-
tection by polyphenols to metabolic syndrome. Not surprisingly,
several polyphenols have been established to limit the inflamma-
tory component of obesity in animal models. Thus oral treatment
of Zucker rats with quercetin improves the overall status, includ-
ing control of hypertension, dyslipemia, and hyperinsulinemia
and lower TNF and iNOS expression in visceral fat (Rivera et al.,
2008). Resveratrol has similar but even more substantial ben-
eficial effects in this model, ameliorating the dyslipemia and
hypertension, reducing hyperinsulinemia, decreasing the hep-
atic lipid content, and acting on the visceral fat inflammatory
component by lowering TNF and increasing adiponectin and
eNOS (Rivera et al., 2009). The effects on the liver are associ-
ated with activation of AMP-activated protein kinase (AMPK)
and acetyl-CoA carboxylase. It should be noted that resveratrol
did not prevent obesity itself, although it seems that it might
have antiobesity effects at high doses.

Gravinol, a proanthocyanidin, has similar effects, including
an attenuation of the inflammatory component at the hepatic
level (Yokozawa et al., 2008). NF-κB is blocked in adipocytes
by both curcumin and resveratrol (Gonzales and Orlando 2008;
Zhu et al., 2008; Ahn et al., 2007). Part of the effect of resveratrol
in the control of insulin resistance may derive from PPAR-γ
activation, as observed in cultured adipocytes (Kennedy et al.,
2009). Quercetin, kaempferol, naringenin, and hesperetin are
partial PPAR-γ agonists in fat cells, but it has been argued
that the antagonist component may be the predominant one
in vivo (Fang et al., 2008c; Liu et al., 2008a). Interestingly,
naringenin chalcone has been shown to reduce the production
of inflammatory cytokines in an in vitro co-culture model of
obesity-related inflammation, in which 3T3-L1 adipocytes and
Raw264 macrophages exhibit potentiation of TNF, MCP-1, and
NO production (Hirai et al., 2007). Last, curcumin has been
shown to inhibit diabetes related increases in IL-1β, vascular
endothelial growth factor (VEGF), and NF-κB in the retina
independently of glycemia (Kowluru and Kanwar, 2007).

Brain Inflammation

The effect of flavonoids has been studied in different types
of brain inflammation in experimental animals. In a model of

traumatic brain damage in the rat baicalein exerts protective ef-
fects via antiinflammatory mechanisms (Chen et al., 2008b). In
ischemic brain injury resveratrol has therapeutic properties (Liu
et al., 2007b; Tsai et al., 2007), an effect shared by theaflavin
(Cai et al., 2006). Neuronal cell death induced by microglial
activation is prevented by resveratrol and quercetin by reducing
apoptosis, acting probably on the microglia component (Bureau
et al., 2008). In addition, resveratrol has well known neuropro-
tective effects, which are due to AMPK activation (Dasgupta
and Milbrandt 2007). As we will show below, myeloid cells
are well characterized targets of the antiinflammatory actions of
polyphenols. In this particular cell population (microglia) lute-
olin (Jang et al., 2008a; Kim et al., 2006), biochanin A (Chen
et al., 2007c), and the already mentioned quercetin (Chen et al.,
2005) and resveratrol are reported to downregulate cell activa-
tion. Quercetin, however, might be toxic to neurons in micro-
molar concentrations in basal conditions (Jakubowicz-Gil et al.,
2008).

Skin Inflammation

Resveratrol (Kundu et al., 2006), 5-O-demethylnobiletin
(Bas et al., 2006), sylimarin (Han et al., 2007), 5-hydroxy-
3,6,7,8,3′,4′-hexamethoxyflavone (Lai et al., 2007) and black
tea theaflavin derivatives (Huang et al., 2006) are active in acute
skin inflammatory models, while ginkgetin, a biflavone, is active
in chronic skin inflammation (Lim et al., 2006). EGCG reduces
the severity of atopic dermatitis in mice (Noh et al., 2008) and
it also prevents UV damage when administered topically (Sevin
et al., 2007). Similarly, eupatilin, and jaceosidin diminish the
response of skin cells to IgE-antigen complexes (Lee et al.,
2007a). Myricitrin has antiallodynic properties via antiinflam-
matory actions (Meotti et al., 2006). Of course, the utility of
tannins in skin dermatitis is well established (Folster-Holst and
Latussek, 2007).

Miscellaneous In Vivo Antiinflammatory Activities

Many flavonoids possess substantial anticancer activity by
direct mechanisms, which will not be covered here. However,
they may also contribute to antineoplastic defense by modula-
tion of the immune response. Thus oral genistein has been shown
to protect against carcinogenesis via immunostimulation, lower-
ing Treg and enhancing T cell cytotoxicity and NK cell function
(Guo et al., 2007a). In ovariectomized cats, genistein reduces
circulating CD8+ cells, while enhancing respiratory burst in
neutrophils when given at a “minimum estrogenic” dose (Cave
et al., 2007). Genistein also has protective effects against cis-
platin nephrotoxicity by antiinflammatory actions (Sung et al.,
2008) and prevents gastric mucosal inflammation and ulceration
(Takekawa et al., 2006), an action shared by other flavonoids
such as catechin (Rao and Vijayakumar, 2007), and DA-6034
protects against gastric ulcer (Choi et al., 2007).
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A number of flavonoids protect against LPS-induced
shock or immune stimulation in experimental animal models,
including rutin (Guruvayoorappan and Kuttan 2007b), baicalein
(Liu et al., 2008), apigenin (Nicholas et al., 2007a), hesperidin
(Yeh et al., 2007a), resveratrol (Sebai et al., 2009), quercetin
3-O-beta-(2(")-galloyl)-rhamnopyranoside (Jo et al., 2008),
and EGCG (Li et al., 2007b;Wheeler et al., 2007). These effects
derive most likely from inhibition of monocyte function. An
interesting study says that quercetin but not luteolin protects
against Salmonella typhimurium-aroA shock in mice (Sugiyama
et al., 2008). At any rate, quercetin does not affect LPS induced
fever (Kanashiro et al., 2008). In addition, quercitrin protects
against anaphylactic shock (Cruz et al., 2008).

Resveratrol (Szabolcs et al., 2006; Wang et al., 2008b) and
baicalin (Xue et al., 2006; Zhang et al., 2008) protect in ex-
perimental pancreatitis, while ellagic acid is useful in chronic
pancreatitis (Suzuki et al., 2009). Demethylnobiletin reduces
delayed hipersensitivity, with lower T cell proliferation, lower
cytokine synthesis, and higher IL-10 (Bas et al., 2007).

Resveratrol (Chavez et al., 2008) and baicalin (Park et al.,
2008) have protective effects against CCl4 induced hepatic dam-
age. Additionally baicalin is active in the model of hepatic injury
induced by LPS/D-galactosamine, acting in part by HO-1 upreg-
ulation (Wan et al., 2008), as well as in concanavalin A induced
hepatitis (Liu et al., 2007a). Resveratrol ameliorates liver in-
jury in a traumatic hemorrhage model, acting by estrogen like
actions (Yu et al., 2008).

ACTIONS ON INDIVIDUAL CELL TYPES

There is an impressive number of in vitro studies published
that are related to the antiinflammatory/immunomodulatory ac-
tions of flavonoids, even when restricting the focus to the last
few years. These experiments are somewhat simpler and more
straightforward to perform than in vivo work, explaining the im-
balance between the amount of evidence presented in the first
and second part of this review. We will present mostly obser-
vations for cell types for which a substantial number of studies
have been put forward, and we will focus on mechanistic is-
sues and any relevant extrapolation to actual in vivo effects (see
Table 2 for a summary).

Effects of Polyphenols on Macrophages and Glial Cells

Biological Effects

Many flavonoids have been shown to inhibit the activity of
myeloid cells, including macrophages but also dendritic cells,
glial cells, and osteoblasts. The general effect of polyphenols is
a downregulation of myeloid cell (mostly macrophage) activ-
ity, which translates into a lower expression of iNOS, COX2,
the proinflammatory cytokines IL-1β, TNF, IL-6, and other
markers.

Among flavonols, fisetin, quercetin, and kaempferol in-
hibit NO production and iNOS/COX-2 induction in a con-
centration dependent fashion in Raw264.7 cells by ∼70% at
10 µM via interference with the NF-κB pathway (Wang et al.,
2006a). Myricetin and morin had feeble effects in this study,
suggesting that 2′-OH is deleterious for activity. None of the
flavonoids studied is toxic at this relatively low concentration,
a common observation. A variety of other flavonols, such as er-
manin, santin, centaureidin, and 5,3′-dihydroxy-4′-methoxy-7-
methoxycarbonylflavonol have similar properties in Raw 264.7
cells (Guerra et al., 2006). In these cells quercetin appears
to inhibit NF-κB transcriptional activity but also specifically
NF-κB dependent iNOS promoter activity (Kim et al., 2007b).
Quercetin, but not kaempferol, has marked inhibitory effects on
bone marrow derived macrophages, a more physiological cellu-
lar model (Comalada et al., 2006), where the activation of Akt
has also been involved as a target of flavonoid action (Kaneko
et al., 2008a). Quercetin may increase IL-10 at low concen-
trations (Comalada et al., 2006). The effect of quercetin has
been related also to inhibition of the p38, ERK, and JNK MAP
kinases in rat peritoneal macrophages (Lee et al., 2008b). In
the THP-1 human monocytic cell line quercetin (and catechin)
virtually suppresses IL-1β and TNF production stimulated by
advanced glycation endproducts (Huang et al., 2008b). Other
cell products inhibited include β2-integrin and PECAM-1, and
to a lesser extent MCP-1 and IP-10. Consistent with a predom-
inant NF-κB blockade mode of action, COX1 is not affected.
Interestingly, quercetin may act in part by modulation of mon-
oclonal non-specific suppressor factor beta (MNSFbeta), which
is a regulator of ERK in Raw264 cells (Nakamura and Omura
2008). 3-O-methylquercetin retains the NO/iNOS inhibitory ac-
tivity (Jiang et al., 2006). Quercetin (and luteolin) also exerts
significant antiinflammatory effects on IL-1β activated human
astrocytes, reducing cytokines and chemokines and oxidative
stress (Sharma et al., 2007b). Taken together, these data sug-
gest that the 3′- and 5-OH are not determinant for activity and
that methylation in 3 and 4′ is probably of little importance.
However, there are discrepancies regarding the role of 3′-OH.

Flavones are also reportedly active. Thus chrysin inhibits
COX2 enzymatic activity but not expression, while luteolin ex-
erts both actions (Harris et al., 2006). Luteolin appears to inhibit
prostaglandin E synthase also (Wang et al., 2007b), theoret-
ically potentiating the inhibitory effect on prostaglandin syn-
thesis, and it additionally affects iNOS/NO, IL-6, and TNF,
exhibiting a broader effect as in the case of flavonols (Chen et
al., 2007a). In this study luteolin (5–25 µM) acted via NF-κB
inhibition at different levels (IκB-α phosphorylation, translo-
cation, DNA binding), plus actions on Akt and AP-1. IL-10
was not affected either way. However, in bone marrow derived
macrophages luteolin has been shown to augment IL-10 mRNA,
but only at low (<50 µM) concentrations (Comalada et al.,
2006). Apigenin, on the other hand, similarly blocks monocyte
iNOS, COX2, and endothelial adherence (Lee et al., 2007a). p38
and Jnk but not Erk may mediate this effect (Ha et al., 2008).
MCP-1 is also inhibited at least at the transcriptional level by
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Table 2 Effect of flavonoids on specific cell types

Flavonoid M OB GC DC LY MC PMN IEC AEC EC KC FB

apigenin ↓ ↓ ↓ ↓ ↓
baicalein ↓ ↓ *
biochanin A ↓ ↓ ↑ ↓
cardamonin ↓
catechin ↓
chrysin ↓ ↓ ↓
curcumin ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
cyanidin ↓ —
daidzein ↓ ↓ ↓
delphinidin ↓
diosmetin ↓ ↓
ECG ↓ ↓ ↓
EGCG ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
fisetin ↓ ↓ ↓ ↓
flavopiridol ↓
genistein ↓ ↓ ↑↓ ↑↓ ↓ ↓
hesperidin ↓ ↓ ↓ ↓
isorhamnetin ↓ ↓ ↓ ↓
kaempferol ↓ ↓ ↓ ↓ ↓
luteolin ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
morin ↓ ↓ ↓
myricetin ↓ ↓ ↓ ↓
naringenin ↓ ↓ ↓ —
nobiletin ↓
pelargonidin ↓
quercetin ↓ ↓ ↓ ↓ ↓ ↓ ↓— ↓ ↓ ↓
quercitrin ↓
resveratrol ↓ ↓ ↑↓ ↓ ↓ ↑ ↓ ↓ ↓
rutin ↓ ↓ ↑↓ —
silibinin ↓ ↓ ↓
wogonin ↓ ↓ ↓
*The most important flavonoids are included. The predominant effect is shown as increased (↑) or decreased (↓) immune activation (this is a qualitative estimation);
– denotes lack of effect, whereas ↑↓ indicates disparity of results. Where conflicting reports exist, the trend deemed dominant is depicted whenever possible.
*Promotes adhesion but reduces cell migration. M: macrophages; OB: osteoblasts; GC: glial cells; DC: dendritic cells; LY: lymphocytes; MC: mastocytes; PMN:
neutrophils; IEC and AEC: intestinal and airway epithelial cells, respectively; EC: endothelial cells; KC: keratinocytes; FB: fibroblasts.

apigenin in J774.2 cells, a monocyte/macrophage cell line de-
rived from Balb-c mice (Kowalski et al., 2006). The transcription
factor C/EBP-β has been involved in the comparable effect of
baicalein (Woo et al., 2006b). JNK blockade has been involved
in the inhibition of NO synthesis exerted by wogonin (but not
nor-wogonin) (Huang et al., 2007b). The 5 and 7-OH appear
to be essential to this activity. There is a confirmatory study
by Pan et al., (2006a), but also a contradicting study showing
wogonin to activate leukocytes (Tang et al., 2006). Biflavones
such as biapigenin and taiwaniaflavone have similar inhibitory
effects (Woo et al., 2006a; Pokharel et al., 2006; Park et al.,
2006). Artocarpesin, which features a 3-methyl-2-butenyl in 6,
inhibits COX2 and iNOS in Raw264.7 cells (Fang et al., 2008a).
Isovitexin, a 6-glycoflavone, also reduces oxidative stress and
iNOS/NO in these cells via inhibition of IKK (IκB kinase),
NF-κB translocation, and transcription (Lin et al., 2005), and
it also affects COX2 and TNF (Huang et al., 2005). Acacetin
(5,7-dihydroxy-4′-methoxyflavone), i.e., the flavone equivalent
of ermanin, inhibits the transcriptional activation of iNOS and
COX-2 in Raw264.7 cells activated by LPS via interference
with Akt and IκB-α phosphorylation, as well as ERK but not

p38 (Pan et al., 2006b). The semisynthetic flavone flavopiri-
dol also inhibits IκB-α phosphorylation, AP1, Erk, p38, Jnk,
and Akt, and it is proapoptotic in myeloid cells (Takada et al.,
2008). Also worth noting is the ability of nobiletin to inhibit
tissue factor production by THP-1 cells, possibly reducing co-
agulability (Hirata et al., 2008). In a SAR study carried out by
our group the basic requirements were equivalent in flavones
and flavonols, i.e., four hydroxylations at positions 5, 7, 3′, and
4′, together with the double bond at C2–C3 and the position of
the B ring at 2 (Comalada et al., 2006). Accordingly, chrysin
showed little activity in this study. The data presented further
suggest that 6-substitution is of little consequence and that bi-
flavones retain activity. In a study performed on Raw264.7 cells
the SAR for NO inhibition was found to comprise a 4′-OH and a
C2-C3 double bond, so that flavones are more potent inhibitors
than flavanones (Shanmugam et al., 2008).

Isoflavones, especially biochanin A and genistein, have been
described to inhibit NO generation in Raw264.7 cells, although
at somewhat high concentrations (∼50 µM). Arachidonic acid
release is also inhibited (Jun et al., 2005). Nakaya et al. (2005)
reported quite the opposite—activation of iNOS, via estrogen
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receptor stimulation. Genistein has been additionally reported to
block TNF but not IL-6 expression in monocytes from hemodial-
ysis patients (Asmis et al., 2006), and it also reduces TNF secre-
tion in bone marrow derived macrophages, possibly by mech-
anisms unrelated to IκB-α phosphorylation (Comalada et al.,
2006). Daidzein seems to be inactive. Soy isoflavones inhibit
monocyte adhesion to CD54 bearing endothelium via modula-
tion of CD11a affinity (Nagarajan et al., 2006). Irigenin (3–30
µM) inhibits iNOS and COX2 expression via interference with
NF-κB translocation and binding in Raw264.7 cells (Ahn et al.,
2006). Thus genistein and irigenin but not daidzein appear to
exert a more limited antiinflammatory activity on macrophages
than flavones and flavonols and via not so straightforward mech-
anisms.

(+)-Catechin inhibits the production of NO and TNF in
LPS-stimulated primary macrophages (Guruvayoorappan and
Kuttan, 2008). EGCG inhibits NO and iNOS in Raw264.7 cells,
and this effect has been ascribed to apoptosis (Hashimoto and
Sakagami, 2008) and to NF-κB inhibition (Olmos et al., 2008).
This is quite unique to EGCG, as flavonoids are generally
found to be nontoxic for macrophages. Curiously, EGCG has
been described to exert stimulatory actions on bacteria-infected
macrophages, stopping Legionella pneumophila growth at
1 µM, together with an increase in IL-12, IFN-γ , and
TNF and a reduction in IL-10 but with no change in IL-6
(Matsunaga et al., 2001). It also reportedly increases IL-1α

in human peripheral blood mononuclear cells (hPBMC) (Sak-
agami et al., 1995). In addition, EGCG inhibits IL-6, IL-8,
VEGF, and COX2/PGE2 in human astrocytoma U373MG cells
treated with IL-1β and beta-amyloid (25–35) fragment via NF-
κB and p38/Jnk and the induction of mitogen-activated protein
kinase phosphatase-1 (Kim et al., 2007a). EGC lowers NO in
LPS stimulated Raw264.7 cells (Lyu and Park, 2005). Thus
the effect of catechins may depend on the experimental condi-
tions.

The flavanones hesperitin and hesperidin both block LPS-
induced COX2 expression in Raw264.7 cells (Hirata et al.,
2005), and the aglycone reduces TNF secretion in bone marrow
derived macrophages (Comalada et al., 2006), while naringenin
inhibits IL-6, IL-8, TNF, and IL-1β in macrophages activated
by LPS (Bodet et al., 2008).

In a study dealing with five anthocyanidins (which lack the
4-keto group and are positively charged, Fig. 1), delphinidin and
cyanidin, which are the equivalent of myricetin and quercetin re-
spectively, inhibit LPS-induced COX2 expression in Raw264.7
cells, whereas pelargonidin (equivalent to kaempferol), peonidin
(isorhamnetin), and malvidin do not (Hou et al., 2005). Thus the
ortho-dihydroxyphenyl structure on the B-ring appears to be re-
lated with the inhibitory actions. There is some similarity to the
requirements found in flavonols, suggesting that the keto group
is of limited importance for activity. The mechanism is described
as related to MAPK, NF-κB, AP-1, and (C/EBP)delta inhibition.
The proanthocyanidin prodelphinidine B-4 3′-O-gallate also in-
hibits COX2 via NF-κB interference at several levels, as well as
TAK-1 (Hou et al., 2007).

Cardamonin (a chalcone) has been described to inhibit iNOS
and COX2 via NF-κB/Akt and p38 (Lee et al., 2006). In another
study cardamonin only downregulated iNOS but not COX2 in
macrophages, by a direct blockade of NF-κB driven transcrip-
tion, since it did not affect the phosphorylation of the MAP
kinases, the degradation of IκB-α, or the phosphorylation of
NF-κB (Hatziieremia et al., 2006). These results are quite dif-
ferent from those of Israf et al. (2007), which show classical
NF-κB inhibition by blockade of IκB-α phosphorylation, af-
fecting both COX2 and iNOS. Thus cardamonin clearly inhibits
macrophage function but the specific details require clarifica-
tion. The SAR of chalcones for NO/iNOS inhibition was studied
by Kim et al. (2007c), finding that the activity was favored by
a methoxyl substitution in the A-ring at an adjacent position to
the carbonyl moiety and a 3-halogen substitution in the B-ring.

Resveratrol inhibits iNOS and COX2 in C6 astroglioma cells
via NF-κB interference (Kim et al., 2007b). In Raw264.7 cells,
however, NO and PGE2 levels were lowered by resveratrol
and other related stilbenoids, arachidin-1 and piceatannol, but
COX2 and iNOS were not affected, despite the fact that NF-
κB and C/EBP were in fact inhibited (Djoko et al., 2007). In
primary rat glial cells, resveratrol was found again not to af-
fect COX2, but instead reduced prostaglandin E synthase ex-
pression and blocked prostaglandin synthesis (Candelario-Jalil
et al., 2007). Resveratrol inhibits TNF, IL-1β and NO, as well
as NF-κB, in peritoneal macrophages (Ma et al., 2006). The
effects generally extend to a resveratrol tetramer, vaticanol B
(Tabata et al., 2007), a prenylated derivative (Patel et al., 2005),
and the resveratrol analogue RV09 (5-[2-(4-bromothiophen-2-
yl)vinyl]benzene-1,3-diol) (Meng et al., 2008b). Resveratrol re-
portedly inhibits TNF but not IL-1β in J774.2 macrophages,
while quercetin and kaempferol inhibit both (Kowalski et al.,
2005). Resveratrol (and curcumin) inhibits the release of cy-
tokines by peritoneal macrophages and stimulates IL-10 expres-
sion at 20 µM (Sharma et al., 2007a). These changes are ac-
companied by a reduction in CD80/86. Resveratrol also affects
bacterial phagocytic capacity in a negative fashion, opposite to
the effects of EGCG described above (Iyori et al., 2008). This ac-
tion is related to general inhibition of cell immune function and
specifically with downregulation of phagocytic receptors such
as macrophage scavenger receptor-1, CD36, DC-SIGN, and
dectin-1. Resveratrol inhibits monocyte CCR2 binding activity
in an NO-, MAPK-, and PI3K-dependent manner, whereas it in-
hibits CCR2 mRNA in an NO- and MAPK-independent, PI3K-
dependent manner (Cullen et al., 2007). Resveratrol down-
regulates EMMPRIN (Extracellular Matrix MetalloPRoteinase
Inducer) and matrix metallopeptidase (MMP)-9, through PPAR-
γ activation (Ge et al., 2007). This study also shows that resver-
atrol inhibits NF-κB but independently of PPAR-γ . ERK and
p38 have been also shown to be involved in the effect on EMM-
PRIN (Huang et al., 2008c). Taken together these data indicate
that resveratrol and some structural analogues exert a predomi-
nantly inhibitory effect on myeloid cells acting on MAP kinases
and NF-κB as well as PPAR-γ , although the specific conse-
quences vary depending on the experimental conditions.
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In general, flavonoids do not cause changes in proliferation
or viability of macrophages, and those studies that do show
such effects indicate only a minor impact. However resveratrol
inhibits proliferation and viability (9–29 µM) in Raw264.7 cells
(Billack et al., 2008; Radkar et al., 2007); this effect is reduced
under activation.

One important aspect to consider is that of glycosylation,
which in general appears to lower the effect of flavonoids (Rao
et al., 2008). However, glycosides may retain significant activity
in some cases. For instance, rutin has been reported to inhibit
TNF and NO production in primary peritoneal macrophages ob-
tained from arthritic rats, in which rutin is effective as well in
vivo (Kauss et al., 2008b). Similarly, quercetin, but also rutin
and quercitrin, inhibits NO, TNF, and IL-6 production in peri-
toneal macrophages (Fang et al., 2008b). Metabolization is also
associated as a rule with a loss of activity, although there are
also exceptions—methyl derivatives of quercetin are still ef-
fective (Kim et al., 2008a), while demethylation enhances the
inhibitory effects of nobiletin on macrophages (Li et al., 2007a).

Other Effects of Flavonoids on Macrophages

In addition to their effects on gene expression, some polyphe-
nols inhibit enzyme function. For instance, cardamonin inhibits
COX1 and COX2 (Ahmad et al., 2006). Resveratrol is also
a nonselective COX inhibitor (Likhitwitayawuid et al., 2002).
The flavonols spinacetin, axillarin, penduletin, and the flavones
jaceosidin, axillarin, penduletin, tricin, and chrysoeriol all in-
hibit PGE2 synthesis, and some additionally block phospho-
lipase A2 (Moscatelli et al., 2006). In a SAR study for in-
hibitory activity on PGE2 production in peritoneal macrophages
(Takano-Ishikawa et al., 2006) a number of flavonoids showed
a potency comparable to that of aspirin, including quercetin,
resveratrol, apigenin, genistein, or kaempferol but curiously not
luteolin, fisetin, or morin, so that no obvious SAR is apparent.

Flavonoids are also inhibitors of the lipoxygenases, and the
SAR for 5-LO inhibition has been reviewed (Werz, 2007). The
catechol moiety is an important (but not essential) determinant
of activity, while methoxylation, the 3-OH, and the 2,3 double
bond have little impact and glycosylation normally lowers effi-
cacy. Another SAR study concluded that catechol was relevant
for other lipoxygenases (12- and 15-LO) (Vasquez-Martinez
et al., 2007). The human 15-LO-2 isoform is generally not af-
fected by flavonoids. In general, flavonoids such as quercetin are
more potent for LOX than for COX-2 inhibition (Deng et al.,
2007). As mentioned above, the effect is in either case poten-
tiated in some instances by additional phospholipase A2 block-
ade, as with quercetin, kaempferol, galangin, fisetin, and morin
(Lattig et al., 2007). Thus flavonols appear to exert the highest
activity.

Catechins are also able to inhibit gelatinase (MMP9) expres-
sion and activity, although the structural requirements differ
(Dell’agli et al., 2005). Thus OH groups diminish transcrip-
tional inhibition, while maximal hydroxylation favors enzyme
blockade (always in the low µM range). Curcumin shows a

notable effect, as it restores the corticoid sensitivity of oxidant
treated monocytes, which is typically lost in chronic obstruc-
tive pulmonary disease; this is achieved by augmenting histone
deacetylase-2 activity at low (30–200 nM) concentrations (Meja
et al., 2008).

Mechanism of Inhibition

As anticipated above, the effects of flavonoids on myeloid
cells have been largely connected with actions on the NF-κB
pathway. For instance, Hamalainen et al. (2007) studied the cor-
relation between NO/iNOS production and NF-κB inhibition,
finding that all active flavonoids that reduced iNOS also were
active on NF-κB: flavone, the isoflavones daidzein and genis-
tein, the flavonols isorhamnetin, kaempferol, and quercetin, the
flavanone naringenin, and the anthocyanin pelargonidin. In this
study genistein, kaempferol, quercetin, and daidzein also in-
hibited the activation of the signal transducer and activator of
transcription 1 (STAT-1), another important transcription factor
for iNOS. An important question then is how exactly NF-κB
is inhibited. Apigenin has been shown to inhibit IKK-γ (IKK
regulatory subunit) indirectly, resulting in lower p65 phospho-
rylation at Ser536 (Nicholas et al., 2007b), reportedly without
affecting other targets. Because apigenin has been regularly
found to inhibit IκB-α phosphorylation instead in the so-called
canonical NF-κB pathway, the authors stated that this was an
artifact of the use of cell lines rather than primary cultures.
However, our group found apigenin, together with quercetin,
luteolin, and diosmetin, to inhibit the NF-κB pathway at this
very step, although at relatively high concentrations (Comalada
et al., 2006). Thus it remains possible that this is a secondary
target of apigenin in primary cell cultures.

Other flavonoids have been shown to inhibit IKK-β (consid-
ered the main kinase IKK subunit in the canonical or classical
NF-κB pathway, directly upstream of IκB-α, see Fig. 3), such
as EGCG (Youn et al., 2006), butein, a tetrahydroxychalcone
(Pandey et al., 2007), morin (Manna et al., 2007), fisetin (Sung
et al., 2007), or gossypin (Kunnumakkara et al., 2007). In
fact, the most common approach for the assessment of the
status of the NF-κB pathway is to evaluate changes in IκB-α
phosphorylation or total IκB-α levels (since phosphorylation
targets IκB-α for proteasoma digestion), and virtually all
flavonoids are inhibitory at concentrations similar to those
causing the final effects, for instance with quercetin (Cho et al.,
2003), resveratrol (Ge et al., 2007), liquiritigenin (a flavanone,
(Kim et al., 2008b)), fisetin (Zheng et al., 2008), poncirin (a
flavanone glycoside, (Kim et al., 2007b)), or luteolin (Chen et
al., 2007a). In some cases, like that of quercetin 3-O-beta-(2”-
galloyl)-glucopyranoside, the target lies downstream of IκB-α
phosphorylation (Kim et al., 2007a). Other popular assays
are reporter systems and electrophoretic mobility shift assays,
although they look at endpoints rather than intermediate steps,
for instance with kaempferol and quercetin (Wang et al., 2006b),
naringin (Kanno et al., 2006), or jaceosidin (Kim et al., 2008c).
Because of the experimental approach applied in most studies,
it is likely that upstream targets of flavonoids have not been
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identified yet. For example, quercetin and luteolin suppress the
accumulation of lipid rafts that occurs as a first step in TNF and
TLR4 signaling in bone marrow derived macrophages but also
in other cell types (Kaneko et al., 2008b). Because activation
by phorbol ester is not inhibited, this may be a very important
and hitherto unrecognized target of flavonoids. Similarly,
resveratrol has been reported to inhibit MyD88-independent
but not Myd88-dependent signaling downstream of TLR3 and
TLR4 ligation in Raw264.7 cells (Youn et al., 2005). In this
study resveratrol inhibits NF-κB acting on TANK binding
kinase 1 (TBK1). ECGC has a similar effect (Youn et al., 2006).

On the other hand, NF-κB is also modulated by other sig-
naling pathways. This is the case of the p38, ERK, and JNK
MAP kinases. Flavonoids inhibit these kinases, although not
all compounds have the same profile. For instance, in THP-1
cells stimulated with S100B protein (RAGE agonist) quercetin
inhibits ERK and JNK, while catechin inhibits p38 and JNK
(Huang et al., 2006). In macrophages the activation of NF-
κB requires the phosphorylation of IKK-α and IKK-β by Akt.
Although this pathway has not received much attention, several
flavonoids have been shown to inhibit it directly or indirectly, by
actions on PI3K, located upstream of Akt, which is blocked by a
number of flavonoids (in fact, the prototypic inhibitor LY294002
is a partially saturated flavone) (Chen et al., 2007b; Lee et al.,
2006).

Heme oxygenase 1 (HO-1) is a relevant factor for flavonoid
inhibition of macrophage function, as demonstrated for chal-
cones (Abuarqoub et al., 2006; Sawle et al., 2008), EGC
(Ogborne et al., 2008), baicalein (Lin et al., 2007), and corilagin
(a tannin, (Zhao et al., 2008)). For chalcones, HO-1 induction
is favored by methoxylation in the 3,4,5- and 3′,4′,5′-positions
and depends on the PI3K pathway (Sawle et al., 2008). HO-1
overexpression may protect against oxidant-evoked apoptosis
(Lin et al., 2007).

It should be noted also that a recent study reports a complete
lack of effect of luteolin on IκB-α degradation or NF-κB binding
in BV-2 microglial cells (Jang et al., 2008b). In turn, luteolin
inhibited JNK phosphorylation and AP-1 activation in this study.
The reason for this descrepancy is unknown.

Of course, there are other relatively unexplored pathways.
Thus cyanidin-3-O-beta-glucoside may inhibit NF-κB by ac-
tivation of LXR-α (independently of PPAR-γ ) (Wang et al.,
2008). Luteolin inhibits AP-1 (Chen et al., 2007b).

Effects of Polyphenols on Dendritic Cells

Apigenin inhibits the phenotypical and functional maturation
of dendritic cells and inhibits LPS-evoked IL-12 but also CD80,
CD86, and MHCI/II expression in bone marrow dendritic cells
(BMDC), resulting in an impairment of the Th1 response but
not of the cell-mediated immune response (Yoon et al., 2006).
This was associated with inhibition of the effects of LPS on
ERK1/2, JNK, and p38 MAPK as well as the nuclear translo-
cation of the NF-κB p65 subunit. EGCG inhibits LPS-induced

IL-12 production but also increases TNF in BMDC, just as it
does in infected macrophages in vitro, as stated above (Rogers
et al., 2005). In human monocyte-derived dendritic cells EGCG
was in another study found to induce apoptosis, to downreg-
ulate CD83, CD80, CD11c, and MHC class II expression, to
inhibit endocytosis and to impair allogenic T cell stimulation,
i.e., it was unequivocally immunosuppresive (Yoneyama et al.,
2008). The flavanol silibinin also reduces CD80, CD86, MHC
class I/II, LPS-induced IL-12 production, and T cell stimulation
by BMDC, through the blockade of the MAPK/NF-κB path-
ways (Lee et al., 2007b). Similar findings have been reported
with morin (Li et al., 2006). Genistein inhibits IL-6 release in
monocyte derived dendritic cells acting on NF-κB but seem-
ingly operating through an upregulation of p53 rather than by
modulating the canonical pathway (Dijsselbloem et al., 2007).
Thus the limited evidence available points to an inhibition of
dendritic cell function.

Effect of Polyphenols on Osteoblasts/Osteoclasts

Biochanin A has differentiating and antiinflammatory effects
on osteoblasts (MC3T3-E1 cells), augmenting cell growth, al-
kaline phosphatase activity, collagen content, and osteocalcin
secretion and reducing H2O2 evoked TNF, IL-6, and NO produc-
tion, at least in part via estrogenic actions (Lee and Choi, 2005).
Luteolin also appears to enhance osteoblast differentiation and
to diminish inflammatory markers (TNF, IL-6, PGE2, NO), in a
strogen-dependent fashion (Choi, 2007). Myricetin is antiapop-
totic and induces differentiation in the MG-63 osteoblast cell
line, suggesting a possible role combating osteoporosis (Kuo,
2005). Whether this effect is mediated by estrogenic mecha-
nisms is unknown. Naringenin can inhibit human osteoclasto-
genesis from primary osteoclast precursor cells activated by re-
ceptor activator of nuclear factor-kappaB ligand (RANKL) and
macrophage colony-stimulating factor (M-CSF); it also inhibits
osteoclastic bone resorption and reduces inflammatory markers
(IL-23, IL-1α, MCP-1), showing no cell toxicity. It thus holds
promise as a therapeutic or preventive agent for bone-related
diseases such as periodontitis (La et al., 2009).

Rutin also inhibits osteoclastogenesis (from bone marrow-
derived macrophages) by NF-κB inhibition (Kyung et al.,
2008). Quercetin at low concentrations (0.01–1 µM), myricetin,
kaempferol, isorhamnetin, and curcumin also inhibit osteoclas-
togenesis (Yamaguchi et al., 2007). This is not surprising, given
that many of the factors that promote osteoclast formation do
so by activating this transcription factor. There may be also
complementariety of cellular targets in vivo. Thus baicalin in-
hibits RANKL expression in human periodontal ligament cells,
perhaps via reduction of PGE2 levels (Wang et al., 2006).

In an osteomyelitis model, osteoblasts were infected with
Staphylococcus aureus and EGCG was found to inhibit IL-
6 and RANKL production (Ishida et al., 2007). EGCG pro-
motes osteoclast apoptosis by caspase 3 activation (Nakagawa
et al., 2002). Further, EGCG inhibits endothelin 1 evoked IL-6
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production in the osteoblast-like MC3T3-E1 cells via ERK
and Raf1 (Tokuda et al., 2007). Icariin, a prenylated flavonol
glycoside, inhibits osteoclastogenesis and bone resorption in
vitro (Chen et al., 2007). Taken together, these studies indicate
that flavonoids exert antiosteoporotic effects due to anti-NF-κB
and/or estrogenic actions.

Effects of Polyphenols on Lymphocytes

There is comparatively little information on the effects of
flavonoids on lymphocytes, and most of the studies focus on
cancer cell lines rather than on immune modulation. Only the
latter will be considered here.

Rutin has been found to be antiproliferative and proapop-
totic when splenocytes or thymocytes are stimulated with poke-
weed mitogen or concanavalin A, but antiapoptotic and aug-
menting IL-10 under LPS treatment (Roseghini et al., 2007).
This suggests differential effects on T- and B-lymphocytes, but
the results are too preliminary to reach further conclusions.
This study is remarkable because it is one of the few examples
of in vitro activity of a flavonoid glycoside. Apigenin inhibits
NFAT DNA binding, resulting in lower IL-4 release, in EL4 T
thymoma cells and in primary lymph node cells (Park et al.,
2006b). Conversely, biochanin A, genistein, and the metabo-
lite p-ethylphenol enhance IL-4 production via modulation of
NFAT and PKC-p38-AP1 (Park et al., 2006a). This suggests
that flavones and isoflavones may exert opposite actions on
Th2 driven immune responses. In addition, the flavonols fisetin,
kaempferol, and morin, the flavones apigenin and luteolin, and
the chalcone butein all inhibit IL-4 effects via JAK3/STAT6 in
hematopoietic cell lines (Cortes et al., 2007).

The flavones cirsilineol, 6-methoxytricin, and apigenin sig-
nificantly inhibit T cell proliferation and activation (Yin et al.,
2008). Apigenin reportedly exerts antiproliferative actions on
mouse primary T cells without toxicity and it also opposes cor-
ticoid evoked apoptosis (Liang et al., 2008). Similarly, baicalin
(another glycoside) inhibits cytokine synthesis in splenocytes in
the micromolar range (Liu et al., 2007b). Morin reduces spleno-
cyte activation by concanavalin A and reduces CD69 expression
(Zang et al., 2007). Conversely centaureidin, a 3-methylated
flavonol, enhances IFN-γ expression via NFAT and NF-κB in
Jurkat cells at 2.5 µM (Chang et al., 2007). (-)-epicatechin in-
hibits CD25 and IL-2 expression by activated EL4.BU.OU6
cells, which have a T lymphocyte phenotype (Ramiro et al.,
2005). EGCG may induce an anergic state of alloreactive T
cells by either weakening of antigen signaling or blockade of
costimulatory signals (Kim et al., 2007).

Resveratrol and curcumin have both been shown (Sharma
et al., 2007a) to inhibit splenocyte proliferation in the micro-
molar range, with lower secretion of cytokines, although with
little selectivity. These changes have been related to modula-
tion in the expression of CD28 (curcumin only) and CTLA-
4. Treg cells are not altered in either case. Neither compound
seems to be cytotoxic based on 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyl tetrazolium bromide (MTT) assays. However, an-
other study showed that resveratrol is toxic to T cells in the low
micromolar range (Radkar et al., 2007). In fact, resveratrol has
been found to trigger high levels of apoptosis in activated T cells
and to a lesser extent in unactivated T cells, mediated through
activation of aryl hydrocarbon receptor (AhR) and estrogen re-
ceptor (ER) (Singh et al., 2007b). Resveratrol may additionally
hamper lymphocyte migration to inflammatory sites by inhibit-
ing phosphatidylinositol 4-kinase and limiting matrix adhesion
(Srivastava et al., 2005). Yet another study reported that resver-
atrol is predominantly immunostimulant, since it inhibits Treg
in vitro and in vivo in splenocytes and enhances IFN-γ express-
ing CD8+ lymph node cells obtained from tumor bearing mice
(Yang et al., 2008). Therefore, there is not a clear image of the
real effect of this compound.

Astilbin (3,3′,4′,5,7-pentahydroxyflavanone, a flavanol) in-
hibits cytokine production by activated but not quiescent Jurkat
cells via apoptosis (Yan and Xu, 2001). Astilbin, and a number
of derivatives, also inhibit the single-mixed lymphocyte reaction
and enhances splenocyte apoptosis (Yang et al., 2006). This ac-
tivity is affected by the position at which the sugar is linked to
the flavone, the presence of carbonyl on C-4 and of the phenol
hydroxyl group in A or B ring, with the presence of a B ring
being unfavorable and the double bond at C2 C3 irrelevant.
Another flavanol, silibinin (constituent of sylimarin), inhibits
cytokine production by splenocytes (Min et al., 2007b).

Finally, to our knowledge there is only one SAR study,
carried out by our group on rat splenocytes (Lopez-Posadas
et al., 2008) and which confirmed the antiproliferative effect of
flavonoids (at 50 µM). In addition, apigenin, luteolin, genis-
tein, and quercetin had substantial cytotoxic/proapoptotic ef-
fects. These effects are greatly diminished at 1 µM, and the
quercetin metabolite isorhamnetin was generally less active,
suggesting that biotransformation accounts for the far less dra-
matic effects observed after in vivo administration even by the
parenteral route. Interestingly, unconjugated genistein but not
genistin has been reported to produce thymic atrophy and lym-
phocytopenia in rats at doses of 2.0 or 20 mg/kg, i.e., within
the “therapeutic” range. Evidently, there is a shortage of infor-
mation on the lymphocyte actions of flavonoids, although the
available evidence suggests that they have significant effects on
activation and even cell viability in vitro, which probably do not
occur in vivo, or do so in a greatly attenuated fashion.

Effects of Polyphenols on Mast Cells

Quercetin inhibits IL-1 induced IL-6 production in HMC-1
(human leukemic mast cells) and human umbilical cord blood-
derived cultured mast cells via p38 and PKC-ζ (Kandere-
Grzybowska et al., 2006). Luteolin inhibits mast cell activ-
ity dramatically (Theoharides et al., 2007). Baicalein inhibits
the production of cytokines, such as IL-6, IL-8, and MCP-1,
by HMC-1 cells stimulated with IL-1β or TNF, via block-
ade of IκB-α phosphorylation (Hsieh et al., 2007a). Ginkgetin
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(a biflavone) and ochnaflavone inhibit both COX2 and 5-LO as
well as cell degranulation in bone marrow-derived mast cells
(Son et al., 2005; 2006). Hesperidin also inhibits cytokines, as
well as hypoxia inducible factor (HIF)-1α expression and the
subsequent production of VEGF, acting at least in part via ERK
(Choi et al., 2007). Quercetin has similar effects, operating via
p38 and NF-κB (Min et al., 2007c).

In the HMC-1 cell line EGCG has been found to reduce
the expression of two integrins (α5 and β3) and a chemokine
(MCP-1), resulting in a lower adhesion of mast cells to extra-
cellular matrix and reduced monocyte recruitment, without cell
toxicity (Melgarejo et al., 2007). EGCG (100 µM) inhibits the
production of TNF, IL-6, and IL-8 elicited by PMA+A23187
in HMC-1 cells (Shin et al., 2007). The mechanism involves
the lowering of the intracellular Ca2+ level, and of ERK1/2 and
NF-κB activation. Fisetin has very similar effects, although JNK
and p38 appear to be also implicated (Park et al., 2007). Resver-
atrol inhibits mast cell degranulation, apparently via PLC-γ 1
and ERK (Koo et al., 2006). Therefore, structurally unrelated
flavonoids have profound depressing effects on mast cell func-
tion, working chiefly via interference with the MAP kinases and
NF-κB pathways.

Effects of Polyphenols on Natural Killer Cells

Curcumin reverts the capacity of tumors to downregulate
natural killer (NK) cell activity via exosome secretion (Zhang
et al., 2007). There is some evidence that flavonoids may activate
NK cells in vivo (Guruvayoorappan and Kuttan 2007a; Guo
et al., 2007b; Beaumont et al., 2008).

Effects of Polyphenols on Eosinophils

Nobiletin promotes eosinophil apoptosis via upregulation of
Fas, a mechanism related to the antiasthmatic effect of the
flavonoid in rats (Wu et al., 2006b). Resveratrol, conversely,
does not evoke apoptosis in human eosinophils but inhibits the
production of eosinophil peroxidase, LTC4, and CD11b, CD62L
shedding, and chemotaxis, actions that correlate with p38 and
ERK inhibition (Tan and Lim, 2008). Genistein inhibits LTC4

synthesis via p38 modulation (Rogerio et al., 2007b). Hence the
effect on eosinophils seems to be also inhibitory.

Effects of Polyphenols on Basophils

Quercetin, fisetin, apigenin, and flavone plus chalcone and a
number of polymethoxyflavones, but not taxifolin, hesperetin, or
flavonoid glycosides, inhibit basophil degranulation (Itoh et al.,
2008; Middleton and Drzewiecki, 1984). The flavonoid related
compounds thunberginol A and B inhibit cytokine production
in a basophil cell line, and their impact on the gene expression
profile was comparable to that of luteolin (Matsuda et al., 2008).

Effects of Polyphenols on Neutrophils

Moreira et al. (2007) attempted to approach the SAR of
flavonoids for inhibition of oxidative metabolism in poly-
morphonuclear leukocytes (PMN) by studying quercetin,
kaempferol, myricetin, and galangin. The activity appeared to
depend mostly on lipophilicity, and cell viability and phagocy-
tosis were not affected. Quercetin is the most active of the four
toward neutrophil degranulation and inhibition of elastase se-
cretion (Kanashiro et al., 2007). Quercetin (40 µM) also inhibits
IL-6 secretion (Liu et al., 2005a), counteracts the antiapoptotic
effect of LPS, reverts the downregulation of CD62L, and reduces
CD11b/CD18 expression and superoxide generation in stimu-
lated neutrophils (Liu et al., 2005b). Quercetin-3-glucuronid,
but not quercetin or quercetin-3′-sulfate, reduces the intracellu-
lar Ca2+ increase that is observed under neutrophil stimulation
(Suri et al., 2008). CD62L was not affected in this study, con-
tradicting the previous one mentioned above. Baicalin inhibits
IL-8 evoked MMP-8 secretion by human primary neutrophils
(Zhu et al., 2007). Resveratrol inhibits PMN by radical scaveng-
ing and direct myeloperoxidase inhibition (Kohnen et al., 2007).
In fact, several flavonoids cause irreversible inactivation of this
enzyme (responsible for the generation of the strong oxidant
HClO) as they are oxidized by it, the activity being favored by
the number of hydroxyl groups in the B ring of the flavonoids,
the C2 C3 double bond and the presence of a free hydroxyl
m-phenol group in the A ring, as well as general hydrophobicity
(Meotti et al., 2008; Shiba et al., 2008). This does not neces-
sarily translate into a reduction of HOCl output, however. Cur-
cumin and quercetin also inhibit crystal activated PMN (Jackson
et al., 2006b). Thus, PMN are a well established cellular target
of flavonoids, although the mechanims are ill defined.

Effects of Polyphenols on Epithelial Cells

Intestinal Epithelial Cells

Flavonoids have been shown to be uptaken by Caco-2 as long
as they are not glycosylated (with the exception of myricetin),
conferring antioxidant protection (Yokomizo and Moriwaki,
2006). Isoflavones have been independently shown to exert
similar protective effects (Wijeratne and Cuppett, 2007). Inter-
estingly, flavonoids have been described to modulate bacterial
growth in a coculture with Caco-2 cells, suggesting a potential
in vivo effect on intestinal microbiota (Parkar et al., 2008).

Quercetin (∼40 µM) but not its metabolites has been reported
to inhibit IP-10 and MIP-2 expression in intestinal epithelial
cells (Mode K cells) by Akt and atypical NF-κB modulation,
i.e., by inhibition of phospho-RelA (p65) recruitment to the
IP-10 and MIP-2 gene promoters and of histone acetyl trans-
ferase activity (Ruiz et al., 2007b). Apigenin, luteolin, genis-
tein, 3′-hydroxy-flavone, and flavone have been compared in
the same cell line (Ruiz and Haller, 2006). All inhibited IP-10
similarly, except flavone, but via different mechanisms. Thus
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3′-hydroxy-flavone acts via classical NF-κB inhibition, while
apigenin, luteolin, and 3′-hydroxy-flavone all block Akt, and
genistein inhibits IP-10 via NF-κB, IRF, and Akt independent
mechanisms. It should be remembered that Akt stimulates the
NF-κB signaling pathway at various levels including IKK-β ac-
tivity, NF-κB DNA binding activity, and NF-κB transcriptional
activity.

In Caco-2 cells chrysin (50 µM) blocks NF-κB by inhibiting
IκB-α phosphorylation, while genistein and resveratrol have the
opposite effect (Romier et al., 2008). However, there is a bad
correlation between IκB-α phosphorylation or IL-8 secretion or
other endpoints, indicating unidentified signaling intermediates.
For example, chrysin, which had the most marked NF-κB in-
hibitory activity, barely affected IL-8, while genistein was a very
effective blocker of cytokine secretion. None of the compounds
tested affected proliferation or viability substantially. Remark-
ably, quercetin was without effect. No SAR could be ventured.
In IEC18 cells, a nontumor cell line, luteolin blocks ICAM1
expression by inhibiting IKK-β directly (Kim and Jobin 2005).
Luteolin also sensitizes colonic epithelial HT29 cells to TNF-
induced apoptosis, caspase 3 activation and DNA fragmentation,
and it additionally reduces TNF-induced C-IAP1 (inhibitor of
apoptosis), C-IAP2, and COX-2 gene expression via NF-κB
(Karrasch et al., 2007b).

One interesting target for flavonoids in intestinal epithelial
cells is hypoxia-inducible factor-1 (HIF-1). Quercetin activates
HIF-1 in HCT116 and SW620 cells, resulting in upregulation
of VEGF and angiogenesis (Jeon et al., 2007). Although not
tested in epithelial cells, baicalein, luteolin, and fisetin, but
not kaempferol, taxifolin, or rutin, can induce HIF-1 as well
(Triantafyllou et al., 2008).

2′,4′,6′-tris(methoxymethoxy) chalcone (TMMC) inhibits
IL-8 and MPP-7 production in HT29 cells (Lee et al., 2007d).
The mechanism seems to be related to the induction of HO-
1, subsequent to stimulation of ERK/p38 and NRF2 (nuclear
respiratory factor-2). TMMC also inhibits TNF-induced NF-
κB activation directly (IκB-α phosphorylation) and indirectly
(via HO-1). EGCG (6–50 µM) blocks IL-8, MIP-3α, and PGE2

release in activated T84 and HT29 cells, and it reduces the
mRNA levels of IL-8, TNF, MIP-3α, MIP-2, GRO-α, GRO-γ ,
and COX-2 by 40–85% in both cell lines in basal conditions
(Porath et al., 2005).

Delphinidin, an anthocyanidin, exerts classical NF-κB in-
hibitory effects in HCT116 cells (resulting in cycle arrest and
apoptosis) (Yun et al., 2009). Resveratrol produces apoptosis
in HT29 cells, perhaps via endoplasmic reticulum stress (Park
et al., 2007). Quercetin does not produce apoptosis in Caco-2
cells; instead claudin 4 is upregulated, resulting in higher ep-
ithelial resistance (Amasheh et al., 2008). In Caco-2 cells, hex-
americ procyanidin, but not the dimer B2 or (−)-epicatechin,
inhibits the TNF response with accompanying inhibition of NF-
κB, an effect that might be due to interference with receptor
binding (Erlejman et al., 2008). In HCT116 cells curcumin
acts on NOD2, inhibiting signal transduction by preventing
oligomerization (Huang et al., 2008). Butein inhibits IL-8 and

MMP-7 production in HT29 cells by blockade of p38 and Akt-
osteopontin-IκB-α (Lee et al., 2007b).

While flavonoids appear to generally inhibit the immune
function of intestinal epithelial cells, there are some conflict-
ing reports that suggest that the scenario may differ significantly
from this simple picture. Signaling pathways are also more com-
plex and diverse than those observed for immune cells.

Airway Epithelial Cells

In the airway epithelium quercetin inhibits Akt, PI3K, NF-
κB, IL-8, and chemokine secretion, involving transcriptional
and post-transcriptional mechanisms (Nanua et al., 2006).
Quercetin-3′-sulfate (25 µM), and also resveratrol (>50 µM),
inhibit IL-6 and IL-8 in A549 lung alveolar type II pneumocyte
cells (Gauliard et al., 2008). Both quercetin and resveratrol in-
hibit iNOS, GM-CSF, and IL-8 in human primary airway epithe-
lial cells independently of acetylation of core histones, possibly
via NF-κB, AP-1 and the cAMP response element (Donnelly
et al., 2004; Rahman et al., 2006). Several flavonoids (myricetin,
flavone, tricetin, gossypetin, delphinidin, quercetin, and fisetin)
have been identified as significant inhibitors of PARP1; thus
quercetin, flavone, fisetin, and tricetin reduce poly(ADP-ribose)
polymers and thereby lower IL-8 in airway epithelial cells
(Geraets et al., 2007a; 2007b). Baicalin and wogonin, but, re-
markably, not baicalein, inhibit ATP-evoked mucin production
in primary hamster tracheal surface epithelial cells, an effect
that conceivably might help clear the airway in asthma (Heo
et al., 2007). Luteolin inhibits NF-κB but activates the c-Jun
N-terminal kinase (JNK) to increase apoptosis induced by TNF
in human airway epithelial cells, by inhibition of superoxide
dismutase and early oxidative stress (Ju et al., 2007). This is a
rare occurrence of flavonoid-evoked MAPK activation and its
significance is unclear. Wogonin inhibits COX-2 expression in
A549 cells via lowered c-Jun expression and AP-1 activation
(Chen et al., 2008a). Hesperidin inhibits IL-8, ICAM-1, and
VCAM-1 expression in A549 cells via NF-κB and AP-1 (Yeh
et al., 2007b). Similarly, EGCG, ECG and to a lower extent
EGC and EC, but not catechin, block IL-8 production in these
cells (Kim et al., 2006c). EGCG also modulates prostaglandin
synthesis via EGR-1/Erk, resulting in upregulation of COX-2
and prostaglandin E synthase (Moon et al., 2007). This is
therefore an atypical effect as well.

Silibinin inhibits multiple pathways (STAT1/3, Erk, p38,
AP-1, and NF-κB) leading to iNOS upregulation in A549
cells, independently of Akt and actually downregulating HIF-1α

(Chittezhath et al., 2008). Resveratrol augments TGF-β2 in air-
way epithelial cells, resulting in Smad autocrine regulation, a
possible antiinflammatory mechanism in this cell type (Suenaga
et al., 2008). (+)-Vitisin A (a resveratrol tetramer) is more ef-
fective than resveratrol itself for inhibition of influenza virus
infection-evoked RANTES secretion in A549 cells, acting on
Akt and STAT1 (Huang et al., 2008a). It is of interest for chronic
obstructive pulmonary disease that resveratrol helps airway cells
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to combat cigarette smoke oxidative stress by rescuing Nrf2
from the cytoplasma (where it is confined by the effect of smoke
components) to the nucleus, leading to greater antioxidant de-
fense (Kode et al., 2008). In normal human nasal epithelial cells
EGCG inhibits MUC5AC synthesis and secretion, via suppres-
sion of the phosphorylation of ERK MAP kinase, MSK1, and
the transcription factor cAMP response element-binding pro-
tein (Kim et al., 2008). This may be helpful in allergic rhinitis.
Curcumin inhibits NF-κB, IL-8 release, COX-2, and HO-1 ex-
pression in vitro in the airway epithelium (Biswas et al., 2005;
Shishodia et al., 2003). Therefore the overall effect of flavonoids
is to inhibit proinflammatory cytokines, NO, and prostaglandins
in airway epithelial cells, mostly by MAPK and NF-κB interfer-
ence. In addition, there is some evidence that mucus production
may be lightened by flavonoids.

Other Epithelial Cells

Some flavonoids have been tested in other epithelial cell
types, although in a much less extensive way. In addition, many
studies focus on antitumoral rather than antiinflammatory ac-
tivity. As a result, it is difficult to extract general conclusions.
For instance, in normal prostate epithelial cells curcumin and
resveratrol inhibit COX-2, IL-6 and IL-8 production by activa-
tion of mitogen-activated protein kinase phosphatase-5 (MKP5)
and the downstream inhibition of p38 (Nonn et al., 2007). In
human metastatic prostate PC3-M cells apigenin markedly de-
creases HIF-1α expression under both normoxic and hypoxic
conditions (HIF-1α is upregulated by hypoxia) and the down-
stream induction of VEGF, via inhibition of the I3K/Akt/GSK-3
pathway (Mirzoeva et al., 2008). This finding, of course, has
implications for the possible modulation of inflammatory medi-
ators, but the aim of this study was actually to characterize the
chemopreventive effect of the flavonoid.

In HepG2 hepatoblastoma cells isoorientin (luteolin 6-C-
beta-D-glucoside) enhances Nrf2 via PI3K and thereby protects
against oxidative stress (Lim et al., 2007), while in Chang hep-
atic cells quercetin, kaempferol, taxifolin, and, to a lower ex-
tent, apigenin, protect against cytokine-induced oxidative stress
(Crespo et al., 2008a).

In human lens epithelial (HLE-B3) cells genistein inhibits
aldose reductase and TGF-β production, resulting in less lens
opacity under hyperglycemic conditions (Kim et al., 2008b).
EGCG enhances the resistance of human lens epithelial cells
against UV damage (Heo et al., 2008). Similarly, quercetin re-
verts the lowering of collagen I expression induced by oxidative
stress and UV light acting on Jnk, an action considered protec-
tive against cataracts (Jiang et al., 2008). EGCG also protects
against oxidative stress in HLEB-3 cells, probably by actions
on ERK, p38 MAPK, and Akt (Yao et al., 2008). Quercetin
protects against dimethyl sulfoxide oxidative stress at low (0.1
µM) concentrations, while it is proapoptotic at very high levels
(Cao et al., 2007).

In epidermal epithelial JB6 P+ cells myricetin inhibits COX2
via multiple pathways (Jung et al., 2008). Resveratrol appears to

block NF-κB classical activation pathway in mouse epidermis
(Cichocki et al., 2008). Similarly, procyanidin B2 inhibits COX2
expression by AP1, NF-κB, MEK, and Erk blockade (Kang
et al., 2008b). Quercetin (Lee et al., 2008a), EGCG (Kundu
and Surh 2007), and myricetin (Lee et al., 2007) have similar
actions. However, these effects were studied in the context of
chemoprevention using stimuli such as phorbol esters. Such
studies abound specially with mammary epithelial cells (Lin
et al., 2008; Na et al., 2008).

Effect of Polyphenols on Endothelial Cells

Many studies have focused on the effects of flavonoids on en-
dothelial cells in vitro, especially measuring adhesion molecules
and cellular adhesion. This is a relevant target because all
leukocytes ultimately access the inflammatory sites by adhe-
sion mechanisms and thus it is a proximal step for intervention.
In this regard, quercetin and resveratrol suppress ICAM1 ex-
pression in endothelial cells, acting on Rac dependent pathways
via inhibition of STAT3 Tyr705 phosphorylation and upregula-
tion of eNOS derived NO (Wung et al., 2005). Kaempferol, and
to a lesser extent quercetin, inhibit cytokine induced ICAM1,
VCAM1, and E-selectin production, while iNOS and COX2 are
more sensitive to quercetin (Crespo et al., 2008b). These ef-
fects are due to an inhibition of NF-κB and AP-1. In another
study quercetin was reported to inhibit VCAM-1, ICAM-1, and
MCP-1 expression in endothelial cells in what were referred to
as “physiological” concentrations (2–10 µM), while quercetin
metabolites (quercetin 3′-sulfate, quercetin 3-glucuronide, and
3′-methylquercetin 3-glucuronide) had a much lower effect
(Tribolo et al., 2008). Using homocysteine to produce endothe-
lial injury, quercetin (starting at 6.25 µM) was found to exert
significant protection and to reduce NF-κB activation and en-
dothelin release (Lin et al., 2007).

In another study dealing with flavonoid modulation of THP-1
adherence to oxLDL activated human umbilical vein endothelial
cells (HUVEC), luteolin and apigenin (25 µM) but surprisingly
not quercetin were found to be active inhibitors (Jeong et al.,
2007). Other inactive flavonoids include EGCG, (+)catechin,
rutin, naringin, naringenin, hesperidin, and hesperetin. The
mechanism involves the downregulation of VCAM1 and E-
selectin. However, in the same study quercetin and luteolin did
inhibit the endothelial uptake of oxLDL, via downregulation
of its receptor LOX1 (Jeong et al., 2007). Whether the fail-
ure of quercetin to affect cell adhesion is inducer specific or
due to some other factor is unknown. Another beneficial activ-
ity of quercetin appears to be the increase on t-PA expression
via p38/Sp1 (Pan et al., 2008). The aforementioned effect of
apigenin on VCAM1 and E-selectin, and also on ICAM1, in
HUVEC was confirmed by Lee et al. (2007a). Other flavone
derivatives also interfere with adhesion of THP-1 monocytic
cells to HUVEC (Kwon et al., 2005a); thus methoxyflavone
(3′,4′-dimethoxy-7-hydroxyflavone, ≥25 µM) blocks VCAM-1
(but not E-selectin) expression in activated HUVEC, while 2′,3′,
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7-trihydroxyflavone (hydroxyflavone) has a minimal effect. 6,8-
di-C-glucosylapigenin and 6,8-di-C-glucosyldiosmetin also in-
hibit ICAM1 expression in these cells (Miyake et al., 2007). The
proinflammatory effect of hyperglycemia includes an induction
of ICAM1 and MCP-1 and increased cell adhesion; these ac-
tions are counteracted by low concentrations (0.1–1 µM) of the
flavone scutellarin in human endothelial cells (ECV304 cells)
via NF-κB (Luo et al., 2008). Baicalein has a somewhat dif-
ferent effect on rat heart endothelial cells, in which it enhances
rather than inhibits adhesion, but it also reduces cell migration,
possibly by up-regulation of the integrins (α5β1 and αvβ3) and
vinculin and by promotion of actin reorganization and focal
adhesion contact formation (Hsieh et al., 2007b).

Lotito and Frei (2006) investigated the structural require-
ments for inhibition of adhesion molecules in human aortic
endothelial cells (under TNF stimulation). The 5,7-dihydroxyl
substitution of the flavonoid A-ring and the 2,3-double bond
and the 4-keto group of the C-ring were the main structural
requirements for inhibition of adhesion molecule expression.
Hence the ideal structure differs again from that for antioxidant
activity. Apigenin, chrysin, galangin, kaempferol, and quercetin
were active in this study, reducing E-selectin and ICAM-1 but
not VCAM-1, whereas flavone, chromone, naringenin, and (-
)-epicatechin were ineffective. Furthermore, in vitro modeled
first pass metabolism diminished all activities greatly, suggest-
ing that the efficacy in vivo may be severely limited by this
factor. Nevertheless, the quercetin metabolite isorhamnetin is
able to prevent oxLDL evoked endothelial damage in EA.hy926
cells via inhibition of lectin-like ox-LDL receptor-1 upregula-
tion, interference with ox-LDL-mediated intracellular signaling
pathways (p38 activation, NF-κB nuclear translocation, eNOS
expression), and it is the antioxidant activity (Bao and Lou,
2006). Interestingly icariin, a flavonol, stimulates eNOS and
NO production via NF-κB activation in these same cells (Xu
and Huang, 2007).

Isoflavones exert distinct actions on the endothelium due to
their hormonal properties. Thus daidzein and genistein mod-
ulate PGI2 production and upregulate COX2 via activation of
the estrogen receptor (Hermenegildo et al., 2005). In addition,
genistein but not daidzein protects against oxidative injury by
activation of Nrf1 and the downstream induction of glutathione
peroxidase (Hernandez-Montes et al., 2006). Nrf2 was also ac-
tivated in this study but it is not related with the protective
effect. In line with these studies, in brain microvascular en-
dothelial cells genistein reduces cytokine-induced production
of TNF, IL-1β, MCP-1, IL-8, and ICAM-1, as well as leuko-
cyte transmigration (Lee and Lee, 2008). Both genistein and
daidzein inhibit LPS-induced upregulation of VCAM-1 and
ICAM-1 in cultured human endothelial cells by stabilization
(thereby inhibition) of NF-κB (Simoncini et al., 2008). In addi-
tion, genistein (1–10 µM) increases eNOS expression and NO
production independently of the estrogen receptor in aorta and
umbilical endothelial cells, an action similar to that described
for icariin, quercetin, hesperetin, or resveratrol (Si and Liu,
2008).

Hesperidin and hesperidin methyl chalcone lower VCAM-1
levels and monocyte adhesion, but not ICAM-1 expression, in
TNF-stimulated HUVEC, linked to inhibition of Akt phospho-
rylation but not of Erk (which is key for the regulation of ICAM-
1) (Nizamutdinova et al., 2008). Hesperetin but not naringenin
increases eNOS/NO although both activate estrogen receptors,
perhaps because ERα may be more relevant for this particu-
lar effect (Liu et al., 2008b). Conversely, hesperidin inhibits
endothelin 1 secretion and increases NO release under cyclic
strain conditions by lowering Erk phosphorylation and enhanc-
ing Akt and eNOS activity (Chiou et al., 2008). Thus the effects
of hesperetin/hesperidin seem to depend on the experimental
conditions, although they are antiinflammatory.

Primary bovine aortic endothelial endothelial cells are pro-
tected from oxidative stress injury by resveratrol, which in-
creases GSH decisively (Brito et al., 2006). Resveratrol (∼1 µM
or less) also reduces the endothelial response to TNF, including
iNOS, IL-6, bone morphogenetic protein-2, ICAM-1, VCAM,
and THP-1 adhesion, in human coronary arterial endothelial
cells, via NF-κB inhibition (Csiszar et al., 2006). Resveratrol
also reduces fraktalkine production in HUVEC as well as THP-
1 adhesion, acting again via NF-κB and additionally Sp1 (Moon
et al., 2006). By activation of PI3K/Akt resveratrol leads to re-
duced senescence and increased proliferation and migration of
endothelial precursor cells (Xia et al., 2008; Wang et al., 2007a).
Resveratrol protects the endothelium from smoke-evoked ox-
idative damage, inflammatory gene expression, NF-κB activa-
tion, and apoptosis via Sirt-1, i.e., the well known mediator
of prolonged survival of this polyphenol (Csiszar et al., 2008).
Resveratrol at nanomolar concentrations augments NO by en-
hancing the ERα-Cav-1-c-SRC interaction (Klinge et al., 2008).
In fact, even low concentrations (0.1 µM) of either resveratrol
or quercetin are capable of modulating gene expression in en-
dothelial cells (Nicholson et al., 2008).

EGCG (but not other catechins) reduces HUVEC endothelial
exocytosis, the initial step in leukocyte trafficking and vascu-
lar inflammation, by enhancing Akt and eNOS phosphorylation,
leading to decreased adhesiveness (Yamakuchi et al., 2008). Ac-
tivation of phosphatidylinositol 3-kinase, Akt, and eNOS leads
to vasodilator effects (Kim et al., 2007a). In another study epicat-
echin also augments NO in HUVEC by scavenging superoxide,
but it also inhibits NADPH oxidase indirectly, by way of its
methylated metabolites (Steffen et al., 2007). However, EGCG
has also been reported to lower rather than enhance Akt acti-
vation in TNF treated bovine coronary artery endothelial cells,
resulting in decreased MCP-1 expression (Ahn et al., 2008).
The former study was carried out in basal conditions, perhaps
explaining this discrepancy. In human endothelial ECV304 cells
EGCG also inhibits MCP-1 but acting via the p38 and NF-κB
pathways (Hong et al., 2007). The effect of EGCG on adhesion
molecule expression (VCAM1, ICAM1) extends to angiotensin
II stimulation and takes place via inhibition of p38/Erk (Chae
et al., 2007), although Erk appears to be relevant for ICAM-1
only. EGCG protects against hypoxic lesions (Yu et al., 2007)
and reduces oxLDL-evoked oxidative stress and apoptosis in
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endothelial cells, acting via Jak2/Jnk and p53, an effect shared
by hesperetin (Choi et al., 2008). EGCG inhibits angiogenesis
by blockade of PI3/Akt and Erk in HUVEC, augmenting FOXO
activation (Shankar et al., 2008).

Isoliquiritigenin (4,2′,4′-trihydroxychalcone) inhibits neu-
trophil adhesion to human primary endothelial cells through
actions on VCAM1, ICAM1, E-selectin, and oxidative stress in
the endothelium, associated with inhibition of IκB-α phospho-
rylation (Kumar et al., 2007). Anthocyanin prevents the inflam-
matory response to CD40 by redistribution of membrane choles-
terol, preventing TRAF2 translocation to lipid rafts and the
downstream activation of NF-κB (Xia et al., 2007). Anthocyani-
dins (cyanidin-3-O-beta-glucoside (Cy-3-g) and peonidin-3-O-
beta-glucoside (Pn-3-g)) inhibit p38/Jnk activation secondary to
CD40 ligation, thus inhibiting HUVEC and producing apoptosis
and reduced MMP-1 and MMP-9 secretion (Xia et al., 2009).
Similarly, anthocyanins have been found to reduce NF-κB and
ICAM1, VCAM1, and COX2 expression in vitro, protecting
against ischaemia-reperfusion injury (Kim et al., 2006a). Lic-
ochalcone E is proapoptotic by inhibiting NF-κB and by shifting
the Bax/Bcl-2 ratio (Chang et al., 2007). Cyanidin-3-O-beta-
glucoside is another flavonoid that can increase eNOS and HO-
1, although at high concentrations it also augments iNOS and
oxidative stress (Sorrenti et al., 2007). Chalcone inhibits ICAM1
expression and monocyte adhesion acting by abrogation of ac-
tivation of STAT3 and NF-κB; curcumin has similar effects. In
contrast, quercetin and cyanidin were essentially ineffective in
this study (Liu et al., 2007a).

Of note, flavonoids may be toxic to HUVEC, according
to one study, in the order (LD50 in µM): myricetin (100)
> quercetin (50) > kaempferol (20) > genistein (10) (Kim
et al., 2006). However, most articles do not appreciate any sig-
nificant toxicity of flavonoids toward endothelial cells. These
flavonoids exhibited antiagiogenic properties under VEGF stim-
ulation in the same study (Kim et al., 2006). On the other
hand, the effect of chrysin on angiogenesis has been stud-
ied in the chicken chorioallantoic membrane model, where
it was found to reduce LPS-induced VEGF and VEGFR-
2 (KDR) but not VEGFR-1 (Flt-1) expression and to inter-
fere with the IL-6 pathway, at low concentrations (Lin et al.,
2006).

There is a SAR study of chalcones as VCAM1 inhibitors
in endothelial cells (Meng et al., 2007) for possible applica-
tion in asthma. Lipophilicity was found to be important, and
the pharmacophore was identified as the chalcone alpha, beta-
unsaturated ketone moiety; the maximum potency was in the
high submicromolar range. Therefore, flavonoids clearly have
a predominant inhibitory effect on adhesion molecules that im-
pairs monocyte adhesion, and the prevailing mechanism appears
to be interference with the NF-κB and MAPK pathways, just
like in other cell types. In addition, at least some flavonoids favor
eNOS function and NO production in basal conditions, actions
that also inhibit cell adhesion and also may serve vasodilator
effects.

Effect of Polyphenols on Keratinocytes

EGCG attenuates UV induced IL-6 secretion, apoptosis and
NF-κB activation in keratinocytes (Xia et al., 2005). EGC also
protects against UVB apoptosis and oxidative stress (Huang
et al., 2007a). EGCG has in addition differentiating effects on
keratinocytes via activation of the nPKC, Ras, MEKK1, MEK3,
and the p38δ-ERK1/2 signaling cascade, which leads to in-
creased AP-1 and C/EBP transcription factor expression and
transcriptional activity (Balasubramanian and Eckert, 2007);
apigenin and curcumin have opposite effects, and curcumin is
additionally proapoptotic. Kaempferol modulates UV-B driven
gene expression in a human keratinocyte cell line, HaCaT cells.
The analysis shows that the transcription factors putatively in-
volved are c-REL, SAP-1, Ahr-ARNT, Nrf-2, Elk-1, SPI-B, and
NF-κB (Kang et al., 2008a). Wogonin induces HO-1 in ker-
atinocytes and thereby inhibits CCL17 expression specifically
(Lee et al., 2007). In keratinocytes stimulated with serum of
Behcet’s disease patients biochanin A is antiinflammatory, re-
ducing IL-8 secretion (Kalayciyan et al., 2007). Anthocyanidins
inhibit UV-B-induced COX2 expression and PGE2 synthesis
through an NF-κB dependent pathway and the regulation of
the PI3 kinase/Akt pathway activated by UV-B in HaCaT cells
(Tsoyi et al., 2008). Of note, T-flavanone (trans-3,4′-dimethyl-
3-hydroxyflavanone, synthetic) inhibits TGF-β2 activation (not
synthesis) in keratinocytes, a mechanism of action for hair grow-
ing effects (Sasajima et al., 2008).

Effect of Polyphenols on Mesangial Cells

Sylimarin blocks NF-κB activation independently of its
antioxidant properties in these cells (Chang et al., 2006).
Conversely, resveratrol enhances cytokine activated NF-κB
signaling both in these cells and in renal tubular LLCPK1 cells,
although iNOS was inhibited (Uchida et al., 2005).

Effect of Polyphenols on Fibroblasts

In gingival fibroblasts quercetin, luteolin, genistein, and
quercetagetin inhibit MAPK activation, IL-1β and COX2 ex-
pression and PGE2 synthesis (Gutierrez-Venegas et al., 2007).
Quercetin and curcumin inhibit synoviocyte proliferation (Jack-
son et al., 2006a). 5,6,3′,5′-tetramethoxy 7,4′-hydroxyflavone
inhibits inflammatory mediators (ICAM-1, COX2, and iNOS)
in fibroblasts (Yoon et al., 2008). In rheumatoid arthritis de-
rived synovial fibroblasts EGCG has relevant antiinflammatory
actions, inhibiting IL-1β-induced ENA-78, RANTES, GRO-
α, and MCP-1 production, as well as MMP-2 activity, at 20
µM, acting via NF-κB (Ahmed et al., 2006). EGCG also in-
hibits MMP-1/3 production via MAPK and AP-1 in synovial
fibroblasts (Yun et al., 2008). In a similar model nobiletin in-
hibits ADAMTS4/5 expression (Imada et al., 2008). Both EGCG
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Figure 3 Targets of flavonoid action within the NF-κB pathway. Flavonoids
have been described to affect a number of steps in the NF-κB pathway, primarily
in the canonical pathway, represented here in the central axis. Thus flavonoids
can modify the function of the IKK complex and thereby IκB-α phosphorylation,
p65 phosphorylation, binding to gene promoters and histone acetylation. There
is also evidence of receptor modulation. In addition, many other targets have
been established (all designated by the arrow), which interact with the NF-κB
pathway but also have other signaling routes (not shown). This scheme is a
simplification of the multiple interactions that have been established.

and ECG, and to a lesser extent EGC and EC, but not cate-
chin, inhibit IL-8 production by nasal mucosal fibroblasts (Kim
et al., 2006b). In addition, EGCG exerts protective effects
against oxidative stress in human fibroblasts (Meng et al.,
2008a). In primary nasal polyp fibroblasts EGCG also low-
ers cobalt chloride induced HIF-α and VEGF levels, possibly
counteracting polyp growth (Lin et al., 2008).

Synovial fibroblast proliferation is inhibited without cell tox-
icity by alvocidib (flavopiridol) (Sekine et al., 2008). Resveratrol
produces apoptosis in rheumatoid arthritis derived fibroblast-
like synoviocytes via caspase 8 (Byun et al., 2008). Licochal-
cone A inhibits PGE2 production in skin fibroblasts at nanomolar
concentrations, without affecting COX2 levels or cytokines (Fu-
ruhashi et al., 2005). Primary mouse cardiac fibroblasts exhibit
glucose inducible IL-17 secretion, which stimulates collagen
production, and this is inhibited by resveratrol via PI3K-, Akt-,
and ERK-dependent actions (Venkatachalam et al., 2008).

Thus flavonoids seem to exert broad antiinflammatory and
antiproliferative effects on fibroblasts and synoviocytes, and
mechanistically these resemble those described above.

CONCLUSIONS

The amount of evidence gathered in the field of inflamma-
tory/immunological modulation by flavonoids in the last few
years is impressive, let alone considering the entire set of studies
available. Despite the fact that there are thousands of flavonoid
derivatives, the vast majority of the studies have centered, un-
derstandably, on the simplest and most abundant ones. This
necessarily limits our understanding of the biological actions of
these compounds in terms of structural requirements and phar-
macological spectrum. For instance, using a model 293 reporter
cell line resveratrol and structural analogues were found to in-
hibit NF-κB, but many other related compounds were found with
more potency (Heynekamp et al., 2006). Moreover, there are rel-
atively few direct structural comparisons, making it necessary to
compare results obtained by different investigators in different
studies. Considering this, the consistence of the results reported
is the dominant note, to an extent that is somewhat surprising.
The main conclusion of the in vitro studies is that flavonoids
are almost without exception antiinflammatory on the different
cell types studied, lowering the expression and/or function of a
variety of inflammatory mediators including eicosanoids, NO,
adhesion molecules, and cytokines. The impact of flavonoids
is reported generally as a broad one rather than specific, and
this is in keeping with the fact that NF-κB, a master regulator
of these mediators, is a common target of flavonoids, although
the specific details are more variable. This applies also to other
signaling pathways, such as PI3K-Akt or the MAPK, which to
a great extent converge on NF-κB activation or serve comple-
mentary functions (Fig. 3). There are other emerging signaling
targets of flavonoids (HO-1, Nrf2, Sp1) that deserve further
exploration.

If the above is true, then the effects of flavonoids must depend
greatly on pharmacokinetics and cell access. Compared with the
situation of 10–15 years ago we have now a much clearer pic-
ture of this aspect of flavonoid pharmacology, albeit one that
leaves many questions unanswered. For instance, it is unclear
why rutin and quercitrin are much more active than quercetin in
experimental colitis, while other aglycones appear to be as ef-
ficacious as these glycosides. Another question is, if flavonoids
have such prominent actions (in vitro), why their in vivo effects
are not so evident? This applies specially to lymphocytes, on
which flavonoids appear to be toxic. Also, in a given disease
(model), which cells are responsible for the therapeutic effect
of tested flavonoids? It may very well be that a combination of
separate actions on different cell types accounts for the benefi-
cial effect. For instance, the amelioration of asthma may be due
to actions on macrophages, airway epithelial cells, basophils,
mast cells, endothelium, and eosinophils.

For almost all the in vitro activities reported, flavonoids that
display significant effects do so at relatively high concentra-
tions, approximately 1–50 µM. Macrophages in atherosclerotic
plaques have been described to uptake flavonoid glycosides
and then to release the aglycone intracellularly, as explained
above, but other than that, the distribution of flavonoids and
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their metabolites appears to be quite extensive in the organism.
Upon continued administration there may be some minor con-
centration in the liver and intestine. The present evidence does
not suggest that flavonoids may produce a high magnitude effect
at the concentrations that may be present in the serum or other
body compartments. It is possible that accumulated low-grade
inhibition of different cell types compensates for this. Clearly,
our understanding would benefit from a more profound charac-
terization of flavonoid pharmacokinetics and from a refinement
of structure-activity molecular optimization.
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