

Progress in Nuclear Magnetic Resonance Spectroscopy 37 (2000) 1-45

PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

www.elsevier.nl/locate/pnmrs

¹³C NMR spectroscopy of eudesmane sesquiterpenes

F.C. Oliveira^a, M.J.P. Ferreira^a, C.V. Núñez^a, G.V. Rodriguez^b, V.P. Emerenciano^{a,*}

^aInstituto de Química, Universidade de São Paulo, Caixa Postal 26077, 05599-970, São Paulo, Brazil ^bDepartamento de Química, ICEx, Universidade Federal de Minas Gerais, 30161-000, Belo Horizonte, Brazil

Accepted 11 January 2000

Contents

1.	Introduction	1
2.	The expert system SISTEMAT	2
3.	The search for heuristic rules	2
4.	Structural data and tables of ¹³ C NMR shifts	2
5.	Results 1	10
6.	Discussion of results and conclusions	37
Ac	knowledgements 4	42
Re	ferences	42

Keywords: Eudesmanes; Sesquiterpenoids; ¹³C NMR; Structure elucidation; Expert system

1. Introduction

In general, a phytochemical process involves five different phases of work:

- 1. choice of the plant to be studied;
- 2. botanical identification of the chosen plant;
- 3. preliminary analysis of the chemical composition;
- 4. isolation of the major components;
- 5. structure elucidation of the isolated compounds.

Each one of these phases has its relevance regarding the discovery of new substances of natural origin, but the structure elucidation is of particular importance being the main phase of the process. This phase demands vast experience in spectrum analysis in view of the high structure variety and diversity provided by structures in natural products chemistry as found for terpenoids [1] and alkaloids [2]. Among the terpenoids, sesquiterpenes are a class providing constant challenges for structure elucidation, due to the countless biogenetic pathways, that can produce several types of carbon skeletons [3]. Concerning this point, we decided to create, through the Expert System SISTEMAT [4–6], a specialist module for sesquiterpenoids, aimed at facilitating the process of structure elucidation.

As there are hundreds of substances of this class with reported ¹³C NMR data, we began building this specialist module using one of the most representative skeletons of the sesquiterpenes, the eudesmane type (Fig. 1).

For building the database system all ¹³C NMR data of sesquiterpenes with eudesmane skeleton were

^{*} Corresponding author.

E-mail address: vdpemere@quim.iq.usp.br (V.P. Emerenciano).

Fig. 1. Eudesmane skeleton.

collected from the literature. This procedure resulted in 350 substances that were then introduced in SISTEMAT.

The aim of this article is to indicate how SISTEMAT can be used to obtain useful rules for ¹³C spectral analysis and can be used as an auxiliary tool in the process of structure elucidation for eudesmanes, and, also, to present a review on ¹³C NMR data of eudesmanes.

2. The expert system SISTEMAT

SISTEMAT [4–6] was developed to help natural products researchers with the structure elucidation process. Several chemical classes of natural products have already been studied using SISTEMAT, for example, monoterpenes, diterpenes, triterpenes and flavonoids [7–10].

The specialist module in sesquiterpenes with an eudesmane skeleton was built by coding 13 C data obtained from the literature and introducing it in SISTEMAT [4]. These codes contained information on chemical formula, molecular mass and types of carbon atoms in a specific position that can be later accessed through the application of SISTEMAT [5–10]. A brief overview of SISTEMAT has been provided in Ref. [7]. SISTEMAT is available at the ftp site address ftp://143.107.53.186/PUB.

3. The search for heuristic rules

Heuristic rules are practical rules obtained from the experience from the experience of specialists, or originated from programs which perform "learning from machine" routines, and are aimed at solving a specific problem. In the SISTEMAT system, the search of these rules is done through the programs TIPCARB [7,8] and PICKUP [7,8,10]. The TIPCARB program can determine which carbon atoms are present in each position of a skeleton. This information helps in the search for heuristic rules because they define whether or not the skeleton is substituted and the kind of substituents. This could also be done manually by a careful analysis of the literature, but the huge data volume makes this task unfeasible for obtaining heuristic rules.

After the position of each carbon atom and the types of substituents have been defined these fragments, denominated substructures, are coded in the PICKUP program [7] that performs the search of the database for the chemical shift range for ¹³C data of the carbons in the substructure. After the chemical shift estimation, this information is evaluated in relation to its degree of recognition using the complete database, allowing one to affirm that a certain group of chemical shifts characterises a certain probability of the occurrence of a substructure in the compound. In summary, the TIPCARB program indicates which substructure should be selected, and obtains the chemical shift ranges of its carbon atoms and the degree of recognition of these shifts within the database.

4. Structural data and tables of ¹³C NMR shifts

For identification purposes and for structure elucidation of new compounds, it is useful to have access to an extensive list of eudesmanes and their structural data. Table 1 shows a collection of structural data of eudesmanes collected from the literature. The present compilation includes data from most of the relevant papers published up to 1996 [11-159]. The eudesmanes published from 1997 were used as test substances and are presented in Section 5. Table 1 presents data classified by the type and order of the substituents, and also contains information on the usual names and references. The structures can be determined from the data presented in Table 1, but in view of the structural complexity of some compounds a graphic representation in shown in Fig. 2.

The ¹³C chemical shift data for all the 350 compounds are listed in Table 2, including information about the solvent used for the recorded sample.

Table 1			
Structural	information	for	eudesmanes

Subst.	Trivial names Substituents		Stereochemistry		
1	Balanitol	1,11-OH	11β,14β,15β	[11]	
2		1β,4β,7α-ΟΗ	11β,14α,15β	[12]	
3	Boarioside aglycone	1α,4β,11-ΟΗ	11α,14α,15α	[13]	
4		1β,4α-OH, 6-OCin	11β,14β,15β	[14]	
5		1β,4α-OH, 6β-OCin	11β,14β,15β	[15]	
6		1β,4β-OH, 6-OCin	11β,14α,15β	[14]	
7		1β,4α-ОН, 6β-ОАс	11β,14β,15β	[16]	
8		1β,4β-ОН, 6β-ОАс	11β,14α,15β	[16]	
9		1β,4β-ОН, 6α,14-Оху	11β,14α,15β	[17]	
10		1β-OAc, 4β,7α-OH	11β,14α,15β	[12]	
11	Boarioside	1α-OGly, 4β,11-OH	11α,14α,15α	[13]	
12	Boarioside tetraacetyl	1α -OGly-(OAc) ₄ , 4 β ,11-OH	11α,14α,15α	[13]	
13		1β,4β-Oxy, 6β-OCin	11β,14α,15α	[18]	
14		1β,4β-Oxy, 6β-OCin	11β,14α,15β	[15]	
15		1α,4α-Oxy, 6β-Cin	11β,14β,15β	[14]	
16		1α,4α-Oxy, 6β-OAc	11β,14β,15β	[19]	
17	Austradiol acetate	1-Br, 4α-OH, 6α-OAc	11α,14β,15β	[20]	
18		1-Br, 4α -OAc, 6α -O- <i>trans</i> -(3'-OAc-2-butenoate)	11α,14β,15β	[20]	
19		1-Br, 4α -OAc, 6α -O- <i>cis</i> -(3'-OAc-2-butenoate)	11α,14β,15β	[20]	
20		1-Oxo, 11-OH	11β,14β,15β	[11]	
21	Dihydro-α-agarofuran	5β,11-Oxy	11β,14α,15α	[21]	
22	Dihydro-β-agarofuran	5β,11-Oxy	11β,14β,15α	[21]	
23		1,6α,8α,9-OH, 5α,11-Oxy	11α,14β,15β	[22]	
24	Angulatueoid-G	1,2-OH, 5α,11-Oxy, 6α-OAc, 8,9-OBzt	11α,14β,15β	[23]	
25	Celahin-C	1α-OH, 2α,6β,15-OAc, 5β,11-Oxy, 9β-OBzt	11β,14α,15α	[24]	
26	Emarginatine-D	See Fig. 2	11β,14α,15α	[25]	
27	Emarginatine-E	See Fig. 2	11β,14α,15α	[25]	
28	Triptogelin B-1	1β-OH, 5α,11-Oxy, 6α-OAc, 8β,9β-OBzt	11α,14β,15β	[26]	
29	Triptogelin A-8	1β,2β,8β-OH, 5α,11-Oxy, 6α-OAc, 9β-OBzt	11α,14β,15β	[27]	
30	Triptogelin A-3	1β,2β-OH, 5α,11-Oxy, 6α-OAc, 8β,9β-OBzt	11α,14β,15β	[26]	
31	Triptogelin A-7	1β,2β-OH, 5α,11-Oxy, 6α-OAc, 8β-ONic, 9β-OBzt	11α,14β,15β	[27]	
32	Triptogelin A-4	1β-OH, 2-Oxo, 5α,11-Oxy, 6α-OAc, 8β,9β-OBzt	11α,14β,15β	[26]	
33		See Fig. 2	11α,14β,15β	[28]	
34		See Fig. 2	11α,14β,15β	[28]	
35		1-OAc, 5α,11-Oxy, 9α-OCin	11α,14β,15β	[22]	
36		1-OAc, 5α,11-Oxy,9αOEpcin	11α,14β,15β	[29]	
37	Angulatueoid-H	1,6α-OAc, 5α, 11-Oxy, 8,9-OBzt	11α,14β,15β	[23]	
38	-	1,6α,8α-OAc, 5α,11-Oxy, 9β-OBzt	11α,14β,15β	[22]	
39		1,6a,8-OAc, 5a,11-Oxy, 9-OBzt	11α,14β,15β	[3]	
40	Angulatueoid-C	1,8α, 15-OAc, 5α,11-Oxy, 9-OBzt	11α,14β	[31,32]	
41	-	1,8β, 15-OAc, 5α,11-Oxy, 9-OBzt	11α,14β	[32]	
42		1,6α,8α, 15-OAc, 5α,11-Oxy, 9β-OBzt	11α,14β	[33]	
43		1,8α, 15-OAc, 5α,11-Oxy, 9α-OFur	11α,14β	[33]	
44		1,6α, 15-OAc, 4α-OH, 5α,11-Oxy, 8α,9α-OFur	11α,14β	[30]	
45	Angulatueoid-D	1,8α-OAc, 5α,11-Oxy, 9-OBzt, 15-OPic	11α,14β	[31,34]	
46	Angulatueoid-A	1,2,8α-OAc, 5α,11-Oxy, 9-OBzt, 15-OPic	11α,14β	[31,34]	
47	Angulatueoid-B	1,2,8α,15-OAc, 5α,11-Oxy, 9-OBzt	11α,14β	[31]	
48		1,2-OAc, 5α,11-Oxy, 9α-Oepcin	11α,14β,15β	[29]	
49		1-OAc, 2-OBut, 5α,11-Oxy, 9α-OEpcin	11α,14β,15β	[29]	
50		1-OAc, 2-OBzt, 5α,11-Oxy, 9α-OEpcin	11α,14β,15β	[29]	

Table 1 (continued)

Subst.	Trivial names	Substituents	Stereochemistry	References
51		1-OAc, 2,8,9α-OBzt, 4α,6α-OH, 5α,11-Oxy	11α,14β,15β	[35]
52		1-OAc, 2,8β,9α-OBzt, 4α,6α-OH, 5α,11-Oxy	11α,14β,15β	[36]
53		1-OAc, 2β,6α,8β,9α-OBzt, 5α,11-Oxy	11α,14β,15β	[37]
54		1-OAc, 2-OFur, 4α,6α-OH, 5α,11-Oxy, 8,9α-OBzt	11α,14β,15β	[35]
55		1,8α-OAc, 2,15-OiBu, 4α,6α-OH, 5α,11-Oxy, 9-OBzt	11α,14β	[38]
56		1,6α,8-OAc, 2,15-OiBu, 4α-OH, 5α,11-Oxy, 9α-Ofur	11α,14β	[38]
57	Triptogelin G-2	1β -OAc, 5α , 11 -Oxy, 9α -Obzt	11α,14β,15β	[39]
58	Triptogelin F-2	1β.6α-OAc, 5α.11-Oxy, 9α-Ocin	11α,14β,15β	[39]
59	Triptogelin F-1	1 β -OAc, 5 α ,11-Oxy, 6 α -Onic, 9 α -OBzt	11α,14β,15β	[39]
60	Eumaitenin	1α,6β,8α-OAc, 5β,11-Oxy, 9β-OFur	11β,14α,15α	[40]
61	Triptofordin C-2	1β.6α-OAc, 2β. 4α-OH, 5α.11-Oxy, 8α.9α-Obzt	11α.14β.15β	[41]
62	Triptofordin C-1	18.6α-OAc, 2-Oxo, 4α-OH, 5α,11-Oxy, 8α,9α-OBzt	11α.14β.15β	[41]
63	Triptogelin C-1	1β 2β 6α-ΩAc. 5α 11-Ωxy. 9α-ΩBzt	11α,14B,15B	[42]
64	Triptogelin C-2	$1\beta 2\beta - \Omega Ac$ $5\alpha 11 - \Omega xy$ $6\alpha - \Omega Nic 9\alpha - \Omega Bzt$	11α,14B,15B	[42]
65	mptogenn o 2	$1\beta 2\beta 6\alpha 15-\Omega Ac 4\alpha - \Omega H 5\alpha 11-\Omega xy 9\alpha - \Omega Bzt$	11α,14β,15β	[43]
66		$18.28 \text{ for } 15-\text{OAc}$ 4α -OH 5α $11-\text{Oxy}$ $8-\text{Oxo}$ $98-\text{OBzt}$	11α,14β,15β	[44 45]
67	Fuonine	See Fig. 2	11α,14β,15β	[46]
68	Euonymine	See Fig. 2	11α,14β,15β	[46]
69	Triptogelin F-5	$1\beta_0 \Delta c_2 \beta_0 \Omega_{\rm But}$ 5\[5\[mathcal{a}\] 11_0 xy 9\[mathcal{a}\] 000000000000000000000000000000000000	11α,14β,15β	[30]
70	Triptogelin E-6	$1\beta OAc, 2\beta OBu, 5\alpha, 11 Oxy, 9\alpha OBzt$ $1\beta OAc, 2\beta OBu, 5\alpha, 11 Oxy, 9\alpha OBzt$	11α,14β,15β	[39]
70	Triptogelin E-8	1β -OAC, 2β -OiBu, 5α , 11 -Oxy, 9α -OCin	11a,14B,15B	[30]
71	Triptogelin E-7	18 ΩA_c 28 $\Omega But 5c 11 \Omega xy 9c \Omega Cin$	11a,146,156	[30]
72	Triptogelin C 3	16 for $\Omega \Lambda_c$ 28 $\Omega But (2' Me)$ 5or 11 ΩVV for ΩBzt	11a,146,156	[37]
73	Triplogenn C-5	10,000,000,000,000,000,000,000,000,000,	11a,14p,15p	[42]
74	Wilfordine	$S_{00} = Fig_{0}^{2}$	11a,14p,15p	[47]
75	winorume	See Fig. 2	11a,14p,15p	[20]
70		Set Fig. 2 10 $\Box \Delta a$ 20 \Box Eur. An for $\Box H$ 5 or 11 \Box NV 80 $\Box a$ $\Box B$ at	$11\alpha, 14p, 15p$	[20]
70		$1_{22} \in \{0, 15, 0, 0, 2, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$	$11\alpha, 14p, 15p$	[47]
70		10,00, 15-0Ac, 4p-0H, 5p, 11-0Xy, 8a-0MeBu, 9a-0Bzi	$11p, 14\alpha, 15\alpha$	[40]
79 80	Calabin P	10^{-0} CAC, 20 ⁻⁰ MeDu, 40,00 ⁻⁰ CH, 50,11 ⁻⁰ Xy, 80,90 ⁻⁰ DZi	11α,14p,15p	[40]
0U 01	Сегани-Б	$1\alpha, 2\alpha, 0\beta, 15$ -OAC, $5\beta, 11$ -OXY, 9β -OBZI	$110,14\alpha,15\alpha$	[49]
81 82	Emonsinating C	10,20-ОАС, 4р,0рОП, 5р,11-ОХУ, 8р,15-ОІВЦ, 90-ОВ2	$110,14\alpha,15\alpha$	[30]
02 02	Emarginatine-C	See Fig. 2	$110,14\alpha,15\alpha$	[25]
03 04	Emarginatine-A	See Fig. 2	110,14α,15α	[25]
84	Emarginaunine	See Fig. 2 1 OPro 5×11 Opro $9 \times 0.04 \times 0.00$ of 15×0.01	11β,14α,15α	[25]
85	Angulatueold-F	1-OPTO, 5α , 11-OXY, 8α -OAC, 9-OBZt, 15-ONIC	11α,14β	[34]
80	Angulatueold-E	1-OIBU, 5α , 11-OXY, 8α -OAC, 9-OBZI, 15-OINIC	11α,14β	[34]
8/	F 1' A 1	1 β -OiBu, 2 β ,6 α ,15-OAc, 4 α -OH, 5 α ,11-OXy, 9 α -OBzt	11α,14β,15β	[43]
88	Euonydin A-1	1 β ,2 β -OBut, 4 α ,6 α -OH, 5 α ,11-OXy, 9 α -OFur,15-OAc	11α,14β,15β	[51]
89	Euonydin A-2	13,23-OBut, 4α -OH, 5α ,11-Oxy, 6α ,15-OAc, 9α -OFur	11α,14β,15β	[51]
90	Euonydin A-3	1 β ,2 β -OBut, 4 α -OH, 5 α ,11-Oxy, 6 α ,15-OAc, 9 α -OBzt	$11\alpha, 14\beta, 15\beta$	[51]
91		1 β -O2MeBu, 2 β ,6 α ,15-OAc, 4 α -OH, 5 α ,11-Oxy, 9 α -OBzt	11α,14β,15β	[43]
92		$1,9$ -OBZt, 5α , 11 -OXy, 6α -OH, 8 -OAC	11α,14β,15β	[22]
93		1,8,9-OBzt, 5α ,11-Oxy, 6α -OAc	11α,14β,15β	[32]
94		$1,6\alpha$ -OBzt, 5α , 11 -Oxy, 9α -OAc	11α,14β,15β	[22]
95		1,9-OBzt, 5α,11-Oxy, 8α,15-OAc	Πα,14β	[32]
96		$1,8-OBzt, 2-OHex, 5\alpha, 11-Oxy, 6\alpha, 9, 15-OAc$	11α,14β	[38]
97	Triptofordin-A	1 β -OBzt, 4 α -OH, 5 α ,11-Oxy, 9 α -OCin	$11\alpha, 14\beta, 15\beta$	[41]
98	Triptofordin-B	1β,9α-OBzt, 4α,6α-OH, 5α,11-Oxy	11α,14β,15β	[41]
99	Triptogelin A-2	1β ,8β,9β-OBzt, 2β-OH, 5α,11-Oxy, 6α-OAc	11α,14β,15β	[26]
100	Ebenifoline E-I	See Fig. 2	$11\alpha, 14\beta, 15\beta$	[46]
101	Euojaponine-C	See Fig. 2	11α,14β,15β	[46]

Subst.	Trivial names	Substituents	Stereochemistry	References
102	Triptofordin-E	1β.9β-OBzt, 2β.6α,15-OAc, 4α-OH, 5α.11-Oxy, 8-Oxo	11α,14β.15β	[45]
103	Euosachalidin-A	1β-OBzt. 2β.6α.9β.15-OAc. 5α.11-Oxy. 8-Oxo	11α.14β.15β	[52]
104	Euojaponine-F	See Fig. 2	11α.14β.15β	[46]
105	Ebenifoline E-II	See Fig. 2	11α.14β.15β	[46]
106	Ebenifoline E-III	See Fig. 2	11α.14β.15β	[46]
107	Ebenifoline E-IV	See Fig. 2	11α.14β.15β	[46]
108	Ebenifoline E-V	See Fig. 2	11α.14β.15β	[46]
109	Mayteine	See Fig. 2	11α 14B 15B	[46]
110	Triptogelin A-9	16.96-OBzt. 26-OMeBu. 6α-OAc. 5α.11-Oxy. 86-ONic	$11\alpha, 14\beta, 15\beta$	[27]
111		1β 2β 8β 9β-OBzt. 5α 11-Oxy. 6α-OH	11α 14B 15B	[26]
112	Triptogelin A-1	1β 2β 8β 9β-OBzt, 5α 11-Oxy, 6α-OAc	$11\alpha, 14\beta, 15\beta$	[26]
113	Triptogelin A-11	$18,28,98-OBzt$ 5 α 11-Oxy 6 α 88-OAc	$11\alpha, 14\beta, 15\beta$	[42]
114	Triptogelin A-6	$1\beta 2\beta 9\beta OBzt, 5\alpha 11 Oxy, 6\alpha OAc, 8\beta ONic$	$11\alpha, 14\beta, 15\beta$	[27]
115	Ebenifoline W-II	See Fig 2	$11\alpha, 14\beta, 15\beta$	[46]
116	Ebenifoline W-I	See Fig. 2	$11\alpha, 14\beta, 15\beta$	[46]
117	Mortonol A	$1 \alpha 9\beta \cdot OBzt 4\beta \cdot OH 6 \cdot Oxo 5\beta 11 \cdot Oxy$	14α 15α	[53]
118		1α -OBzt 4B 6B-OH 9B-OAc 5B 11-Oxy	11B 14a 15a	[54]
110		$1\alpha - OB_{21}, 4\beta - OH - 5\beta + 11 - Oxy - 6\beta - 9\beta - OA_{C}$	11B 14a 15a	[54]
120		1α -OB2t, 46 88-OH 56 11-Oxy, 66 9 α -OAc	11B 14a 15a	[54]
120		1_{0} OB2t, 4B,OH 5B 11-Oxy, 6B 8B 90-OAc	11B 14a 15a	[54]
121		1_{0} OB2t, 4B-OH, 5B, 11-Oxy, 6B, 9B, 15-OAc	11B 14a 15a	[54]
122		$1\alpha 9\alpha - \Omega Bzt 4\beta - \Omega H 5\beta 11 - \Omega xy 6\beta 8\alpha 15 - \Omega Ac$	11B 14a 15a	[54]
123	Mortonol B	1α 9B-OBzt, 2B-OAc 4B-OH 5B 11-Oxy 6-Oxo	11B 14a 15a	[55]
124	MONONOI D	$1\alpha,\beta\beta$ -OBzt, 2β-OAc, 4β-OH, 5ρ,11-Oxy, 0-Ox0 $1\alpha,\beta\beta$ -OBzt, 2β-OH, 6-Oxo, 2β-OGly-(2 ⁷ 6 ⁷ -OAc), 5β, 11-Oxy	14 a 15 a	[50-50]
125		$1\alpha,\beta\beta$ -OBzt, 4β -OH, 6-Oxo, 2β -OGly-(2, 6-OAC), $5\beta,11$ -Oxy	14a,15a	[58]
120		1_{0} 98-OBzt, 28 38-OAc, 48-OH, 58 11-Oxy	14a,15a	[50]
127		1_{0} OB $2t$ 28 68 OA c 38 48 OH 58 11 Oxy 08 OC in	110 140 150	[59]
120		1_{0} OB2t, 20,00-OAC, 50, 40-OH, 50,11-OAY, 50-OCin	110,140,150	[00]
129		1_{0} OCin 40 OH 50 11 Oxy 60 80 15 OA a low OB at	110,14a,15a	[00]
130	Triptofordin D 2	18 OCin, $4p$ -OH, $5p$, 11 Oxy, $6p$, 80 , 15 OAc, 90 OBzt	11p,14a,15a	[46]
131	Triptofordin D 1	$10^{-0.0111}, 40^{-0.011}, 50^{-0.011}, 00$	11a,14p,15p	[45]
132		18 OCin 28 6g 15 OAc 4g OH 5g 11 Oxy 8 Oxo 98 OB2t	11a,14p,15p	[45]
133		10°OCin 28.48 OH 58.11 Ovy 68.08 OAc	110,14p,15p	[45]
125	Prodowskin C	1_{0} OF $20, 40$ OH 50 11 Ovy 60 00 OA	110,14a,15a	[54,50]
135	Euonydin A 5	10^{-} OEpcili, 20,4p-OH, 5p,11-OXy, 0p,9p-OAC	11p,14a,15a	[50]
127	Euonydin A-3	10,900 OF ut, $20,000$ OF ut, $40,000$ OF, $50,110$ OF, $15,000$	$11\alpha, 14\beta, 15\beta$	[51]
137	Triptogalin P 2	10,20,30,-01,0,00,00,00,00,00,00,00,00,00,00,00,00	$11\alpha, 14\beta, 15\beta$	[31]
130	Triptogelin A 5	10 ONIC, $30,11$ -OXy, 00 -OAC, $80,90$ -OBZ	$11\alpha, 14\beta, 15\beta$	[42]
139	Triptogelin A-3	10 ONic, 20, 90 OB 2t, 50, 11 Oxy, 60 OAc, 80-OMEDU	$11\alpha, 14\beta, 15\beta$	[27]
140	Inplogenn A-10	$1p - ONic, 2p, \delta p, \delta p - OBZi, 5\alpha, 11 - OXy, 0\alpha - OAc$	11α,14p,15p	[42]
141		1_{0} ONic, $2\alpha, 6$ OAc, 4β OH, 5,11 Oxy, 9 OFur, 15 OMeBu	140,150	[01]
142		1_{0} ONic, 2_{0} , 6.15 OAc, 40 OH 5.11 Oxy, 9-OFur, 15-OMEDU	140,150	[01]
143		1α -ONic, 2α , 0,15-OAc, 4p-OH, 5,11-OXy, 9-OFul	140,150	[01]
144 145	11,12,13-Trinor-3,4-	3β,4β-OH, 8-Oxo, 11,12,13-Trinor	14α,15β 14α,15β	[61]
146	diepicuauhtemone		110 140 150	F1 51
146		$3\beta,4\alpha$ -OH, 6β -OCin	11β,14β,15β	[15]
147		3α -OEpang, 4α -OAc, 8 -Oxo	14β	[63]
148		3α -OEpang, 4α -OAc, 8 -Oxo, 7β , 11β -Epoxy	14β,15β	[64]
149	trans-Dihydrocarisone	3-Oxo, 11-OH	11β,14α,15β	[65,66]
150		4-O(CH ₂) ₂ O-4; 8α,11-OH, 14-Nor	11β,15β	[67]
151		4-O(CH ₂) ₂ O-4; 8-Oxo, 11-OH, 14-Nor	11β,15β	[67]

Table 1 (continued)

Subst.	Trivial names	Substituents	Stereochemistry	References
152		4-Oxo, 8α,11-OH, 14-Nor	11β,15β	[67]
153		4,12,13-Oxo, 12,13-OMe, 14-Nor	11β,15β	[67]
154	Verbesindiol	4α,6β-ΟΗ	11β,14β,15β	[68]
155		4α-OH, 6β-O- <i>trans</i> -Cou	11β,14β,15β	[68]
156		4α-OH, 6α-OAc	11α,14β	[20]
157	5β-Acetoxyvitranoxide	4α,7α-Oxy, 6β-OAc	11β,14β,15β	[69]
158		4α-OH, 6-Oxo	11β,14β,15β	[68]
159	8α-Acetoxycryptomeridiol	4α,11-OH, 8α-OAc	14β,15β	[70]
160		4α-OH, 11-OAc	11β,14β,15β	[71]
161	1-Oxoisocryptomeridiol	1-Oxo, 4α,11-OH	11β,14β,15β	[72]
162		4β-OH, 6-OCin	11β,14α,15β	[14]
163		4β,9β-OH, 6β-OCin	11β,14α,15β	[73]
164		4β,5β-ОН	11β,14α,15α	[74]
165		4β,11-OH	11β,14α,15α	[74]
166	Geosmin	5α-OH, 11,12,13-Trinor	14α,15β	[75]
167	Eudesmane- 5α , 11-diol	5α,11-ΟΗ	11β,14β,15β	[71]
168		5β,11-ОН	11β,14β,15α	[76]
169		5β,11-OH	11β,14α,15α	[76]
170	α-Dihydroeudesmol	11-OH	11β,14α,15β	[75]
171	β-Dihydroeudesmol	11-OH	11β,14β,15β	[11,75]
172	4-Epi-Aubergenone	3-Oxo, 11-OH, Δ^1	11β,14α,15β	[65,77,78]
173		3-Oxo, 11-OH, Δ^1	11β,14β,15α	[77]
174		6α-OAc, 7α-OH, Δ^3	11β,15β	[79]
175	Eudesm-3-ene-7α-ol	7α -OH, Δ^3	11β,15β	[79]
176	7-epi-α-Eudesmol	11-OH, Δ^3	11α,15β	[80]
177	5,7-Diepi-α-eudesmol	5β-H, 11-OH, $Δ^3$	11α,15β	[81]
178	-	11-OGly[(OAc) ₃ ,6'-OTig], Δ^3	11β,15β	[82]
179	3-Eudesmene-1β,11-diol	1β ,11-OH, Δ^3	11β,15β	[71]
180		1β-OAc, 11-OH, Δ^3	11β,15β	[71]
181		1β-OH, 6β-OCin, Δ^3	11β,15β	[73]
182	5α-OH-Isopterocarpolone	2-Oxo, 5 α , 11-OH, Δ^3	11β,15β	[72]
183		1α-OCin, 2-Oxo, 5β,11-Oxy, 6β, 9β-OAc, Δ^3	11β,15α	[54]
184		11-OH, Δ^4	11β,15β	[83]
185	7-epi-γ-Eudesmol	11-OH, Δ^4	11α,15β	[71]
186		11-OXyl-(OAc) ₃ , 14-OAc, Δ^4	11β,15β	[84]
187	4-Eudesmene-1β,11-diol	1 β ,11-OH, Δ^4	11β,15β	[71]
188		1 β ,11-OH, Δ^4	11α,15β	[71]
189		1β-OAc, 11-OH, Δ^4	11β,15β	[71]
190	Acorusnol	1β-OH, 6-Oxo, Δ^4	11β,15β	[85]
191	Acorusdiol	1 β ,3 α -OH, 6-Oxo, Δ^4	11β,15β	[85]
192		1β-OH, 3α-OOH, 6β-OCin, Δ^4	11β,15β	[73]
193		1β-OH, 3-Oxo, 6β-OCin, Δ^4	11β,15β	[15]
194	α-Carissanol	2α ,11-OH, 3-Oxo, Δ^4	11β,15β	[86]
195	Carissone	3-Oxo, 11-OH, Δ^4	11β,15β	[86]
196	6β-Carissanol	3-Oxo, 6 β , 11-OH, Δ^4	11β,15β	[86]
197		3,12-Oxo, 8 α -OH, 12-OMe, Δ^4	11β,13α,15β	[87]
198		3,12-Oxo, 8 β -OH, 12-OMe, Δ^4	11β,13α,15β	[87]
199		3,8,12-Oxo, 12-OMe, Δ^4	11β,13α,15β	[87]
200	10-Epijunenol	5α-Η, 6α-OH, $\Delta^{4(14)}$	11β,15α	[88]
201	Junenol	6 α-OH, $\Delta^{4(14)}$	11β,15β	[88]
202	B-Eudesmol	11-OH. $\Delta^{4(14)}$	116,156	[89,90]

Subst.	Trivial names	vial names Substituents					
203		11-OAra, $\Delta^{4(14)}$	11β,15β	[90]			
204	Arctiol	8α ,11-OH, $\Delta^{4(14)}$	11β,15β	[67]			
205		8-Oxo, 11-OH, $\Delta^{4(14)}$	11β,15β	[67]			
206		12,13-Oxo, 12,13-OMe, $\Delta^{4(14)}$	11β,15β	[67]			
207		$1\beta,6\alpha$ -OH, $\Delta^{4(14)}$	15β	[91]			
208		$1\beta,6\alpha$ -OH, $\Delta^{4(14)}$	11β,15β	[72,92]			
209		1 β -OH, 6 β -OCin, $\Delta^{4(14)}$	11β,15β	[73]			
210	Selin-4(14)en-1,11diol	1β,11-OH, $Δ^{4(14)}$	11β,15β	[93]			
211		1-Oxo, 11-OH, $\Delta^{4(14)}$	11β,15β	[93]			
212		1β-OAc, 11-OH, $\Delta^{4(14)}$	11β,15β	[71]			
213		1α-OBzt, 5β,11-Oxy, 6β,9β-OAc, $\Delta^{4(14)}$	11β,15α	[54]			
214		1 α -OBzt, 5 β ,11-Oxy, 6 β ,8 β ,9 α -OAc, $\Delta^{4(14)}$	11β,15α	[54]			
215		1 α -OBzt, 5 β ,11-Oxy, 6 β ,9 α -OAc, 8-Oxo, $\Delta^{4(14)}$	11β,15α	[54]			
216	Pterocarpol	$2\alpha, 11$ -OH, $\Delta^{4(14)}$	11β,15β	[94]			
217	Pterocarpol-acetate	2α-OAc, 11-OH, $\Delta^{4(14)}$	11β,15β	[94]			
218		$3\alpha, 11$ -OH, $\Delta^{4(14)}$	11β,15β	[66]			
219		11-OH, Δ^5	11β,14α,15α	[95]			
220		11-NC, Δ^5	11α,14β,15β	[96]			
221	Stylotelline	5α -NC, Δ^6	14α,15β	[97]			
222		1β-OH, 4β-OCin, Δ^6	14α,15β	[73]			
223		1 β ,2 α -OH, 4 β -OCin, Δ^6	14α,15β	[73]			
224		1β-OAc, 4β-OH, Δ^6	14α,15β	[98]			
225	Erigeside A	3-OGly, 5α , 9α -OH, Δ^6	14α,15β	[99]			
226	4-Epiplucheinol	$3\alpha, 4\beta, 11$ -OH, 8-Oxo, Δ^6	14α,15β	[100]			
227	Plucheinol	$3\alpha, 4\alpha, 11$ -OH, 8-Oxo, Δ^6	14β,15β	[100]			
228		$3\alpha, 4\beta, 5\alpha, 11$ -OH, 8-Oxo, Δ^6	14α,15β	[101]			
229		3α -OAng, 4α , 11-OH, 8-Oxo, Δ^6	14β,15β	[102]			
230	Arguticinin	3α-OEpang, 4β-OAc, 8-Oxo, 11-OH, Δ^6	14α,15β	[103]			
231	Odontinin	3α -O2MeBu-(2'OAc, 3'OH), 4α -OAc, 8-Oxo, 11-OH, Δ^6	14β,15β	[101]			
232		3β-OAng, 4α, 11-OH, 8-Oxo, Δ^6	14β,15β	[104]			
233		3β-OAng, 4α-OH, 8-Oxo, 11-OOH, Δ^6	14β,15β	[104]			
234		3β-OAng, 4β-OAc, 8-Oxo, 11-OH, Δ^6	14α,15β	[104]			
235	6-Eudesmene-4α-ol	4α -OH, Δ^6	11β,14β,15β	[17]			
236	Oplodiol	$1\beta, 4\beta$ -OH, Δ^7	14α,15β	[98]			
237		1β-OH, 4β-OCin, Δ^7	14α,15β	[73]			
238	Oplodiol-monoacetate	1β-OAc, 4β-OH, Δ^7	14α,15β	[98]			
239		1 β ,2 α -OH, 4 β -OCin, Δ^7	14α,15β	[73,105]			
240		1 β ,3 α -OH, 4 β -OCin, Δ^7	14α,15β	[105]			
241		1β,4-OH, 8-Oxo, $\Delta^{7(11)}$	15β	[106]			
242		$1\alpha, 4\alpha$ -OH, 8-Oxo, $\Delta^{7(11)}$	14β,15α	[106]			
243		$1\alpha, 4\beta$ -OH, 8-Oxo, $\Delta^{7(11)}$	14α,15α	[107]			
244	Cuathemone	3α , 4α -OH, 8-Oxo, $\Delta^{7(11)}$	14β,15β	[108]			
245		3α -OEpang, 4α -OAc, 8-Oxo, $\Delta^{7(11)}$	14β,15β	[108]			
246	Argutin	3 α -O2MeBu-(2'OAc,3'-OH), 4 α -OAc, 8-Oxo, $\Delta^{7(11)}$	14β,15β	[109]			
247		3α -OAng, 4α -OAc, 8 -Oxo, $\Delta^{7(11)}$	14β	[110]			
248		3β-OAng, 4α-OAc, 8-Oxo, $\Delta^{7(11)}$	14β,15β	[110]			
249		3β-OAng, 4α-OH, 8-Oxo, $\Delta^{7(11)}$	14β,15β	[104]			
250		3β-OAng, 4β-OAc, 8-Oxo, $\Delta^{7(11)}$	14α,15β	[104]			
251		3β-OAng, 4β-OAc, 8β-OH, 8α,12-Oxy, $\Delta^{7(11)}$	14α,15β	[104]			
252		1β-OH, 4β-OCin, 7α-OOH, Δ^8	11β,14α,15β	[73]			
	~		110 140 150	F1117			

Table 1 (continued)

254 β-Carymbolol 1β,5a-GH, Δ^{11} 1β,14a,15β [11] 255 See Fig. 2 1β,14a,15β [11] 266 see Fig. 2 1β,14a,15β [11] 277 1β,4β,6,6,8a,14-0H, 13-Oxo, 13-OMe, Δ^{11} 11β,14a,15β [11] 288 1β,4β,6,6,8a,14-0H, 13-Oxo, 13-OMe, Δ^{11} 11β,14a,15β [11] 289 1β,4β,6,6,8a,14-0H, 13-Oxo, 13-OMe, Δ^{11} 11β,14a,15β [11] 281 Ikerisoide-J 1β,04a,045,040,13-Oxo, 13-OMe, 14-OGiy, Δ^{11} 11β,14a,15β [112] 261 Ikerisoide-J 1β,04a,014,94,06a,041,13-Oxo, 13-OMe, 14-OGiy, Δ^{11} 11β,14a,15β [112] 263 Ikerisoside-L see Fig. 2 11β,14a,15β [112] 264 Corymbolone 1-Oxo, 5a-OH, Δ^{11} 11β,14a,15β [111] 265 Iscorymbolone accettte 1-Oxo, 5a-OH, Δ^{11} 11β,14a,15β [112] 276 1-Oxo, 5a-OH, Δ^{11} 11β,14a,15β [113] 276 1-Oxo, 5a-OH, Δ^{11} 11β,14a,15β [117] 276 Aa-OH, 1,1 ² Oxo,13	Subst.	Trivial names	Substituents	Stereochemistry	References	
255 1B-Ora OH-dihytarCau), 6a-OH, 13-Oxo, 13-OMe, 11B,14a,15B [112] 256 see Fig. 2 1B,446,058, 14-OH, 13-Oxo, 13-OMe, Δ^{11} 11B,14a,15B [112] 257 1B,446,058, 14-OH, 13-Oxo, 13-OMe, Δ^{11} 11B,14a,15B [113] 258 1B,446,058, 14-OH, 13-Oxo, 13-OMe, 14-OIY, A ¹¹ 11B,14a,15B [112] 259 1B,446,058, 14-OH, 13-Oxo, 13-OMe, 14-OIY, A ¹¹ 11B,14a,15B [112] 250 Ixerisoide-J 1B,010, OH+30, 456, 66, OH, 13-Oxo, 13-OMe, 14-OIY, A ¹¹ 11B,14a,15B [112] 261 Ixerisoside-K 1B-O(a-OH-dihydraCau), 4B,6a-OH, 13-Oxo, 13-OMe, 11B,14a,15B [112] 263 ixerisoside-L ixee Fig. 2 1B,66,0-H,41.4 Epoxy, 8ar-OMeAcr-(4'-OH), 13-Oxo, 14B,15B [111] 264 Corymbolone 1-Oxo, 5a-OH, 2h ¹¹ 11B,14B,15B [111] 265 Corymbolone acetate 1-Oxo, 5a-OH, 2h ¹¹ 11B,14B,15B [111] 266 S1,3Oxo, 13-OMe, 2h ¹¹ 11B,14B,15B [111] 267 ixoorymbolone acetate 1-Oxo, 5a-OH, 2h ¹¹ 11B,14B,15B [111] 268 S1,3Oxo, 13-OMe, A ¹¹ 11B,14B,15B [112] <t< td=""><td>254</td><td>β-Corymbolol</td><td>1β,5α-OH, Δ^{11}</td><td>11β,14β,15β</td><td>[111]</td></t<>	254	β-Corymbolol	1 β ,5 α -OH, Δ^{11}	11β,14β,15β	[111]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	255		1β-O(αOH-dihydroCou), 6α-OH, 13-Oxo, 13-OMe, 14-OGly, Δ^{11}	11β,14α,15β	[112]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	256		see Fig. 2	11β,14α,15β	[112]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	257		1β,4β,6α,8α, 14-OH, 13-Oxo, 13-OMe, Δ^{11}	11β,14α,15β	[113]	
259 IBAB, 6a-OH, 13-Oko, 13-OMe, 14-OGly, Δ^{11} IIB, 14a, 158 [112] 260 Ixersioside-J IB-O(a-OH-iVa), 4B, 6a-OH, 13-Oxo, 13-OMe, 14-OGly, Δ^{11} IIB, 14a, 158 [112] 261 Ixersioside-K IB-O(a-OH-dihydroCou), 4B, 6a-OH, 13-Oxo, 13-OMe, IIB, 14a, 158 [112] 263 Isersioside-L see Fig. 2 IIB, 14a, 159 [112] 263 IB, 6a-OH, 4a, 14-Epoxy, 8a-OMeAcr-(4'-OH), 13-Oxo, 14B, 158 [114] 264 Corymbolone acetate 1-Oxo, 5a-OH, A ¹¹ IIB, 14a, 159 [115] 266 Pluchecinin 3B-OEpag, 4a-OH, 8, 13-Oxo, 13-OMe, A ¹¹ IIB, 14B, 158 [117] 266 Sa-OAc, 4a-OH, 13-Oxo, 13-OMe, A ¹¹ IIB, 14B, 158 [117] 271 Arbusculin-E-methylester 4a-OH, 13' IIB, 14B, 158 [120] 273 4a-OAc, A ¹¹ IIB, 14B, 158 [121] 274 4B-OFuc, (2-M, Bu), A ¹¹ IIB, 14B, 158 [122] 275 4B-OFuc, (2-M, Bu), A ¹¹ IIB, 14B, 158 [122] 276 4B-OFuc, (2-MEBu), A ¹¹ IIB, 14B, 158 [122] 277 4B-OFuc, (2-MEBu), A ¹¹ IIB, 14B,	258		1β,4β,6α,14-OH, 13-Oxo, 8α-OMeAcr-(4'OH), 13-OMe, Δ^{11}	11β,14α,15β	[113]	
260 Iterisoide-J 1β-O(m-OH-iWa), 4β,6m-OH, 13-Oxo, 13-OMe, 14-OGly, Δ^{11} 11β,14a,15β [112] 261 Ixerisoside-K 1β-O(m-OH-iWa), 4β,6m-OH, 13-Oxo, 13-OMe, 11β,14a,15β [112] 262 Ixerisoside-L see Fig. 2 11β,14a,15β [112] 263 Ixerisoside-L see Fig. 2 11β,14a,15β [112] 264 Corymbolone I-Oxo, So-OH, Δ^{11} 11β,14a,15β [115] 265 Isocorymbolone acetate I-Oxo, 9a-OAc, Δ^{11} 11β,14a,15β [115] 266 Pluchecinin 3B-OEpang, 4a-OH, 8,13-Oxo, 13-OMe, Δ^{11} 11β,14a,15β [116] 268 3,13-Oxo, 4a-Gr, 5a-Obe, Δ^{11} 11β,14a,15β [117] 270 Hicic acid 4a-OH, 13-Oxo, 13-OMe, Δ^{11} 11β,14a,158 [117] 271 Arbusculin-E-methylester 4a,66-OH, 13-Oxo, 13-OMe, Δ^{11} 11β,14a,158 [121] 272 Isointermedeol 4a-OH, Δ^{11} 11a,14a,158 [122] 273 4a,0Che, Δ^{11} 11β,14a,156 [122] 274 4B-OFuce,0Ano, 13-OMe, Δ^{11}	259		1β,4β,6α-OH, 13-Oxo, 13-OMe, 14-OGly, Δ^{11}	11β,14α,15β	[112]	
261 Ixerisoside-K I β -Ora-OH-dihydroCou), 4 β ,6 α -OH, 13-Oxo, 13-OMe, 1 β ,1 β -(1 z), λ^{11} 262 Ixerisoside-L see Fig. 2 I β ,6 α -OH, 4 α ,14-Epoxy, 8 α -OMeAcr-(4'-OH), 13-Oxo, 1 β ,1 β ,1 β ,5 β [112] 263 Isoorymbolone I β ,6 α -OH, 4 α ,14-Epoxy, 8 α -OMeAcr-(4'-OH), 13-Oxo, 1 β ,1 β ,1 β ,5 β [111] 264 Corymbolone I $-Oxo, 5w-OH, A^{11}$ I β ,1 β ,1 β ,5 β [111] 265 Isoorymbolone acetate I $-Oxo, 4_{0}-OAc, A^{11}$ I β ,1 β ,1 β ,5 β [117] 266 Puchecinin 3 β -OEpang, 4 c -OH, 8,13-Oxo, 13-OMe, Δ^{11} I β ,1 β ,1 β ,5 β [117] 267 SacoAc, 4 α -OH, 13-Oxo, 13-OMe, Δ^{11} I β ,1 β ,4 β ,1 β [119] [120] 271 Irbuisculin-E-methylester 4 α ,6 α ,1 11 I β ,1 β ,1 β [121] [120] 273 da-OAc, Δ^{11} I β ,1 β ,4 β ,1 δ I[21] [131] [14],4 α ,1 δ [122] 274 4 β -OFu-(2^{-O} MEBu, 3^{+1} Oxo), Δ^{11} I β ,1 β ,4 α ,1 δ [122] 274 4 α -OFu, 4 β^{-1} I β ,1 β ,4 α ,1 δ [122] 275 4 β -OFu-(2^{-O} MEBu, 3^{+1} Oxo), $1^{$	260	Ixerisoide-J	1β-O(α-OH-iVa), 4β,6α-OH, 13-Oxo, 13-OMe, 14-OGly, Δ^{11}	11β,14α,15β	[112]	
262 Ixerisoside-L see Fig. 2 118,14a,155 112 263 Ib,6ac-OH, 4a,14-Epoxy, 8ac-OMeAcr-(4'-OH), 13-Oxo, 13-OMe, a^{11} 14β,155 1111 264 Corymbolone 1-Oxo, 5ac-OH, a^{11} 11β,14a,155 1151 265 Iscorymbolone acetate 1-Oxo, 9ac-OAc, a^{11} 11β,14a,155 1151 266 Pluchecinin 3β-OEpang, 4ac-OH, 8,13-Oxo, 13-OMe, Δ^{11} 11β,14a,155 1161 267 Sac-OAc, 4ac-OH, 13-Oxo, 13-OMe, Δ^{11} 11β,14a,155 1171 268 3.13-Oxo, 4a,5ac Epoxy, 13-OMe, Δ^{11} 11β,14a,155 1181 269 4a-OH, 13-Oxo, 13-OMe, Δ^{11} 11β,14a,155 1121 271 Arbusculin-E-methylester 4a,6a-OH, 13-Oxo, 13-OMe, Δ^{11} 11β,14a,15a 1122 273 4a-OFuc-(2^-OMEBu, Δ^{11} 11β,14a,15a 1122 123 274 4β-OFuc-(2^-OMEBu, Δ^{11} 11β,14a,15a 1122 275 4β-OFuc-(2^-OMEBu, Δ^{11} 11β,14a,15a 1122 276 4β-OFuc-(2^-OMEBu, Δ^{11} 11β,14a,15a 1122	261	Ixerisoside-K	1β-O(α-OH-dihydroCou), 4β,6α-OH, 13-Oxo, 13-OMe, 14-OGly, Δ^{11}	11β,14α,15β	[112]	
263 I β_{co} -OH, $4\alpha_{c1}$ I-Epoxy, 8α -OMeAcr (4'-OH), 13-Oxo, 14 β_{c1} ISp [114] 264 Corymbolone 1-0xo, 9α -OAc, Δ^{11} 11 β_{c1} I4 α_{c1} ISp [111] 265 Isocorymbolone acetate 1-0xo, 9α -OAc, Δ^{11} 11 β_{c1} I4 α_{c1} ISp [15] 266 Pluchecinin 3 α -OAc, 4 α -OH, 13-Oxo, 13-OMe, Δ^{11} 11 β_{c1} I4 β_{c1} ISp [16] 267 3 α -OAc, 4 α -OH, 13-Oxo, 13-OMe, Δ^{11} 11 β_{c1} I4 β_{c1} ISp [17] 268 4 α -OH, Δ^{11} 11 β_{c1} I4 β_{c1} Sp [18] 270 Ilicic acid 4 α -OH, Δ^{11} 11 β_{c1} I4 β_{c1} Sp [121] 271 Arbusculin-E-methylester 4 α_{c0} -OH, Δ^{11} 11 β_{c1} I4 β_{c1} Sa [122] 275 4 β_{c0} Fuc, Δ^{11} 11 β_{c1} I4 α_{c1} Sa [122] 275 4 β_{c0} Fuc, $(2^{-1}$ OMEBu, 3^{4} (Oac), Δ^{11} 11 β_{c1} I4 α_{c1} Sa [122] 276 4 β_{c0} Fuc, $(2^{-1}$ OMEBu, 3^{4} (Oac), Δ^{11} 11 β_{c1} I4 α_{c1} Sa [122] 276 4 β_{c0} Fuc, $(2^{-1}$ OMEBu, 3^{4} (Oac), Δ^{11} 11 β_{c1} I4 α_{c1} Sa [122]	262	Ixerisoside-L	see Fig. 2	11β,14α,15β	[112]	
264 Corymbolone 1-0xo, $9α-OAc, \Delta^{11}$ 11β, 14g, 15β [111] 265 Isocorymbolone acetate 1-0xo, $9α-OAc, \Delta^{11}$ 11β, 14g, 15β [115] 266 Pluchecinin 3β-OEprang, 4α-OH, 8, 13-Oxo, 13-OMe, Δ^{11} 11β, 14β, 15β [16] 267 3α-OAc, 4α-OH, 13-Oxo, 13-OMe, Δ^{11} 11β, 14β, 15β [116] 268 4α-OH, Δ^{11} 11β, 14β, 15β [119] 270 Ikicic acid 4α-OH, Δ^{11} 11β, 14β, 15β [121] 271 Arbusculin-E-methylester 4α-OH, Δ^{11} 11β, 14β, 15α [122] 273 Isointermedeol 4α-OA, Δ^{11} 11β, 14β, 15α [122] 274 4β-OFuc, Δ^{11} 11β, 14α, 15α [122] 275 4β-OFuc-(2^*OMEBu, 3^* , 4'OAc), Δ^{11} 11β, 14α, 15α [122] 276 4β-OFuc-(2^*OMEBu, 3^*, 4'Oixo, 1^{11} 11β, 14α, 15α [122] 277 4β-OFuc-(2^*OMEBu, 3^*, 4'Oixo, 1^{11} 11β, 14α, 15α [123] 278 4β-OFuc-(2^*OMEBu, 3^*, 4'Oixo, 1^{11} 11β, 14α, 15α [123] 2	263		1β,6α-OH, 4α,14-Epoxy, 8α-OMeAcr-(4'-OH), 13-Oxo, 13-OMe, Δ^{11}	14β,15β	[114]	
265 Isocorymbolone acetate $1-0x_0, 9a-OAc, \Delta^{11}$ $11\beta, 14a, 15\beta$ [115] 266 Pluchecinin 3β -OEpang, $4a-OH, 8, 13-Oxo, 13-OMe, \Delta^{11} 14\beta, 15\beta [116] 267 3c-OAc, 4a-OH, 13-Oxo, 13-OMe, \Delta^{11} 11\beta, 14a, 15\beta [117] 268 3, 13-Oxo, 4a, 5a-Epoxy, 13-OMe, \Delta^{11} 11\beta, 14a, 15\beta [117] 269 Ac-OA, 4a, 5A^{11} 11\beta, 14a, 15\beta [119] 270 licic acid 4a-OH, 13-Oxo, 13-OMe, \Delta^{11} 11\beta, 14a, 15\beta [120] 271 Arbusculin-E-methylester 4a, 6a-OH, 13-Oxo, 13-OMe, \Delta^{11} 11a, 14a, 15a [122] 273 4a-OAc, \Delta^{11} 11a, 14a, 15a [122] [22] 274 4B-OFuc, \Delta^{11} 11\beta, 14a, 15a [122] 275 4B-OFuc-(2^{-OMEBu}, 3', 4^{-OAc}), \Delta^{11} 11\beta, 14a, 15a [122] 276 4B-OFuc-(2^{-OMEBu}, 3', 4^{-OAc}), \Delta^{11} 11\beta, 14a, 15a [122] 277 4B-OFuc-(2^{-OMEBu}, 3', 4^{-OAc}), \Delta^{11} 11\beta, 14a, 15a [122] 278 4a-Fudesm-5a-o1 5a-OH, A^{14} 11\beta, 15a, 15\beta [87] 280 foch-fuc-diopany bidn$	264	Corymbolone	1-Oxo, 5 α -OH, Δ^{11}	11β,14β,15β	[111]	
266 Pluchecinin 3β -OEq, 4α -OH, $8, 13$ -Oxo, 13 -OMe, Δ^{11} $14\beta, 15\beta$ $[62]$ 267 3α -OAc, 4α -OH, 13 -Oxo, 13 -OMe, Δ^{11} $11\beta, 14\beta, 15\beta$ $[117]$ 268 $3, 13$ -Oxo, $4, 5, 5c$ -Epxy, 13 -OMe, Δ^{11} $11\beta, 14\beta, 15\beta$ $[117]$ 269 4α -OH, Δ^{11} $11\beta, 14\beta, 15\beta$ $[118]$ 270 licic acid 4α -OH, 13 -Oxo, 13 -OMe, Δ^{11} $11\beta, 14\beta, 15\beta$ $[112]$ 271 Arbusculin-E-methylester $4c$ -OH, Δ^{11} $11\alpha, 14\beta, 15\beta$ $[122]$ 273 isointermedeol 4α -OH, Δ^{11} $11\beta, 14\alpha, 15\alpha$ $[122]$ 274 4B-OFuc, $(2^*-OMeBu, 3^*, 1^*OAc), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ $[122]$ 275 4B-OFuc, $(2^*-OMeBu, 3^*, 4^*OAc), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ $[122]$ 276 4B-OFuc, $(2^*-OMeBu, 3^*, 4^*OAc), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ $[122]$ 277 4B-OFuc, $(2^*-OMeBu, 3^*, 4^*OAc), \Delta^{11}$ $11\beta, 14\alpha, 15\beta$ $[122]$ 278 4α -H-Eudesm-5\alpha-col 5α -OH, 4^{11} $11\beta, 15\alpha, 15\beta$ $[87]$ 280 4\alpha-H-Eudesm-5\alpha-col 5α -OH, 4^{1-1} $11\beta, 15\alpha, 15\beta$ $[87]$	265	Isocorymbolone acetate	1-Oxo, 9α -OAc, Δ^{11}	11β,14α,15β	[115]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	266	Pluchecinin	3β-OEpang, 4α-OH, 8,13-Oxo, 13-OMe, Δ^{11}	14β,15β	[62]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	267		3α -OAc, 4α -OH, 13-Oxo, 13-OMe, Δ^{11}	11β,14β,15β	[116]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	268		3,13-Oxo, 4α , 5α -Epoxy, 13-OMe, Δ^{11}	11β,14β,15β	[117]	
270 Ilicic acid 4α -OH, 13-Oxo, 13-OMe, Δ^{11} $1\dot{\beta}, 1\dot{q}, 15\dot{\beta}$ (119) 271 Arbusculin-E-methylester $4\alpha, \alpha - 0H, \Delta^{11}$ $14\beta, 15\beta$ (120) 272 Isointermedeol 4α -OH, Δ^{11} $11\alpha, 14\beta, 15\beta$ (121) 273 4α -OAc, Δ^{11} $11\beta, 14\beta, 15\alpha$ (122) 274 4β -OFuc, Δ^{11} $11\beta, 14\alpha, 15\alpha$ (122) 275 4β -OFuc, Δ^{11} $11\beta, 14\alpha, 15\alpha$ (122) 276 4β -OFuc, $(2 \cdot OMeBu, 3', 4'OAc), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 277 4β -OFuc, $(2 \cdot OMeBu, 3', 4'OAc), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 278 4β -OFuc, $(2' \cdot OMeBu, 3', 4'Oac), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 279 4β -OFuc, $(2' \cdot OMeBu, 3', 4'Oac), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 278 4β -OFuc, $(2' \cdot OMeBu, 3', 4'Oac), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 279 4β -OFuc, $(2' \cdot OMeBu, 3', 4'Oac), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 279 4α -H-Eudesm-5\alpha-ol 5α -OH, A^{14} $11\beta, 15\alpha, 15\beta$ $[123, 124]$ 281 Occidentalol $11-OH, 5\alpha + H, \Delta^{$	269		4α -OH, Δ^{11}	11β,14β,15β	[118]	
271 Arbusculin-E-methylester $4\alpha, 6\alpha$ -OH, 13-Oxo, 13-OMe, Δ^{11} $1\dot{\beta}, 15\dot{\beta}$ 120 272 Isointermedeol $4\alpha, OH, \Delta^{11}$ $1\alpha, 14\beta, 15\beta$ $[121]$ 273 4α -OA, Δ^{11} $1\beta, 14\alpha, 15\alpha$ $[122]$ 274 4α -OA, Δ^{11} $1\beta, 14\alpha, 15\alpha$ $[122]$ 275 4β -OFuc, $(2^{-}OMeBu), \Lambda^{11}$ $1\beta, 14\alpha, 15\alpha$ $[122]$ 276 4β -OFuc-(2^{-}OMeBu), Λ^{11} $1\beta, 14\alpha, 15\alpha$ $[122]$ 276 4β -OFuc-(2^{-}OMeBu, $3', 4'Oxo), \Delta^{11}$ $1\beta, 14\alpha, 15\alpha$ $[122]$ 277 4β -OFuc-(2^{-}OMeBu, $3', 4'Oxo), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ $[122]$ 278 4β -OFuc-(2^{-}OMeBu, $3', 4'Oxo), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ $[122]$ 278 4β -OFuc-(2^{-}OMeBu, $3', 4'Oxo), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ $[122]$ 280 4α -H-Eudesm-5\alpha-ol 5α -OH, Δ^{11} $11\beta, 15\alpha$ $[123]$ (212) 281 Occidentalol 11 -OH, $5x$ -H, $\Delta^{1,3}$ $11\beta, 15\alpha$ (125) $(23, 12)$ 282 Dehydrocarissone 3 -Oxo, 6β -OH, $(2\alpha, 14-Oxo, 14^{-1})$ $11\beta, 15\alpha$ (125) $(23, 12)$	270	Ilicic acid	4α -OH, 13-Oxo, 13-OMe, Δ^{11}	11B,14B,15B	[119]	
272Isointermedeol $4\alpha \cdot OH, \Delta^{11}$ $11\alpha, 14\beta, 15\beta$ (121) 273 $4\alpha \cdot OAc, \Lambda^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 274 $4\beta \cdot OFuc, (2^* - OMeBu), \Lambda^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 275 $4\beta \cdot OFuc, (2^* - OMeBu), \Lambda^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 276 $4\beta \cdot OFuc, (2^* - OMeBu, \Lambda^{11})$ $11\beta, 14\alpha, 15\alpha$ (122) 277 $4\beta \cdot OFuc, (2^* - OMeBu, 3', 4' OAc), \Lambda^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 278 $4\beta \cdot OFuc, (2^* - OMeBu, 3', 4' OAc), \Lambda^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 279 $4\beta \cdot OFuc, (2^* - OMeBu, 3', 4' Oisopropylidence), \Lambda^{11}$ $11\beta, 14\alpha, 15\alpha$ (122) 280 $4\alpha H$ -Eudesm- 5α -ol $5\alpha \cdot OH, \Lambda^{11}$ $11\beta, 15\alpha$ (122) 281 $0ccidentalol$ $11 \cdot OH, 5\alpha \cdot H, \Lambda^{1.3}$ $11\beta, 15\alpha$ (125) 282Dehydrocarissone $3 \cdot Oxo, 8\alpha \cdot OH, 12 \cdot Oxo, 12 \cdot OMe, \Lambda^{1.4}$ $11\beta, 15\alpha$ (125) 283 $3 \cdot Oxo, 6\beta \cdot OH, 6\alpha, 14 \cdot Oxy, \Lambda^{1.4}$ $11\beta, 15\beta$ (126) 284 $3, 12 \cdot Oxo, 8\beta \cdot OH, 12 \cdot OMe, \Lambda^{1.4}$ $11\beta, 15\beta$ (126) 285Benghalesin-A $3 \cdot Oxo, 6\beta, 7\alpha \cdot OH, 6\alpha, 14 \cdot Oxy, \Lambda^{1.4}$ $11\beta, 15\beta$ (127) 286Benghalesin-B $3 \cdot Oxo, 6\beta, 7\alpha \cdot OH, 6\alpha, 14 \cdot Oxy, \Lambda^{1.4}$ $11\beta, 15\beta$ (127) 287Benghalesin-B $3 \cdot Oxo, 6\beta, 7\alpha \cdot OH, 6\alpha, 14 \cdot Oxy, \Lambda^{1.4}$ $11\beta, 15\beta$ (127) 288 $6c \cdot OAc, \Lambda^{1.4(16)}$ $11\alpha, 15\beta$ (127) 299 $4\beta \cdot OH, 13 \cdot Oxo, 13 \cdot OH, \Lambda^{3.11}$ $11\beta, 15\beta$ (127)	271	Arbusculin-E-methylester	$4\alpha, 6\alpha$ -OH, 13-Oxo, 13-OMe, Δ^{11}	14β,15β	[120]	
273 $4\alpha \cdot OAc, \Delta^{11}$ $11\beta, 14\beta, 15\alpha$ 1122 274 $4\rho \cdot OFuc, \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ 1122 275 $4\beta \cdot OFuc, (2^* \cdot OMeBu), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ 1122 276 $4\beta \cdot OFuc, (2^* \cdot OMeBu), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ 1122 277 $4\beta \cdot OFuc, (2^* \cdot OMeBu, 3^*, 4^* \cdot OAc), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ 1122 278 $4\beta \cdot OFuc, (2^* \cdot OMeBu, 3^*, 4^* \cdot Oisopropylidence), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ 1122 279 $4\beta \cdot OFuc, (2^* \cdot OMeBu, 3^*, 4^* \cdot Oisopropylidence), \Delta^{11}$ $11\beta, 14\alpha, 15\alpha$ 1122 280 $4\alpha \cdot Eudesm \cdot 5\alpha \cdot ol$ $5\alpha \cdot OH, \Lambda^{11}$ $11\beta, 14\beta, 15\beta$ 1122 281 Occidentalol $11 \cdot OH, 5\alpha \cdot H, \Lambda^{1,3}$ $11\beta, 14\beta, 15\beta$ 1122 282 Dehydrocarissone $3 \cdot Oxo, 12 \cdot OHe, \Delta^{1,4}$ $11\beta, 13\alpha, 15\beta$ 187 284 $3, 12 \cdot Oxo, 8\beta \cdot OH, 12 \cdot Oxo, 12 \cdot OHe, \Delta^{1,4}$ $11\beta, 15\alpha, 15\beta$ 187 286 Benghalesin-A $3 \cdot Oxo, 6\beta \cdot OH, 6\alpha, 14 \cdot Oxy, \Delta^{1,4}$ $11\beta, 15\beta$ 126 287 Benghalesin-B $3 \cdot Oxo, 13 \cdot OMe, \Delta^{2,11}$ $11\alpha, 15\beta$ 126 288 <td>272</td> <td>Isointermedeol</td> <td>4α-OH, Δ^{11}</td> <td>11α,14β,15β</td> <td>[121]</td>	272	Isointermedeol	4α -OH, Δ^{11}	11α,14β,15β	[121]	
274 4β-OFuc, Δ^{11} 11β, 14α, 15α [122] 275 4β-OFuc-(2'-OMeBu), Δ^{11} 11β, 14α, 15α [122] 276 4β-OFuc-(2'-OMeBu), Δ^{11} 11β, 14α, 15α [122] 277 4β-OFuc-(2'-OMeBu, 3', 4'OAc), Δ^{11} 11β, 14α, 15α [122] 278 4β-OFuc-(2'-OMeBu, 3', 4'OAc), Δ^{11} 11β, 14α, 15α [122] 278 4β-OFuc-(2'-OMeBu, 3', 4'Oisopropylidence), Δ^{11} 11β, 14α, 15α [122] 279 4β-OFuc-(2'-OMeBu, 3', 4'Oisopropylidence), Δ^{11} 11β, 14α, 15α [122] 280 4αH-Eudesm-5α-ol 5α-OH, 4 ^{1,1} 11β, 15α, 15β [125] 281 Occidentalol 11-OH, 5α-H, 4 ^{1,3} 11β, 15α, 15β [87] 282 Dehydrocarissone 3-Oxo, 12-OMe, 4 ^{1,4} 11β, 13α, 15β [87] 284 3.12-Oxo, 8β-OH, 12-Oxe, 12-OMe, 4 ^{1,4} 11β, 13α, 15β [87] 285 3.8, 12-Oxo, 12-OMe, 4 ^{1,4} 11β, 13α, 15β [87] 286 Benghalesin-A 3-Oxo, 6β-Or-OH, 6α, 14-Oxy, 4 ^{1,4} 11β, 15β [126] 287 Benghalesin-B 3-Oxo, 6β, 7α-OH, 6α, 14-Oxy, 4 ^{1,4} 11β, 15β [127] <	273		4α -OAc, Δ^{11}	11β,14β,15α	[122]	
275 4β-OFuc-(2'-OMeBu), Δ ¹¹ 11β,14α,15α [122] 276 4β-OFuc-(2'OMeBu, 3',4'OAc), Δ ¹¹ 11β,14α,15α [122] 277 4β-OFuc-(2'OMeBu, 3',4'OAc), Δ ¹¹ 11β,14α,15α [122] 278 4β-OFuc-(2'OMeBu, 3',4'Oisopropylidence), Δ ¹¹ 11β,14α,15α [122] 279 4β-OFuc-(2'OMeBu, 3',4'Oisopropylidence), Δ ¹¹ 11β,14α,15α [122] 280 4αH-Eudesm-5α-ol 5α-OH, Δ ¹¹ 11β,14α,15α [122] 280 4αH-Eudesm-5α-ol 5α-OH, Δ ¹¹ 11β,15α [123] 281 Occidentalol 11-OH, 5α-H, Δ ^{1,3} 11β,15α [125] 282 Dehydrocarissone 3-Oxo, 8α-OH, 12-Oxo, 12-OMe, Δ ^{1,4} 11β,13α,15β [87] 283 3-Oxo, 8α-OH, 12-Oxo, 12-OMe, Δ ^{1,4} 11β,13α,15β [87] 284 3,12-Oxo, 12-OMe, Δ ^{1,4} 11β,13α,15β [87] 285 3,8,12-Oxo, 13-OMe, Δ ^{1,4} 11β,15β [126] 286 Benghalesin-A 3-Oxo, 6β-OH, 6α,14-Oxy, Δ ^{1,4} 11β,15β [127] 287 Benghalesin-B 3-Oxo, 13-OMe, Δ ^{2,11} 11β,15β [127] 289 -0	274		4 β -OFuc, Δ^{11}	11β,14α,15α	[122]	
276 4β -OFuc-(OAc)3, Δ^{11} 11 β ,14 α ,15 α [122] 277 4 β -OFuc-(2'OMeBu, 3',4'OAc), Δ^{11} 11 β ,14 α ,15 α [122] 278 4 β -OFuc-(2'OMeBu, 3',4'OAc), Δ^{11} 11 β ,14 α ,15 α [122] 278 4 β -OFuc-(2'OMeBu, 3',4'Oisopropylidence), Δ^{11} 11 β ,14 α ,15 α [122] 279 4 β -OFuc-(2'OMeBu, 3',4'Oisopropylidence), Δ^{11} 11 β ,14 α ,15 α [122] 280 4 α -H-Eudesm-5 α -ol 5 α -OH, Δ^{11} 11 β ,14 α ,15 β [123],124] 281 Occidentalol 11-OH, 5 α -H, $\Delta^{1,3}$ 11 β ,15 β [125] 282 Dehydrocarissone 3-Oxo, 11-OH, $\Delta^{1,4}$ 11 β ,15 α ,15 β [87] 283 3-Oxo, 8 β -OH, 12-Oxo, 12-OMe, $\Delta^{1,4}$ 11 β ,13 α ,15 β [87] 284 3,12-Oxo, 12-OMe, $\Delta^{1,4}$ 11 β ,13 α ,15 β [87] 285 3,8,12-Oxo, 12-OMe, $\Delta^{1,4}$ 11 β ,13 α ,15 β [87] 286 Benghalesin-A 3-Oxo, 6 β ,7 α -OH, 6 α ,14-Peroxy, $\Delta^{1,4}$ 11 β ,15 β [126] 287 Benghalesin-B 3-Oxo, 6 β ,7 α -OH, 6 α ,14-Oxy, $\Delta^{1,4}$ 11 α ,15 β [20] 290	275		4β -OFuc-(2'-OMeBu), Δ^{11}	11β,14α,15α	[122]	
2774β-OFuc-(2'OMeBu, 3',4'OAc), Δ ¹¹ 11β,14α,15α[122]2784β-OFuc-(2'OMeBu, 3',4'Oisopropylidene), Δ ¹¹ 11β,14α,15α[122]2794β-OFuc-(2'OMeBu, 3',4'Oisopropylidence), Δ ¹¹ 11β,14α,15α[122]2804αH-Eudesm-5α-ol5α-OH, Δ ¹¹ 11β,14α,15α[122]2804αH-Eudesm-5α-ol5α-OH, Δ ¹¹ 11β,15β[123,124]281Occidentalol11-OH, 5α-H, Δ ¹³ 11β,15β[125]282Dehydrocarissone3-Oxo, 11-OH, Δ ^{1,4} 11β,15β[65]2833-Oxo, 8α-OH, 12-Oxo, 12-OMe, Δ ^{1,4} 11β,15α,15β[87]2843,12-Oxo, 8β-OH, 12-OMe, Δ ^{1,4} 11β,15α,15β[87]28538,12-Oxo, 6β-OH, 6α,14-Peroxy, Δ ^{1,4} 11β,15β[126]287Benghalesin-A3-Oxo, 6β-OH, 6α,14-Oxy, Δ ^{1,4} 11β,15β[126]2886α-OAc, Δ ^{1,4(14)} 11α,15β[20]2894β-OH, 13-Oxo, 13-OMe, Δ ^{2,11} 11β,15β[127]290Δ ^{3,5} 11β,15β[14]29111-OXJ-(OAc) ₃ , Δ ^{3,5} 11β,15β[84]29211-OXJ-(OAc) ₃ , Δ ^{3,5} 11β,15β[128]293α-SelineneΔ ^{3,11} 15β[129]294Hypochoeroside-L1β-OGi, 14-Oxo, 14-OH, Δ ^{3,11} 15β[12]2951β-O(α-OH-dihydroCou), 6α-OH, 13-OXo, 13-OMe, 11β,15β[13]2961β-O(α-OH-dihydroCou), 6α-OH, 13-OXo, 13-OMe, 11β,15β[13]2971α-Tigloyloxypolyachyrol1α-OTig, 2α, 9/3-OAc, 15-OH, Δ ^{3,11} 11β,15β[13] <td>276</td> <td></td> <td>4β-OFuc-(OAc)₃, Δ^{11}</td> <td>11β,14α,15α</td> <td>[122]</td>	276		4β -OFuc-(OAc) ₃ , Δ^{11}	11β,14α,15α	[122]	
278 4β-OFuc(3',4'Oisopropylidene), Δ ¹¹ 11β,14α,15α [122] 279 4β-OFuc(2'-OMeBu, 3',4'Oisopropylidene), Δ ¹¹ 11β,14α,15α [122] 280 4αH-Eudesm-5α-ol 5α-OH, Δ ¹¹ 11β,14α,15α [122] 280 4αH-Eudesm-5α-ol 5α-OH, Δ ¹¹ 11β,14α,15α [122] 281 Occidentalol 11-OH, 5α-H, Δ ^{1,3} 11β,15β [65] 282 Dehydrocarissone 3-Oxo, 11-OH, Δ ^{1,4} 11β,15β [65] 283 3-Oxo, 8α-OH, 12-Oxo, 12-OMe, Δ ^{1,4} 11β,15α,15β [87] 284 3,12-Oxo, 12-OMe, Δ ^{1,4} 11β,15β [87] 285 3,8,12-Oxo, 12-OMe, Δ ^{1,4} 11β,15β [126] 287 Benghalesin-A 3-Oxo, 6β,7α-OH, 6α,14-Oxy, Δ ^{1,4} 11β,15β [126] 288 6α-OAc, Δ ^{1,4(1,4)} 11α,15β [20] 289 4β-OH, 13-Oxo, 13-OMe, Δ ^{2,11} 11β,15β [127] 290 $Δ^{3.5}$ 11β,15β [15] 291 11-OCin, $Δ^{3.5}$ 11β,15β [15] 293 α-Selinene $Δ^{3.11}$ 15β [128] 294<	277		4 β -OFuc-(2'OMeBu, 3',4'OAc), Δ^{11}	11β,14α,15α	[122]	
2794β-OFuc-(2'-OMEBu, 3',4'Oisopropylidence), Δ ¹¹ 11β,14α,15α[122]2804αH-Eudesm-5α-ol5α-OH, Δ ¹¹ 11β,14β,15β[123,124]281Occidentalol11-OH, 5α-H, Δ ^{1,3} 11β,15α[125]282Dehydrocarissone3-Oxo, 11-OH, Δ ^{1,4} 11β,15α[125]2833-Oxo, 8α-OH, 12-Oxo, 12-OMe, Δ ^{1,4} 11β,15α,15β[87]2843,12-Oxo, 8β-OH, 12-OMe, Δ ^{1,4} 11β,13α,15β[87]2853,8,12-Oxo, 12-OMe, Δ ^{1,4} 11β,15β[126]287Benghalesin-A3-Oxo, 6β-OH, 6α,14-Peroxy, Δ ^{1,4} 11β,15β[126]2886α-OAc, Δ ^{1,4(14)} 11β,15β[126]2894β-OH, 13-Oxo, 13-OMe, Δ ^{2,11} 11β,15β[127]290 $Δ^{3,5}$ 11β,15α[127]29111-OCin, Δ^{3,5}11β,15β[128]29211-OCin, Δ^{3,5}11β,15β[129]293α-Selinene $Δ^{3,11}$ 15β[129]294Hypochoeroside-L1β-OG,14,04,04-11β,15β[129]2951β-OH, 13-OGly, $Δ^{3,11}$ 15β[129]2961β-OG, OH-dihydroCou), 6α-OH, 13-Oxo, 13-OMe, 11β,15β[112]2971α-Tigloyloxypolyachyrol1α-OTig, 2α, 9/3-OAc, 15-OH, $Δ^{3,11}$ 11β,15β[132]2992α-OMe, 13-OXo, 13-OH, $Δ^{3,11}$ 11β,15β[132]2992α-OMe, 13-OXo, 13-OH, $Δ^{3,11}$ 11β,15β[132]2992α-OMe, 13-OXo, 13-OH, $Δ^{3,11}$ 11β,15β[132]2992α-OMe, 13-OXo, 13-OH, $Δ^$	278		4 β -OFuc(3',4'Oisopropylidene), Δ^{11}	11β,14α,15α	[122]	
2804αH-Eudesm-5α-ol5α-OH, Δ^{11} 112.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	279		4 β -OFuc-(2'-OMeBu, 3',4'Oisopropylidence), Δ^{11}	11β,14α,15α	[122]	
281Occidentalol11-OH, 5α -H, $\Delta^{1,3}$ 11 β , 15 α [125]282Dehydrocarissone3-Oxo, 11-OH, $\Delta^{1,4}$ 11 β , 15 α [125]2833-Oxo, 8 α -OH, 12-Oxo, 12-OMe, $\Delta^{1,4}$ 11 β , 15 β [65]2843, 12-Oxo, 8 β -OH, 12-OMe, $\Delta^{1,4}$ 11 β , 13 α , 15 β [87]2853, 8, 12-Oxo, 12-OMe, $\Delta^{1,4}$ 11 β , 13 α , 15 β [87]286Benghalesin-A3-Oxo, 6 β -OH, 6 α , 14-Peroxy, $\Delta^{1,4}$ 11 β , 15 β [126]287Benghalesin-B3-Oxo, 6 β -OA, α , 14-Peroxy, $\Delta^{1,4}$ 11 β , 15 β [126]2886 α -OAc, $\Delta^{1,4(14)}$ 11 α , 15 β [127]290 $\Delta^{3,5}$ 11 β , 15 α [74]29111-OXyl-(OAc)_3, $\Delta^{3,5}$ 11 β , 15 β [127]290 $\Delta^{3,5}$ 11 β , 15 β [127]29111-OXyl-(OAc)_3, $\Delta^{3,5}$ 11 β , 15 β [127]293 α -Selinene $\Delta^{3,11}$ 11 β , 15 β [129]294Hypochoeroside-L1 β -OGly, 14 -Oxo, 14-OH, $\Delta^{3,11}$ 15 β [129]2951 β -OGly, $\Delta^{3,11}$ -(130]2961 β -OGly, $\Delta^{3,11}$ -(131]2971 α -Tigloyloxypolyachyrol1 α -OTig, 2 α , 9/3-OAc, 15-OH, $\Delta^{3,11}$ 11 β , 15 β [132]2992 α -OMe, 13-Oxo, 13-OHe, $\Delta^{3,11}$ 11 β , 15 β [132]2992 α -OMe, 13-Oxo, 13-OH, $\Delta^{3,11}$ 11 β , 15 α [133]	280	4αH-Eudesm-5α-ol	5α -OH, Δ^{11}	116.146.156	[123.124]	
282Dehydrocarissone $3-0xo, 11-OH, \Delta^{1,4}$ $11\beta, 15\beta$ $[65]$ 283 $3-0xo, 8\alpha-OH, 12-0xo, 12-OMe, \Delta^{1,4}$ $11\beta, 13\alpha, 15\beta$ $[87]$ 284 $3, 12-0xo, 8\beta-OH, 12-OMe, \Delta^{1,4}$ $11\beta, 13\alpha, 15\beta$ $[87]$ 285 $3, 8, 12-0xo, 12-OMe, \Delta^{1,4}$ $11\beta, 13\alpha, 15\beta$ $[87]$ 286Benghalesin-A $3-0xo, 6\beta-OH, 6\alpha, 14-Peroxy, \Delta^{1,4}$ $11\beta, 15\beta$ $[126]$ 287Benghalesin-B $3-0xo, 6\beta, 7\alpha-OH, 6\alpha, 14-Peroxy, \Delta^{1,4}$ $11\beta, 15\beta$ $[126]$ 288 $6\alpha-OAc, \Delta^{1,4(14)}$ $11\alpha, 15\beta$ $[20]$ 289 $4\beta-OH, 13-Oxo, 13-OMe, \Delta^{2,11}$ $11\beta, 15\alpha$ $[74]$ 290 $\Delta^{3,5}$ $11\beta, 15\alpha$ $[74]$ 291 $11-OXyl-(OAc)_3, \Delta^{3,5}$ $11\beta, 15\beta$ $[125]$ 293 α -Selinene $\Delta^{3,11}$ $11\beta, 15\beta$ $[128]$ 294Hypochoeroside-L $1\beta-OGly, 14-Oxo, 14-OH, \Delta^{3,11}$ 15β $[129]$ 295 $1\beta-OGly, \Delta^{3,11}$ $$ $[130]$ 296 $1\beta-O(\alpha-OH-dihydroCou), 6\alpha-OH, 13-Oxo, 13-OMe, 11\beta, 15\beta$ $[112]$ 297 1α -Tigloyloxypolyachyrol $1\alpha-OTig, 2\alpha, 9/3-OAc, 15-OH, \Delta^{3,11}$ $11\beta, 15\beta$ $[132]$ 298 $2\alpha-OMe, 13-OXo, 13-OH, \Delta^{3,11}$ $11\beta, 15\beta$ $[132]$ 299 $2\alpha-OMe, 13-OXo, 13-OH, \Delta^{3,11}$ $11\beta, 15\beta$ $[132]$ 299 $2\alpha-OMe, 13-OXo, 13-OH, \Delta^{3,11}$ $11\beta, 15\beta$ $[132]$ 299 $2\alpha-OMe, 13-OXo, 13-OH, \Delta^{3,11}$ $11\beta, 15\beta$ $[132]$	281	Occidentalol	11-OH, 5 α -H, $\Delta^{1,3}$	11β,15α	[125]	
2833-Oxo, 8 α -OH, 12-Oxo, 12-OMe, $\Delta^{1,4}$ 11B, 13 α , 15 β [87]2843,12-Oxo, 8 β -OH, 12-OMe, $\Delta^{1,4}$ 11B, 13 α , 15 β [87]2853,8,12-Oxo, 12-OMe, $\Delta^{1,4}$ 11B, 13 α , 15 β [87]286Benghalesin-A3-Oxo, 6 β -OH, 6 α , 14-Peroxy, $\Delta^{1,4}$ 11B, 15 β [126]287Benghalesin-B3-Oxo, 6 β , 7 α -OH, 6 α , 14-Oxy, $\Delta^{1,4}$ 11B, 15 β [126]2886 α -OAc, $\Delta^{1,4(14)}$ 11 α , 15 β [20]2894 β -OH, 13-Oxo, 13-OMe, $\Delta^{2,11}$ 11B, 15 α [74]290 $\Delta^{3,5}$ 11B, 15 α [74]29111-OXy1-(OAc)_3, $\Delta^{3,5}$ 11B, 15 β [127]293 α -Selinene $\Delta^{3,11}$ 11B, 15 β [128]294Hypochoeroside-L1 β -OGly, 14-Oxo, 14-OH, $\Delta^{3,11}$ 15 β [129]2951 β -OGly, 14-Oxo, 14-OH, $\Delta^{3,11}$ 15 β [129]2961 β -OGly, 14-Oxo, 14-OH, $\Delta^{3,11}$ -[130]2961 β -OGly, 14-Oxo, 14-OH, $\Delta^{3,11}$ 11 β , 15 β [129]2971 α -Tigloyloxypolyachyrol1 α -OTig, 2 α , 9/3-OAc, 15-OH, $\Delta^{3,11}$ 11 β , 15 β [131]2981 α -OX, 2 α , 5 α -Peroxy, $\Delta^{3,11}$ 11 β , 15 β [132]2992 α -OMe, 13-Oxo, 13-OH, $\Delta^{3,11}$ 11 β , 15 β [127]3007-epi-Teucrenone2-Oxo, 7 α -OH, $\Delta^{3,11}$ 11 β , 15 α [133]	282	Dehydrocarissone	3-Oxo, 11-OH, $\Delta^{1,4}$	11B,15B	[65]	
2843,12-Oxo, 8\beta-OH, 12-OMe, $\Delta^{1,4}$ 11 β ,13 α ,15 β [87]2853,8,12-Oxo, 12-OMe, $\Delta^{1,4}$ 11 β ,13 α ,15 β [87]286Benghalesin-A3-Oxo, 6 β -OH, 6α ,14-Peroxy, $\Delta^{1,4}$ 11 β ,15 β [126]287Benghalesin-B3-Oxo, 6 β ,7 α -OH, 6α ,14-Oxy, $\Delta^{1,4}$ 11 β ,15 β [126]288 6α -OAc, $\Delta^{1,4(14)}$ 11 α ,15 β [20]289 4β -OH, 13-Oxo, 13-OMe, $\Delta^{2,11}$ 11 β ,15 α [74]290 $\Delta^{3,5}$ 11 β ,15 α [74]29111-OXyl-(OAc)_3, $\Delta^{3,5}$ 11 β ,15 β [84]29211-OCin, $\Delta^{3,5}$ 11 β ,15 β [127]293 α -Selinene $\Delta^{3,11}$ 15 β [128]294Hypochoeroside-L1 β -OGly, $\Delta^{3,11}$ 15 β [129]2951 β -OGly, $\Delta^{3,11}$ [130]2961 β -OGly, $\Delta^{3,11}$ [130]2971 α -Tigloyloxypolyachyrol1 α -OTig, 2 α , 9/3-OAc, 15-OH, $\Delta^{3,11}$ 11 β ,15 β [132]2982 α -OMe, 13-Oxo, 13-OHe, $\Delta^{3,11}$ 11 β ,15 β [132]2992 α -OMe, 13-Oxo, 13-OH, $\Delta^{3,11}$ 11 β ,15 β [127]3007-epi-Teucrenone2-Oxo, 7 α -OH, $\Delta^{3,11}$ 11 β ,15 α [131]	283		3-Oxo, 8 α -OH, 12-Oxo, 12-OMe, $\Delta^{1,4}$	11β.13α.15β	[87]	
285 $3,8,12$ -Oxo, 12 -OMe, $\Delta^{1,4}$ $11\beta,13\alpha,15\beta$ $[87]$ 286Benghalesin-A 3 -Oxo, 6β -OH, $6\alpha,14$ -Peroxy, $\Delta^{1,4}$ $11\beta,15\beta$ $[126]$ 287Benghalesin-B 3 -Oxo, $6\beta,7\alpha$ -OH, $6\alpha,14$ -Oxy, $\Delta^{1,4}$ $11\beta,15\beta$ $[126]$ 288 6α -OAc, $\Delta^{1,4(14)}$ $11\alpha,15\beta$ $[20]$ 289 4β -OH, 13 -Oxo, 13 -OMe, $\Delta^{2,11}$ $11\beta,15\alpha$ $[74]$ 290 $\Delta^{3,5}$ $11\beta,15\alpha$ $[74]$ 291 11 -OXyl-(OAc) ₃ , $\Delta^{3,5}$ $11\beta,15\beta$ $[15]$ 293 α -Selinene $\Delta^{3,11}$ $11\beta,15\beta$ $[128]$ 294Hypochoeroside-L 1β -OGly, 14 -Oxo, 14 -OH, $\Delta^{3,11}$ 15β $[129]$ 295 1β -OH, 13 -OGly, $\Delta^{3,11}$ $$ $[130]$ 296 1β -O(α -OH-dihydroCou), 6α -OH, 13 -Oxo, 13 -OMe, $11\beta,15\beta$ $[112]$ 297 1α -Tigloyloxypolyachyrol 1α -OTig, 2α , $9/3$ -OAc, 15 -OH, $\Delta^{3,11}$ $11\beta,15\beta$ $[132]$ 298 $-$ OXe, $2\alpha,5\alpha$ -Peroxy, $\Delta^{3,11}$ $11\beta,15\beta$ $[132]$ 299 2α -OMe, 13 -Oxo, 13 -OH, $\Delta^{3,11}$ $11\beta,15\beta$ $[132]$ 290 2α -OMe, 13 -Oxo, 13 -OH, $\Delta^{3,11}$ $11\beta,15\beta$ $[132]$ 291 1 -Oxo, $2\alpha,5\alpha$ -Peroxy, $\Delta^{3,11}$ $11\beta,15\beta$ $[132]$ 293 2α -OMe, 13 -Oxo, 13 -OH, $\Delta^{3,11}$ $11\beta,15\beta$ $[132]$	284		3.12-Oxo. 8B-OH. 12-OMe. $\Delta^{1,4}$	11β.13α.15β	[87]	
286Benghalesin-A3-Oxo, 6 β -OH, 6 α , 14-Peroxy, $\Delta^{1,4}$ 11 β , 15 β [126]287Benghalesin-B3-Oxo, 6 β -OH, 6 α , 14-Oxy, $\Delta^{1,4}$ 11 β , 15 β [126]2886 α -OAc, $\Delta^{1,4(14)}$ 11 α , 15 β [20]2894 β -OH, 13-Oxo, 13-OMe, $\Delta^{2,11}$ 11 β , 14 α , 15 β [127]290 $\Delta^{3,5}$ 11 β , 15 α [74]29111-OXyl-(OAc)_3, $\Delta^{3,5}$ 11 β , 15 β [15]29211-OCin, $\Delta^{3,5}$ 11 β , 15 β [15]293 α -Selinene $\Delta^{3,11}$ 11 β , 15 β [128]294Hypochoeroside-L1 β -OGly, 14-Oxo, 14-OH, $\Delta^{3,11}$ 15 β [129]2951 β -OGly, $\Delta^{3,11}$ -[130]2961 β -O(α -OH-dihydroCou), 6 α -OH, 13-Oxo, 13-OMe,11 β , 15 β [121]2971 α -Tigloyloxypolyachyrol1 α -OTig, 2 α , 9/3-OAc, 15-OH, $\Delta^{3,11}$ 11 β , 15 β [131]2981-Oxo, 2 α , 5 α -Peroxy, $\Delta^{3,11}$ 11 β , 15 β [132]2992 α -OMe, 13-Oxo, 13-OH, $\Delta^{3,11}$ 11 β , 15 β [132]2902 α -OMe, 13-Oxo, 13-OH, $\Delta^{3,11}$ 11 β , 15 β [132]2911-Oxo, 2 α , 7 α -OH, $\Delta^{3,11}$ 11 β , 15 β [132]	285		3.8.12-Oxo. 12-OMe. $\Delta^{1,4}$	116.13α.156	[87]	
287Benghalesin-B3-Oxo, $6\beta, 7\alpha$ -OH, $6\alpha, 14$ -Oxy, $\Delta^{1,4}$ 11 $\beta, 15\beta$ [126]288 6α -OAc, $\Delta^{1,4(14)}$ $11\alpha, 15\beta$ [20]289 4β -OH, 13-Oxo, 13-OMe, $\Delta^{2,11}$ $11\beta, 15\alpha$ [127]290 $\Delta^{3,5}$ $11\beta, 15\alpha$ [74]291 11 -OXyl-(OAc) ₃ , $\Delta^{3,5}$ $11\beta, 15\beta$ [84]292 11 -OCin, $\Delta^{3,5}$ $11\beta, 15\beta$ [15]293 α -Selinene $\Delta^{3,11}$ $11\beta, 15\beta$ [128]294Hypochoeroside-L 1β -OGly, 14-Oxo, 14-OH, $\Delta^{3,11}$ 15β [129]295 1β -OGly, 14-Oxo, 14-OH, $\Delta^{3,11}$ $$ [130]296 1β -OGly, $\Delta^{3,11}$ $$ [130]297 1α -Tigloyloxypolyachyrol 1α -OTig, 2α , 9/3-OAc, 15-OH, $\Delta^{3,11}$ $11\beta, 15\beta$ [131]298 1 -Oxo, $2\alpha, 5\alpha$ -Peroxy, $\Delta^{3,11}$ $11\beta, 15\beta$ [132]299 2α -OMe, 13-Oxo, 13-OH, $\Delta^{3,11}$ $11\beta, 15\beta$ [127]3007-epi-Teucrenone 2 -Oxo, 7α -OH, $\Delta^{3,11}$ $11\beta, 15\alpha$ [133]	286	Benghalesin-A	3-Oxo, 6B-OH, 6 α , 14-Peroxy, $\Delta^{1,4}$	116.156	[126]	
288 6α -OAc, $\Delta^{1,4(14)}$ $11\alpha,15\beta$ $[125]$ 289 4β -OH, 13-OXo, 13-OMe, $\Delta^{2,11}$ $11\alpha,15\beta$ $[20]$ 290 $\Delta^{3,5}$ $11\beta,15\alpha$ $[74]$ 291 11 -OXyl-(OAc) ₃ , $\Delta^{3,5}$ $11\beta,15\beta$ $[84]$ 292 11 -OCin, $\Delta^{3,5}$ $11\beta,15\beta$ $[15]$ 293 α -Selinene $\Delta^{3,11}$ $11\beta,15\beta$ $[128]$ 294Hypochoeroside-L 1β -OGly, 14 -Oxo, 14 -OH, $\Delta^{3,11}$ 15β $[129]$ 295 1β -OGly, $\Delta^{3,11}$ $$ $[130]$ 296 1β -OGly, $\Delta^{3,11}$ $$ $[130]$ 297 1α -Tigloyloxypolyachyrol 1α -OTig, 2α , $9/3$ -OAc, 15 -OH, $\Delta^{3,11}$ $11\beta,15\beta$ $[132]$ 298 1 -Oxo, $2\alpha,5\alpha$ -Peroxy, $\Delta^{3,11}$ $11\beta,15\beta$ $[132]$ 299 2α -OMe, 13 -Oxo, 13 -OH, $\Delta^{3,11}$ $11\beta,15\beta$ $[127]$ 3007-epi-Teucrenone 2 -Oxo, 7α -OH, $\Delta^{3,11}$ $11\beta,15\alpha$ $[133]$	287	Benghalesin-B	3-Oxo 6 β 7 α -OH 6 α 14-Oxy $\Lambda^{1,4}$	116.156	[126]	
289 4β -OH, 13-Oxo, 13-OMe, $\Delta^{2,11}$ $11\beta,14\alpha,15\beta$ $[127]$ 290 $\Delta^{3.5}$ $11\beta,15\alpha$ $[74]$ 291 11 -OXyl-(OAc) ₃ , $\Delta^{3.5}$ $11\beta,15\beta$ $[84]$ 292 11 -OCin, $\Delta^{3.5}$ $11\beta,15\beta$ $[15]$ 293 α -Selinene $\Delta^{3,11}$ $11\beta,15\beta$ $[128]$ 294Hypochoeroside-L 1β -OGly, 14 -Oxo, 14 -OH, $\Delta^{3,11}$ 15β $[129]$ 295 1β -OGly, 14 -Oxo, 14 -OH, $\Delta^{3,11}$ $$ $[130]$ 296 1β -O(α -OH-dihydroCou), 6α -OH, 13 -Oxo, 13 -OMe, $11\beta,15\beta$ $[112]$ 297 1α -Tigloyloxypolyachyrol 1α -OTig, 2α , $9/3$ -OAc, 15 -OH, $\Delta^{3,11}$ $11\beta,15\beta$ $[132]$ 298 1 -Oxo, $2\alpha,5\alpha$ -Peroxy, $\Delta^{3,11}$ $11\beta,15\beta$ $[132]$ 299 2α -OMe, 13 -Oxo, 13 -OH, $\Delta^{3,11}$ $11\beta,15\beta$ $[127]$ 3007-epi-Teucrenone 2 -Oxo, 7α -OH, $\Delta^{3,11}$ $11\beta,15\alpha$ $[133]$	288	Dengination D	6α -OAc $\Lambda^{1,4(14)}$	110,15B	[20]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	289		4B-OH 13-Oxo 13-OMe $\Lambda^{2,11}$	11B,14a,15B	[127]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	290		$\Lambda^{3,5}$	118.15α	[74]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	291		$\frac{1}{100}$ 11-OXvl-(OAc) ₂ , $\Delta^{3,5}$	116.156	[84]	
293 α -Selinene $\Delta^{3,11}$ 11β , 15 β 11β , 15 β 128 294 Hypochoeroside-L 1β -OGly, 14-Oxo, 14-OH, $\Delta^{3,11}$ 15β 129 295 1β -OH, 13-OGly, $\Delta^{3,11}$ $ [130]$ 296 1β -O(α -OH-dihydroCou), 6α -OH, 13-Oxo, 13-OMe, 11 β , 15 β $[112]$ 297 1α -Tigloyloxypolyachyrol 1α -OTig, 2α , 9/3-OAc, 15-OH, $\Delta^{3,11}$ 11β , 15 β $[131]$ 298 1 -Oxo, 2α , 5 α -Peroxy, $\Delta^{3,11}$ 11β , 15 β $[132]$ 299 2α -OMe, 13-Oxo, 13-OH, $\Delta^{3,11}$ 11β , 15 β $[127]$ 300 7-epi-Teucrenone 2 -Oxo, 7α -OH, $\Delta^{3,11}$ 11β , 15 α $[133]$	292		11-OCin. $\Delta^{3,5}$	116.156	[15]	
294 Hypochoeroside-L 1 β -OGly, 14-Oxo, 14-OH, $\Delta^{3,11}$ 15 β [129] 295 1 β -OGly, 13-OGly, $\Delta^{3,11}$ - [130] 296 1 β -O(α -OH-dihydroCou), 6 α -OH, 13-Oxo, 13-OMe, 14-OGly, $\Delta^{3,11}$ - [131] 297 1 α -Tigloyloxypolyachyrol 1 α -OTig, 2 α , 9/3-OAc, 15-OH, $\Delta^{3,11}$ 11 β ,15 β [131] 298 1-Oxo, 2 α ,5 α -Peroxy, $\Delta^{3,11}$ 11 β ,15 β [132] 299 2 α -OMe, 13-Oxo, 13-OH, $\Delta^{3,11}$ 11 β ,15 β [127] 300 7-epi-Teucrenone 2-Oxo, 7 α -OH, $\Delta^{3,11}$ 11 β ,15 α [133]	293	α-Selinene	$\Lambda^{3,11}$	118,158	[128]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	294	Hypochoeroside-L	$-$ 18-OGly, 14-Oxo, 14-OH, $\Lambda^{3,11}$	15B	[120]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	295	Hypoenoeloside E	18-OH 13-OGly $\Lambda^{3,11}$		[120]	
2971 α -Tigloyloxypolyachyrol1 α -OTig, 2 α , 9/3-OAc, 15-OH, $\Delta^{3,11}$ 11 β ,15 α [131]2981-Oxo, 2 α ,5 α -Peroxy, $\Delta^{3,11}$ 11 β ,15 β [132]2992 α -OMe, 13-Oxo, 13-OH, $\Delta^{3,11}$ 11 β ,15 β [127]3007-epi-Teucrenone2-Oxo, 7 α -OH, $\Delta^{3,11}$ 11 β ,15 α [133]	296		1β-O(α -OH-dihydroCou), 6 α -OH, 13-Oxo, 13-OMe, 14-OGly $\Lambda^{3,11}$	11β,15β	[112]	
298 1-Oxo, $2\alpha, 5\alpha$ -Peroxy, $\Delta^{3,11}$ 11 $\beta, 15\beta$ [132] 299 2α -OMe, 13-Oxo, 13-OH, $\Delta^{3,11}$ 11 $\beta, 15\beta$ [127] 300 7-epi-Teucrenone 2-Oxo, 7α -OH, $\Delta^{3,11}$ 11 $\beta, 15\alpha$ [133]	297	lα-Tigloyloxypolyachyrol	1α -OTig. 2 α . 9/3-OAc. 15-OH $\Lambda^{3,11}$	11B.15a	[131]	
299 2α -OMe, 13-Oxo, 13-OH, $\Delta^{3,11}$ 11 β ,15 β [127] 300 7-epi-Teucrenone 2-Oxo, 7 α -OH, $\Delta^{3,11}$ 11 β ,15 α [133]	298		1-Oxo 2α 5α -Peroxy $\Lambda^{3,11}$	118,158	[132]	
$\begin{array}{c} 2.0 \text{ xo}, 10 \text{ cost}, 10 \text{ cost},$	299		2α -OMe. 13-Oxo. 13-OH. $\Delta^{3,11}$	116.156	[127]	
	300	7-epi-Teucrenone	2-Oxo, 7α -OH, $\Delta^{3,11}$	11β,15α	[133]	

Subst.	Trivial names	Substituents	Stereochemistry	References
301		5-OH, Δ ^{3,11}	11β,15β	[124]
302	Selina-3,11-dien-9-ol	9β-OH, $\Delta^{3,11}$	11β,15β	[134]
303	Selina-3,11-dien-9-one	9-Oxo, $\Delta^{3,11}$	11β,15β	[134]
304	β-Costol	13-OH, $\Delta^{3,11}$	11β,15β	[66]
305		13-OH, 13-Oxo, $\Delta^{3,11}$	11β,15β	[135]
306	Selina-3,11-dien-14-al	14-Oxo, $\Delta^{3,11}$	11β,15β	[136]
307		14-Oxo, 14-OMe, $\Delta^{3,11}$	11β,15β	[136]
308	Selina-4,11-dien-14-al	14-Oxo, $\Delta^{4,11}$	11β,15β	[136]
309		14-Oxo, 14-OMe, $\Delta^{4,11}$	11β,15β	[136]
310	1β-OH-α-Ciperone	1 β -OH, 3-Oxo, $\Delta^{4,11}$	11β,15β	[132]
311		8α,13-OH, 13-Oxo, $\Delta^{4,11}$	15β	[137]
312		9β-OH, 14-Oxo, 14-OMe, $\Delta^{4,11}$	11β,15β	[136]
313		9β,13-OH, 13-Oxo, $\Delta^{4,11}$		[63]
314		9β-OAc, 13-OH, 13-Oxo, Δ ^{4,11}	15β	[138]
315		9β-OAc, 13-OH, 13-Oxo, Δ ^{4,11}		[63]
316		9,13-Oxo, 13-OH, $\Delta^{4,11}$		[63]
317	y-Costol	13-OH, $\Delta^{4,11}$	11β,15β	[66]
318		1 β -OAc, $\Delta^{4(14),7}$	15β	[91]
319	Ventricosin-A	8-Oxo, $\Delta^{4(14),7(11)}$	15α	[139]
320		9α-OH, $\Delta^{4(14),7(11)}$	15β	[75]
321		12-Oxo, 12-OMe, 13-OH, $\Delta^{4(14),7(11)}$	15β	[140]
322	β-Selinene	$\Delta^{4(14),11}$	11β,15β	[128]
323	•	16,36-OH, $\Delta^{4(14),11}$	15β	[129]
324	Hypochoeroside-K	18-OH, 38-OGly, $\Delta^{4(14),11}$	15β	[129]
325	J 1	18-OH, 3-Oxo, $\Delta^{4(14),11}$	11B.15B	[141]
326		1β-O(Val-2'OH), 6α-OH, 13-Oxo, 13-OMe, 14-OGly, $\Delta^{4(14),11}$	11B.15B	[112]
327		6α-OH, 13-Oxo, 13-OMe, $\Delta^{4(14),11}$	15β	[120]
328		7 α -OH, 13-Oxo, 13-OMe, $\Delta^{4(14),11}$	15B	[140]
329		9.13-OH, 13-Oxo, $\Delta^{4(14),11}$	158	[142]
330	α-Costol	13-OH, $\Delta^{4(14),11}$	11B,15B	[66,67]
331		13-Oxo, $\Delta^{4(14),11}$	11B.15B	[67]
332	Coralloidin-D	12,13-OAc, $\Delta^{4,7(11)}$	15β	[143]
333	Coralloidin-E	11-OH, $\Delta^{5,7}$	14α,15β	[143]
334	Deacetylcoralloidin-A	8β-OH, $Δ^{5,7(11)}$	14α,15β	[144]
335	Coralloidin-A	8β-OAc, $\Delta^{5,7(11)}$	14α,15β	[144]
336	Deacetylcoralloidin-C	15 α -OH, $\Delta^{5,7(11)}$	14α,15β	[143]
337	Coralloidin-C	15α-OAc, $\Delta^{5,7(11)}$	14α,15β	[143]
338	Rishitin	2α -OH, 3B-OGly, $\Delta^{5(10),11}$: 15-Nor	116.14α	[145–148]
339	Rishitin-aglycone	$2\alpha, 3\beta$ -OH, $\Delta^{5(10),11}$: 15-Nor	11β.14α	[147]
340		2α -OAc, 3B-OGly(2'-OGly), $\Delta^{5(10),11}$; 15-Nor	11β.14α	[147]
341		2α -OH. 3B-[OGly(OAc) ₂ -(2'OGly(OAc) ₄))]. $\Delta^{5(10),11}$: 15-Nor	11β.14α	[147]
342	Argentone	2-OMe. 3-Oxo. $\Delta^{1,4,6}$	156	[149]
343	8-Oxo-argentone	2-OMe. 3.8-Oxo. $\Delta^{1,4,6}$	156	[149]
344	14-hydroxy-argentone	2-OMe. 3-Oxo. 14-OH. $\Delta^{1,4,6}$	156	[149]
345	14-Nor-argentone	2-OMe. 3-Oxo. $\Lambda^{1,4,6}$. 14-Nor	15B	[149]
346	80xo-14Norargentone	2-OMe. 3.8-Oxo. $\Delta^{1,4,6}$: 14Nor	156	[149]
347	2 2 no 1 n total gontone	$3 13-0x_0, 13-0H \Lambda^{1,4,11}$	118 158	[150]
348		1α 13-OH 13-Oxo $\Lambda^{2,4(14),11}$	118 158	[150]
349		8 12-Oxy A ^{1,3,7,11}	110,150	[151]
350		6_{-} Ovo 8 12-Ovv $A^{1,4,7,11}$		[151]
350		6-Oxo, 8,12-Oxy, $\Delta^{1,4,7,11}$		[151]

					0
27	OH	OH	Н	OAc	Emarginatine E
82	OAc	OH	OAc	Н	Emarginatine C
83	OAc	OAc	OAc	Н	Emarginatine A

Fig. 2. Compounds not described in Table 1.

Н

Ebenifoline W-I

OAc

5. Results

The PICKUP program afforded countless chemical shift ranges that characterise several substructures present in eudesmanes. These results and the percentage success of recognition are presented in Table 3. The use of these groups of chemical shifts can be applied in the processes of structure elucidation for

116

OBz

OBz

26

new eudesmanes, for example, if the ¹³C NMR data of an unpublished eudesmanes showed chemical shifts in the range of the first group presented in Table 3, it is possible to affirm with 100% recognition, that the structure of the new substance presents a carbonyl group at carbon 8, and that carbons 5, 9 and 10 do not bear substituents, for example, the eudesmanes XXVI, XXVII and XXVIII shown in Table 4. In

84 - Emarginatinine

Fig. 2. (continued)

Site	1	2	3	4	5	6	7	8	9	10	11	12	13	14 ^B	15
1	80.3	80.5	80.0	78.9	80.5	80.4	80.3	80.3	80.5	81.0	91.3	90.9	84.5	84.5	84.5
2	27.3 ^a	40.1	28.6	26.7	26.8	28.7	28.5	28.8	28.0	34.4	28.6	27.3	23.7	23.4	23.4
3	31.5 ^b	40.6	37.7	45.2	39.6	41.6 ^a	41.3	40.8	39.7	39.4	38.8	37.5	41.9	43.0	42.7
4	33.1 ^b	72.1	72.0	75.4	71.8	71.2	71.1	71.7	80.4	71.4	72.5	72.8	82.5	82.5	82.4
5	45.9 ^c	46.1	47.3	55.3	53.1	55.3	55.1	53.0	57.6	44.9	48.6	47.3	53.2	57.4	57.2
6	26.4 ^a	29.3	20.9	69.7	70.9	69.8	69.7	70.4	75.6	29.0	21.6	20.8	72.0	69.4	69.5
7	49.7 ^c	74.8	41.3	49.9	49.9	49.9	49.6	49.6	51.2	73.6	43.0	41.0	43.3	49.8	49.9
8	22.6	30.1	20.6	21.2	20.9	20.8	20.6	21.2	22.2	29.0	21.6	20.7	21.2	23.8	23.2
9	40.3	27.7	41.2	41.0	40.5	41.4 ^a	41.5	38.6	39.1	23.4	41.9	41.0	28.9	33.1	33.0
10	39.2	35.8	38.7	34.8	39.4	39.1	39.1	39.4	33.2	37.9	40.2	38.8	48.4	48.5	48.3
11	72.5	40.5	74.8	28.9	28.7	28.8	28.8	29.7	29.6	39.1	75.2	74.6	27.4	29.6	29.3
12	27.3	17.4	29.7	21.2	21.4	21.3	21.2	21.6	18.5	17.0	29.6	29.6	23.6	21.8	21.6
13	26.9	17.5	29.7	20.8	20.5	20.7	20.6	20.9	20.7	16.9	29.0	29.5	19.9	21.0	20.6
14	14.9	29.9	22.2	21.6	29.8	24.7	24.6	20.5	76.5	29.8	22.1	22.1	23.6	17.8	22.5
15	14.0	12.2	13.2	15.3	13.9	14.9	14.7	13.5	12.8	12.6	14.5	13.6	17.1	22.8	17.3
Site	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	84.9	65.9	65.1	65.2	216.0	37.6	36.1	74.8	72.1	69.6 ^a	72.5	74.5	76.4	76.4	76.1
2	23.5	31.1	31.3	31.2	34.0	17.0	21.4	28.1	71.4	73.3 ^a	72.1	70.5	26.9	71.4	71.3
3	42.8	41.9	37.9 ^a	38.0 ^a	32.6 ^a	29.5	32.2	26.3	32.5	29.7	75.6	75.2	25.6	32.5	32.4
4	82.6	71.0	84.3	83.9	32.3 ^a	40.5	32.2	34.8	33.7	33.1	69.9	70.2	34.0	33.5	33.5
5	57.1	51.0	45.8 ^b	46.4 ^b	47.0 ^b	87.8	87.3	93.3	91.6	89.3	93.8	93.8	91.3	91.6	91.4
6	69.6	77.3	73.9	73.8	26.8	38.4	38.1	75.9	75.2	78.3	73.7	74.5	72.0	74.9	75.1
7	49.9	43.8	44.5 ^b	44.3 ^b	49.2 ^b	44.6	43.8	57.7	53.1	48.8	50.5	49.3	53.1	54.3	53.0
8	23.2	22.9	22.6	22.4	22.3	25.1	25.1	78.1	76.3	34.3	69.3	74.5	75.3 ^a	70.5	72.0
9	33.1	37.1	37.6 ^a	37.7 ^a	35.1	38.1	38.1	80.9	75.9	69.3 ^a	71.2	76.3	75.5 ^a	78.0	75.7
10	48.4	41.9	42.5	42.3	48.2	38.4	38.6	46.8	49.2	54.6	52.2	51.2	49.7	49.0	49.0
11	29.4	23.9	23.5	23.6	72.4	81.2	81.0	82.7	81.4	82.6	84.0	85.5	81.4	81.1	81.3
12	21.5	22.1	22.1	22.1	27.5	23.6	23.5	26.7	24.2	31.9	18.5	19.3	24.2	24.1	24.1
13	20.8	25.1	25.3	25.4	26.8	30.6	30.2	32.4	18.2	26.0	70.2	70.2	30.7	30.8	30.7
14	22.3	23.1	21.9	21.5	14.8	17.7	15.7	18.0	13.3	17.9	23.3	24.3	16.8	18.7	18.7
15	17.5	15.5	16.6	16.7	19.2	22.9	23.0	11.5	30.8	65.2	60.7	60.5	11.0	13.4	13.3

Table 2 Chemical shifts and multiplicity data of the eudesmanes presented in Table 1 (solvents: $CDCl_3$; $A = (CD_3)_2CO$; $B = C_6D_6$; $D = (CD_3)_2SO$; $P = C_5D_5N$)

Table 2 (continued)

Site	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	76.9	80.6	72.9	72.7	73.6	73.1	71.8	73.4	78.8	75.7	79.0 ^a	78.0	72.9	71.7	75.5
2	71.0	210.0	73.5	72.7	27.0	22.1	26.7	26.5	22.1	26.5	23.4	22.8	22.2	23.8	26.5
3	32.5	42.8	76.5	76.5	22.0	26.7	22.2	22.0	26.5	22.8	26.7	26.0	26.6	38.2	22.8
4	33.0	38.8	69.7	69.7	40.0	39.9	33.9	33.9	33.8	39.8	39.9	33.2	39.7	70.2	39.8
5	91.0	89.8	93.6	93.8	87.7	87.3	91.2	91.2	90.0	88.2	88.5	90.8	86.4	91.2	88.1
6	75.0	73.6	73.8	73.7	36.6	36.4	74.6	76.2	75.1	36.3	32.0	75.2	36.6	75.8	36.5
7	52.5	53.0	50.8	50.9	43.9	43.6	53.0	52.1	52.4	47.2	48.0	52.0	48.2	53.7	47.2
8	72.5	72.0	69.4	69.3	31.6	31.5	78.9	76.8	71.3	76.7	70.0^{a}	74.0	71.7	70.1	76.8
9	76.0	75.3	72.4	72.0	74.0	74.6	75.0	79.0	74.3	76.1	74.3 ^a	75.4	68.4	68.0	76.1
10	49.0	55.3	51.4	51.7	47.9	47.9	48.9	46.7	48.8	50.1	49.0	49.4	51.2	52.9	50.2
11	81.5	82.7	84.8	84.7	82.0	81.9	81.7	82.5	81.6	81.7	80.5	82.3	82.0	84.4	81.6
12	24.0	24.2	17.9	17.9	24.3	24.1	24.2	25.7	24.1	24.4	22.9	30.6	24.9	26.2	24.4
13	31.0	30.7	69.7	69.7	30.3	30.2	16.8	30.8	30.6	30.8	29.9	25.9	31.0	30.0	30.7
14	18.0	17.9	23.6	23.2	17.8	17.5	12.3	16.9	16.8	16.9	16.1	15.9	17.3	23.7	17.1
15	13.0	12.7	62.6	61.9	18.3	18.0	30.6	12.5	12.0	61.6	61.2	60.9	63.8	64.1	60.0
Site	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
1	75.4 ^a	75.5	70.4	70.1	70.7	70.1	70.1	71.6	70.0	76.5	68.1	73.9	73.1	73.6	73.3
2	69.2 ^a	69.1	70.7	70.8	71.3	69.0	69.0	70.9	68.5	73.9	70.8	21.8	21.3	21.5	21.3
3	31.0	31.0	30.9	30.9	30.9	40.9	40.9	31.4	40.8	41.3	42.2	27.0	26.8	26.8	26.6
4	39.1	39.2	39.4	39.4	39.2	72.2	72.2	33.4	72.2	72.2	70.0	40.0	34.0	34.4	33.7
5	87.7	87.8	87.1	87.1	87.0	91.8	91.8	90.7	91.9	91.6	91.5	87.7	89.8	90.0	90.3
6	36.4	36.1	35.9	35.9	35.9	75.0	75.0	73.5	75.0	75.2	71.6	36.6	79.6	80.9	76.4
7	47.2	47.2	43.6	43.6	43.7	54.5	54.5	55.4	54.2	53.7	53.1	43.8	48.9	49.0	52.9
8	76.8 ^a	76.3	31.0	31.1	31.1	76.0	76.0	77.0	76.1	75.5	75.6	31.6	32.0	32.2	76.0
9	76.3 ^a	76.2	74.3	74.4	74.3	76.4	76.4	77.3	76.4	77.0	76.2	74.2	73.4	73.4	75.7
10	50.6	50.6	47.2	47.2	47.0	49.5	49.5	49.0	49.5	50.7	54.1	48.0	50.4	50.7	49.7
11	82.0	81.9	82.2	82.3	82.3	84.2	84.2	82.5	84.2	84.6	83.5	82.1	82.5	82.6	81.7
12	24.4	24.4	24.0	24.0	24.0	26.2	26.2	26.1	26.2	26.4	25.5	17.9	17.4	17.6	25.4
13	30.6	30.7	30.2	30.2	30.2	30.5	30.5	31.4	30.5	30.1	30.0	18.4	18.7	18.9	30.8
14	18.6	18.4	19.1	19.1	19.4	25.2	25.2	19.5	25.2	24.3	24.6	24.3	26.0	26.0	17.3
15	63.3	61.8	19.6	20.0	20.0	21.7	21.7	20.7	21.5	61.8	65.5	30.2	30.7	32.1	18.6

Table 2 (continued)

Site	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
1	72.6	76.6	71.2	71.1	70.5	74.1 ^a	73.6	73.4	71.3	71.2	71.6	71.1	71.2	70.1	73.2
2	67.7	200.5	70.0	69.7	68.9	68.3	69.5	68.9	70.3	70.2	70.4	70.5	69.4	69.0	69.3
3	44.1	54.7	31.0	31.0	41.9	42.0	76.0	75.9	31.1	31.2	31.5	31.1	31.2	40.9	76.9
4	70.2	74.1	33.8	34.2	69.7	69.8	69.9	70.7	39.4	39.4	39.8	39.5	33.7	72.2	69.8
5	91.7	91.3	89.6	89.7	91.1	93.3	93.9	94.2	87.3	87.3	87.6	87.3	89.6	91.8	94.0
6	69.2	69.4	79.2	80.4	68.1	74.4 ^a	73.9	73.9	36.1	36.1	36.1	36.0	79.2	75.0	73.6
7	54.1	53.9	48.9	49.0	49.1	64.9	51.3	50.7	43.8	43.7	44.0	43.7	48.8	54.5	51.0
8	77.3	77.1	31.6	31.6	34.7	197.0	-	69.1	31.1	31.2	31.3	31.2	31.6	76.0	68.9
9	72.3	72.1	73.1	72.8	78.1	79.7	71.1	70.8	73.8	73.8	73.8	73.5	73.0	76.4	70.8
10	50.1	51.9	50.0	50.1	55.0	52.6	52.3	52.3	47.2	47.1	47.4	47.0	49.8	49.5	51.9
11	84.8	85.8	82.9	82.8	84.6	85.1	84.5	84.3	82.3	82.3	82.6	82.2	82.9	84.2	84.8
12	26.7	26.5	26.9	26.1	29.4	25.2	18.0	18.6	19.3	19.3	19.3	19.3	26.0	26.2	17.9
13	30.3	30.3	30.7	30.9	25.7	29.2	70.4	70.0	20.1	20.2	20.1	20.1	30.6	30.5	69.8
14	25.5	25.0	18.6	18.5	25.1	24.5	22.8	23.0	24.3	24.3	24.5	24.2	18.9	25.2	23.0
15	20.7	19.9	20.4	20.4	65.5	61.0	60.3	60.1	30.2	30.2	30.4	30.2	20.6	21.7	60.6
Site	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
1	73.3	70.0	75.3	79.0	71.5	75.0	70.8	73.1	73.5	75.4 ^a	73.4 ^a	70.1	69.7	69.8	70.0
2	70.7	68.5	25.2	67.7	69.5	67.3	69.6	69.4	68.7	26.7	26.7	69.5	67.6	67.9	67.9
3	75.8	40.8	37.9	41.1	29.7	41.1	75.4	75.7	76.6	23.0	22.9	41.9	41.2	42.2	42.2
4	69.7	72.2	70.7	72.3	33.1	72.1	70.5	70.5	69.2	40.0	40.0	69.7	72.2	69.6	69.6
5	93.8	91.9	92.2	91.9	89.2	91.5	93.7	94.1	94.2	88.2	88.2	91.1	91.1	91.2	91.2
6	73.6	75.0	73.3	75.0	78.1	76.9	73.6	73.8	70.4	36.7	36.7	67.9	78.7	78.1	78.1
7	51.2	54.2	53.4	54.6	48.8	53.6	50.2	50.7	51.2	47.3	47.8	49.1	50.2	49.2	49.2
8	68.9	76.1	78.3	76.1	34.8	73.8	71.3	69.0	70.4	$78.4^{\rm a}$	78.4	34.6	34.4	34.5	34.5
9	70.3	76.4	69.7	76.5	69.5	75.3	71.8	70.6	69.9	76.4 ^a	76.3	78.1	68.8	69.3	69.8
10	52.1	49.5	52.2	49.6	53.3	50.6	54.0	52.2	52.1	50.3	50.5	55.1	53.6	54.9	55.1
11	84.5	84.2	82.9	84.2	82.7	84.4	84.8	84.4	84.8	81.9	81.9	84.6	84.8	84.5	84.6
12	18.0	26.2	24.4	25.0	30.3	30.0	18.3	18.7	17.9	24.6	24.6	29.4	26.4	26.5	25.7
13	70.6	30.5	29.5	21.8	25.9	26.7	70.1	70.0	70.7	30.8	30.8	25.7	30.0	29.4	29.4
14	23.0	25.2	22.6	26.2	17.7	24.2	23.7	23.4	22.8	17.1	17.1	25.0	24.6	25.0	25.1
15	60.3	21.5	60.9	30.5	65.4	61.7	60.4	60.5	60.2	63.1	63.1	65.5	65.8	65.9	65.9

Table 2 (continued)

Site	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
1	70.1	71.5	71.6	73.5	75.6	69.3	73.1ª	73.5	79.2	75.5	75.5	74.3	76.2	73.6	73.5
2	69.5	26.8	22.2	26.9	22.7	70.8	24.0	23.4	69.3	70.1	70.2	68.8	70.7	69.9	69.2
3	41.8	22.6	26.5	21.6	26.4	31.4	37.1	37.3	32.7	78.4	78.4	42.1	31.7	76.0	78.4
4	69.7	33.7	33.8	34.5	39.8	32.8	70.3	73.1	33.7	70.6	70.8	69.8	34.2	70.0	70.7
5	91.1	92.6	91.1	90.2	88.2	90.4	90.7	91.5	91.0	94.6	94.3	93.4	92.4	93.9	93.8
6	68.1	72.8	74.3	73.8	36.2	72.6	31.2	79.7	74.9 ^a	74.1	75.1	74.6	75.5	73.9	74.9
7	49.1	54.5	52.8	49.1	47.3	53.6	43.7	50.2	53.0	50.5	50.4	65.0	65.8	51.2	50.4
8	34.4	74.7	74.9	32.2	76.0	74.9	31.6	32.0	74.8 ^a	69.1	69.2	197.1	198.7	69.1	69.1
9	78.1	79.6	79.0	80.3	78.2	77.6	73.8 ^a	73.2	74.9 ^a	71.8	72.0	79.7	80.4	71.7	71.6
10	55.1	48.7	49.0	50.7	50.1	51.1	48.2	50.6	49.0	53.0	53.1	53.1	52.7	52.6	52.7
11	84.6	81.8	81.7	82.6	81.6	81.2	83.5	84.5	81.7	84.2	84.3	85.2	84.1	84.7	84.4
12	29.4	24.5	24.1	26.1	24.3	24.6	24.0	26.6	24.2	18.5	18.4	25.2	25.6	17.9	18.4
13	25.7	31.1	30.5	30.8	30.7	30.4	30.1	30.1	30.7	70.2	70.2	29.3	31.2	70.4	70.0
14	25.0	17.4	16.7	17.6	16.6	16.4	24.4	23.8	18.6	23.1	23.2	24.6	18.6	22.8	22.9
15	65.4	12.3	12.4	18.9	61.5	60.9	19.3	20.3	15.5	60.5	60.5	61.1	61.0	60.4	60.2
Site	106	107	108	109	110	111 ^P	112	113	114	115	116	117	118	119	120
1	73.6	74.4	73.5	73.6	76.4	79.0	76.5	76.5	76.4	73.5	73.5	72.6	72.6	72.6	73.7
2	69.3	70.0	69.1	69.3	69.8	71.4	70.8	71.0	70.8	70.7	70.5	23.9	23.4	23.3	24.2
3	75.9	75.8	75.2	75.8	31.2	34.6	31.3	31.4	31.3	75.2	75.9	38.5	37.2	38.5	38.3
4	70.7	36.0	72.7	70.7	33.5	34.8	33.5	33.5	33.5	72.0	69.9	70.6	73.0	70.3	70.5
5	94.2	90.8	93.2	94.2	90.7	93.7	90.9	90.9	90.8	93.0	93.9	86.1	91.5	91.5	92.5
6	74.0	74.4	74.5	74.0	74.8	72.1	74.7 ^a	74.5	74.7	74.3	73.9	212.0	79.7	79.7	78.2
7	50.5	50.4	51.9	50.6	52.8	57.6	53.1	52.7	53.0	52.6	51.2	55.2	50.2	49.0	54.2
8	69.3	69.2	69.4	69.1	72.4	72.1	71.7	71.4	72.4	69.3	69.0	33.5	32.0	31.8	72.8 ^a
9	71.6	71.8	71.8	71.5	74.5	77.1	74.8 ^a	75.0	74.7	72.0	71.7	72.3	73.3	72.9	80.2 ^a
10	53.2	51.3	52.1	52.7	49.0	48.5	48.9	49.1	49.0	51.2	52.5	56.0	50.3	51.4	48.1
11	84.5	82.6	85.0	84.5	81.9	81.2	82.1	82.0	82.1	85.4	84.7	78.1	84.6	84.3	84.3
12	18.6	18.2	18.8	18.5	24.2	24.5	24.2	24.1	24.2	18.2	18.0	21.2 ^a	30.2	29.6	30.0
13	70.0	69.9	70.9	70.1	30.6	31.9	30.7	30.7	30.7	71.4	70.4	23.5 ^a	26.7	25.7	25.7
14	23.1	14.2	23.5	23.0	18.3	20.1	18.5	18.5	18.5	23.9	23.2	29.6	23.9	24.0	23.9
15	60.2	60.1	61.0	60.2	14.2	13.8	14.1	14.2	14.6	61.6	60.8	17.1	19.9	19.6	13.6

Table 2 (continued)

Site	121	122	123	124	125 ^D	126	127	128	129	130	131	132	133	134	135
1	73.4	9.37 ^d	72.7	72.1	72.2	72.0	73.4	68.2	67.8	75.4	75.3	76.0	74.3	72.7	72.7
2	24.0	23.7	25.2	69.0	73.3	73.0	69.0	70.8	68.3	25.2	25.1	25.3	68.8	67.6	67.6
3	38.1	38.2	37.9	44.4	42.8	45.0	70.0	78.1	77.2	38.0	37.9	38.3	42.1	49.1	49.1
4	70.4	70.2	70.6	71.0	69.9	70.7	68.1	71.6	70.1	70.7	70.5	70.5	69.8	84.6	84.6
5	92.6	91.4	92.2	85.8	84.9	85.5	89.9	93.0	91.1	92.2	92.1	93.6	93.4	91.2	91.2
5	78.1	78.2	78.6	211.0	212.7	211.3	30.3	80.4	78.8	72.8	72.6	74.5	74.6	76.2	76.2
7	52.1	49.1	53.2	55.3	55.5	55.4	43.0	48.4	48.3	53.3	53.2	65.1	65.0	57.9	57.9
5	77.2 ^a	34.5	75.5	33.1	32.6	33.1	32.8	32.0	31.2	78.3	78.1	197.6	197.1	48.6	48.6
)	76.5 ^d	72.4	70.2	72.2	72.2	72.0	76.0	73.1	72.4	70.4	70.3	79.5	79.7	79.6	79.6
.0	47.9	54.1	52.6	55.8	55.5	55.8	48.0	52.1	51.1	52.5	52.4	52.2	53.1	51.6	51.6
1	84.1	84.3	82.7	78.6	77.5	78.7	84.1	82.6	85.0	82.8	82.7	84.8	85.2	71.0	71.0
2	29.7	29.4	24.3	22.2	23.1	22.4	19.9	29.9	29.8	24.4	24.3	24.6	25.3	21.5	21.5
3	25.5	25.7	29.5	23.6	23.3	23.6	20.5	26.1	26.0	29.6	29.5	29.3	29.3	24.9	24.9
4	23.7	23.8	22.8	17.9	28.6	29.6	30.0	24.4	24.0	22.8	22.7	23.8	24.6	20.2	20.2
5	13.3	65.1	60.6	29.6	17.1	17.9	20.9	22.0	21.5	60.7	60.5	60.6	61.1	29.7	29.7
Site	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
	70.6	70.5	79.6	76.9	77.1	68.2	68.3	68.4	69.2	34.5	40.7	32.9	33.4	41.2	40.4
	67.8	68.7	26.5	70.6	70.6	68.1	68.2	68.2	68.4	26.9	26.5	23.1	26.8	40.7	19.2
	41.3	41.0	22.4	31.2	31.3	41.9	42.1	41.9	42.0	75.2	78.8	73.5	71.6	213.1	35.5
	72.2	72.1	33.8	33.3	33.4	69.7	69.9	69.6	69.8	73.9	75.1	82.8	82.7	45.6	109.9
	91.0	91.0	91.2	90.8	90.8	91.1	91.1	91.1	91.1	47.5	55.1	46.5	46.8	51.0	50.8
	78.8	78.8	71.6	74.7	74.8	71.6	71.7	71.7	72.0	23.0	69.5	23.0	23.1	26.3	21.3
	50.1	50.1	52.9	52.7	53.0	48.9	49.0	49.0	49.2	42.6	49.7	55.5	70.2	48.7	54.1
	34.6	34.6	74.6	70.7	71.6	34.2	34.5	34.6	34.7	214.3	21.1	209.8	204.8	22.0	68.9
	68.0	68.0	74.9	75.0	74.7	78.5	78.6	78.1	78.2	59.6	45.0	59.1	60.1	38.0	51.1
0	53.9	53.7	49.1	48.7	48.8	55.1	55.2	55.2	55.5	39.5	34.6	38.4	38.3	33.4	36.1
1	84.8	84.9	81.9	82.2	82.2	84.6	84.6	84.5	84.7	-	28.7	25.8	63.1	72.7	75.2
2	26.4	26.4	24.2	24.1	24.2	25.6 ^a	25.6 ^a	25.5 ^a	25.8 ^a	-	21.1	19.2	19.7	26.8	23.9
3	30.0	30.0	30.6	30.7	30.7	25.2 ^a	25.2ª	25.1ª	25.2 ^a	-	20.8	20.6	19.0	27.5	30.2
4	24.6	24.8	12.5	18.5	18.5	29.3	29.4	29.2	29.3	21.6	21.6	18.2	17.7	11.2	-
5	65.7	66.0	16.7	14.1	14.4	65.3	65.2	65.2	65.4	19.0	18.0	17.2	19.1	16.3	18.9

Table 2 (continued)

Site	151	152	153	154	155	156	157	158	159 ^D	160	161 ^A	162	163	164	165
1	40.4	41.1	_	45.3 ^a	45.2 ^a	41.6	38.6	43.1 ^a	40.0	41.0	215.6	44.2 ^a	40.5	33.7	41.4
2	19.5	22.2	22.5	20.3	19.9	19.2	18.0	19.7	22.2	20.2	41.1	20.0	20.8	19.2	20.1
3	-	40.0	40.2	43.9 ^a	43.7 ^a	41.6	43.6	40.6 ^a	29.6	43.6	35.9 ^a	45.4 ^a	39.5	37.0	44.5
4	109.8	221.5	211.7	73.0	72.8	71.9	72.6	71.0	70.3 ^a	72.2	73.7	71.7	71.8	74.6	77.0
5	50.4	56.9	56.8	57.7	56.8	51.0	47.9	66.7	52.9	54.8	47.8	57.2	53.0	78.8	48.5
6	35.6	22.2	-	66.3	69.3	77.9	72.0	213.3	35.1	21.2	22.1	69.4	70.9	26.0	20.5
7	59.1	53.2	37.5	50.9	50.0	44.4	74.5	56.0	51.6	47.2	42.5	50.2	49.8	40.5	41.7
8	214.7	68.5	-	21.1	21.4	23.2	28.0	22.3	70.6	22.1	21.6	21.3	26.7	22.4	21.3
9	58.8	49.5	41.1	45.3 ^a	43.1 ^a	39.1	44.3	41.0^{a}	43.0	44.4	33.6 ^a	43.5 ^a	80.5	34.7	41.5
10	23.7	40.5	39.2	34.9	34.9	37.3	33.8	39.8	50.1	34.6	46.6	34.5	39.4	37.6	34.2
11	71.8	75.5	57.7	28.8	28.7	24.0	32.7	25.6	70.1 ^a	85.1	70.7	28.8	28.7	29.3	74.6
12	25.5	23.8	168.7	20.8	21.2	22.3	15.9	20.7	21.5	23.5	23.4	21.3	21.3	21.9	29.9
13	28.6	30.4	168.7	20.8	21.2	25.3	16.2	20.7	27.9	23.7	29.9	20.7	20.4	22.9	29.5
14	-	_	_	25.7	20.7	23.4	30.0	24.1	21.0	18.6	29.7	24.6	29.7	24.0	21.8
15	18.6	17.9	16.8	21.7	24.5	19.5	20.7	20.4	18.6	22.5	29.0	21.3	13.7	22.7	18.4
Site	166	167	168	169	170	171	172	173	174 ^e	175 ^e	176	177	178	179	180
1	34.9 ^a	33.0	36.6	34.2	41.9 ^a	44.6 ^a	160.4	156.7	37.9	37.5	38.7	29.7	40.1	76.3	78.2
2	20.6	22.2	17.0	20.8	21.6 ^b	17.4	126.3	128.5	22.9	22.9	20.8	23.0	23.7	32.3	29.1
3	30.3 ^b	30.5	28.1	29.7	36.7	33.6 ^b	202.3	201.9	124.6	121.2	121.0	119.0	120.7	119.5	119.0
4	34.1	32.4	41.2	34.7	31.5	33.7 ^b	42.7	48.6 ^a	133.2	134.9	135.4	137.0	135.3	135.4	135.3
5	74.3	75.2	75.1	74.3	51.3	47.0	48.3 ^a	48.5^{a}	45.0	40.9	42.6	47.4	46.5	46.5	46.4
6	29.7 ^b	32.1	31.8	29.7	24.9	28.0	25.2	24.5	76.9	32.3	24.0	26.0	22.3	23.9	23.7
7	21.2 ^c	45.2	40.2	40.8	49.6	50.1	48.5 ^a	42.1 ^a	73.8	74.2	41.0	49.4	48.7	49.2	49.1
8	20.6 ^c	21.3	20.3	20.5	22.3 ^b	22.7	21.9	23.9	22.8	29.2	23.1	22.7	22.9	21.9	21.8
9	35.5 ^a	36.3	34.8	34.2	41.7 ^a	41.6 ^a	37.9	41.0	34.2	35.6	37.6	40.8	37.8	35.0	34.9
10	37.1	37.6	36.6	36.8	33.4	33.6	36.2	38.2	34.3	32.1	31.3	30.3	32.2	37.4	36.3
11	-	72.5	72.8	73.1	73.0	72.8	72.6	72.7	34.0	39.1	74.2	72.8	80.9	72.9	72.8
12	-	26.9	29.6	29.5	21.8 ^c	26.9 ^c	26.9 ^b	27.1	15.8	14.4	28.1	26.8 ^a	25.0	26.7	26.7
13	-	27.0	30.0	30.6	27.2 ^c	27.1 ^c	27.6 ^b	27.1	16.2	16.8	28.8	27.2 ^a	22.4	27.6	27.1
14	14.7	22.7	17.2	14.8	20.1	19.5	11.8	12.0	21.8	21.0	20.9	29.3	21.1	20.9	21.2
15	20.1	14.9	21.8	20.1	16.7	14.8	17.2	27.1	17.8	16.9	18.4	22.8	14.4	9.5	10.2

Table 2 (continued)

Site	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195
1	76.7	42.3	70.5 ^a	42.3	39.4	41.7	78.3	75.4	80.3	76.8	72.9	73.8	75.1	45.7	37.4
2	32.1	199.0	192.9	19.2	18.9	26.0	27.1	26.9	23.9	26.7	35.9	30.7	42.4	68.9	33.8
3	121.2	125.4	129.2	33.2	32.7	29.3	31.9	31.3	31.5	32.1	69.9	85.1	198.2	200.4	199.0
4	133.5	167.0	153.6	124.5	126.0	124.2	123.8	125.1	124.0	139.2	142.5	138.3	133.8	125.9	128.9
5	50.8	76.0	87.9	134.9	135.0	142.5	133.4	133.6	133.4	136.4	133.7	140.3	154.7	164.2	162.6
6	71.4	34.3 ^a	81.7	26.4	25.4	22.6	26.3	25.2	26.3	206.8	207.8	70.7	70.5	28.9	28.8
7	49.3	47.0	49.3	50.6	44.1	49.3	49.7	44.1	49.7	57.5	58.2	48.6	48.5	49.8	49.7
8	20.3	22.7	32.0	23.3	22.6	18.7	22.8	21.8	22.7	21.7	22.6	20.3	20.0	22.5	22.6
9	35.4	35.0 ^a	74.9^{a}	40.3	38.1	39.7	38.8	33.5	38.6	37.0	37.0	38.2	37.8	42.7	42.0
10	37.7	40.1	51.5	34.5	34.4	34.9	39.4	39.5	38.4	43.0	44.0	39.6	41.0	37.0	35.9
11	28.6	72.6	85.0	72.9	74.6	79.9	72.7	74.1	72.6	25.8	25.8	29.0	28.9	72.4	72.4
12	22.2	25.5	29.9	27.2	27.8	23.3	26.7	27.4	26.7	18.2	17.8	20.8	20.9	26.7 ^a	26.8 ^a
13	20.1	28.6	25.7	26.9	29.8	24.7	27.1	29.4	27.2	21.0	21.1	20.8	20.7	27.7 ^a	27.5 ^a
14	20.7	22.7	22.0	19.3	25.9	64.6	17.3	19.2	18.4	20.7	16.3	17.6	11.1	11.0	10.9
15	12.2	18.8	20.2	24.7	19.6	24.3	18.9	19.3	18.9	18.3	18.4	16.9	16.7	22.9	22.6
Site	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210
1	39.1	37.2	37.8	36.6	30.8 ^a	39.8	41.1	41.0	41.4	41.3	40.5	79.2	77.2	80.1	79.1
2	34.1	33.4	33.3	33.7	22.7	22.7	23.5	22.2	22.9	23.0	23.4	32.5	31.9	34.5	31.5
3	200.3	198.7	198.9	198.0	30.2 ^a	30.8	36.9	36.8	36.6	36.6	36.7	35.2	35.1	30.8	34.2
4	131.3	129.4	128.9	130.4	146.8	146.8	151.1	151.1	150.0	148.4	150.2	146.4	146.2	147.8	148.6
5	158.9	159.4	161.6	156.7	60.3	60.3	49.4	49.8	49.4	48.4	49.3	56.2	55.9	51.8	48.9
6	68.6	29.2	26.5	30.5	67.4	67.4	25.0	24.7	26.0	28.2	28.3	67.2	67.0	71.2	24.8
7	49.7	47.9	45.2	51.4	48.9	48.9	49.8	48.1	54.3	59.0	38.4	49.6	49.3	50.4	47.5
8	16.1	67.0	66.7	207.8	18.5	18.5	22.4	23.4	69.2	214.4	25.7	18.5	16.2	20.4	22.2
9	41.6	50.2	49.0	54.6	39.8	30.2	41.8	41.8	50.2	57.1	41.7	36.5	36.3	37.4	37.0
10	35.0	37.0	35.7	40.0	35.5	35.5	35.9	35.9	37.7	40.9	35.8	41.8	41.7	40.4	40.1
11	73.4	39.9	42.1	38.6	26.3	26.3	72.9	80.7	75.2	71.5	58.0	26.3	26.0	28.1	72.5
12	28.8^{a}	176.4	176.8	175.1	16.1	16.1	27.2	23.7	24.0	25.6	169.0	21.1	16.2	22.0	27.0 ^a
13	28.9 ^a	12.9	15.3	14.6	20.8	20.8	27.2	24.0	30.3	28.6	169.0	16.4	21.1	20.3	27.2 ^a
14	10.4	11.1	10.7	11.3	112.3	112.3	105.3	105.4	105.5	107.3	105.6	107.9	107.8	108.9	108.0
15	24.6	23.3	25.0	24.4	28.2	28.2	163	163	173	17.1	16.2	117	11.6	13.2	10.2

Table 2 (continued)

Site	211	212	213	214	215	216	217	218	219	220 ^B	221	222	223	224	225
1	214.5	80.7	71.3	74.0	75.1	51.0	46.8	35.8	39.6	41.3	30.8	78.2	83.0	80.3	49.4
2	38.1	28.0	27.7	28.0	28.7	67.9	70.7	29.8	17.7	18.1	22.0	27.0	68.2	39.4	36.6
3	34.5	33.8	32.7	31.5	31.8	46.6	42.3	73.6	33.6	33.8	28.7	33.6	41.5	38.7	74.6
4	146.8	148.2	143.1	142.1	141.8	148.2	147.1	152.1	38.8	39.3	39.7	81.9	82.5	71.0	38.7
5	48.7	48.7	88.8	90.3	91.2	49.4	49.4	43.6	133.2	151.6	68.7	52.0	52.1	50.3	75.5
6	24.6	24.2	79.4	78.1	77.4 ^a	40.9	40.8	24.6	121.0	129.2	122.4	116.2	115.7	115.3	128.8
7	48.0^{a}	47.6	48.5	52.2	65.6	49.2	49.3	49.4	45.4	44.1	143.9	143.7	142.3	146.2	145.1
8	22.1	21.9	31.8	72.2 ^a	199.3	24.7	24.6	22.5	20.3	20.6	23.0	22.7	22.6	23.7	42.2
9	32.3	36.6	73.0	75.9 ^a	81.2 ^a	22.0	21.8	40.8	41.3	39.5	36.1	35.5	35.7	22.9	65.3
10	48.4 ^a	39.1	51.6	48.8	50.3	35.3	35.5	35.8	34.4	34.8	35.8	38.3	38.5	37.4	38.4
11	72.5	72.7	82.7	82.4	82.7	72.8	72.9	73.0	73.5	60.5	34.7	35.1	35.1	35.3	30.6
12	27.1 ^b	27.0	31.2	31.3	31.0	27.4	27.4	27.3	27.2	26.9 ^a	21.5	21.7	21.7	21.8	21.7
13	27.6 ^b	27.2	26.2	26.3	25.7	27.1	27.2	27.0	27.4	27.0^{a}	21.2	21.6	21.6	21.3	23.5
14	108.9	107.2	112.3	112.8	113.6	108.0	109.1	109.0	27.8	27.3 ^a	16.4	24.4	24.6	29.5	25.4
15	16.6	11.2	19.3	13.3	13.1	17.3	16.7	15.6	22.4	22.4	24.1	12.2	13.4	12.8	15.7
Site	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
1	32.0	31.9	32.1	33.2	32.0	31.7	37.0	37.0	36.5	40.7	80.0	79.5	81.5	83.8	73.6
2	25.9	25.1	26.8	24.1	25.9	23.1	25.4	25.5	25.6	20.4	40.7	26.7	40.6	67.4	41.1
3	73.4	73.4 ^a	70.7	75.7	73.7	73.9	81.0	81.0	72.9	43.2	39.7	33.4	39.4	41.2	69.9
4	72.1	75.4 ^a	68.7	71.9	80.1	81.8	73.3	73.6	85.7	72.3	71.0	82.4	70.9	83.5	84.6
5	49.0	48.9	70.2	50.6	49.9	48.6	54.1	54.2	48.6	54.4	46.5	52.0	46.8	48.9	42.9
6	143.6	143.2	143.4	142.6	140.2	140.9	141.7	143.4	140.1	117.2	26.9	23.2	23.5	23.1	33.9
7	144.9	145.4	147.9	145.1	142.3	145.4	144.6	142.3	145.1	143.8	142.1	141.8	142.1	141.7	142.0
8	201.5	201.3	201.7	200.8	201.0	200.0	200.8	197.8	200.3	23.4	116.2	115.8	116.1	115.8	116.2
9	57.8	57.7	53.6	58.6	57.5	57.7	57.5	57.8	57.6	39.5	23.2	41.0	23.1	41.2	33.9
10	39.3	39.2	36.9	39.2	39.0	39.1	39.0	39.0	40.0	33.8	37.9	37.9	36.9	38.0	27.7
11	72.0	72.0	72.1	71.2	72.4	75.9	71.9	83.4	71.7	35.0	35.1	34.8	35.1	34.8	35.0
12	29.4	29.3	29.5	29.4	29.4	29.2	29.2	25.0	28.9	21.6	21.9	21.7	21.9	21.7	21.8
13	28.9	28.8	28.7	28.8	28.9	28.8	28.9	24.4	29.1	21.8	21.3	21.2	21.3	21.3	21.3
14	22.4	22.4	22.8	22.7	18.6	18.9	19.5	19.4	18.7	22.3	29.9	24.7	29.9	24.8	23.0
15	17.8	177	16.8	17.0	17.8	10.2	10 1	10 1	19.5	17.6	11.0	10.2	12.0	12 /	12.2

Table 2 (continued)

Site	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
1	78.5	78.7	78.0	32.9	32.9	32.6	38.0	33.4	38.3	37.7	38.5	75.3	76.2	74.2	82.3
2	28.9	30.0	28.3	25.7	23.0	25.1	26.0	23.1	25.5	25.8	25.4	27.2	24.8	26.5 ^a	26.7^{a}
3	41.2	39.7	40.3	74.3	73.7	73.3	74.2	72.3	81.3	74.0	73.8	33.7	22.4	26.9 ^a	27.4 ^a
4	71.9	71.0	71.5	73.1	82.9	82.6	87.7	83.4	74.4	87.4	87.6	82.4	41.4	41.3	33.7
5	50.7	47.6	50.4	45.6	45.1	44.8	45.1	45.6	51.1	44.9	47.5	46.6	77.7	77.3	53.1
6	26.0	26.8	26.0	25.7	25.8	25.4	25.8	26.1	25.5	25.6	20.9	23.0	38.2	38.2	70.1
7	130.0	129.9	130.5	131.2	130.1	129.7	130.2	130.5	130.3	129.9	129.5	85.8	39.8	39.8	50.1
8	202.1	202.0	204.0	202.0	201.4	200.9	202.1	210.7	202.1	201.8	97.1	141.9	26.0	26.1	23.6
9	56.8	55.4	56.7	60.2	60.1	59.7	60.2	60.4	59.8	59.9	49.7	124.0	32.7	33.4	39.5
10	41.2	40.3	41.2	36.3	35.9	35.4	37.1	36.0	36.4	36.9	35.6	41.1	39.7	41.9	40.9
11	145.0	146.4	146.0	144.1	145.5	146.0	144.7	146.1	144.8	144.5	125.1	32.4	150.0	150.2	144.5
12	22.8	23.1	22.3	23.4	23.6	23.1	23.5	23.7	23.4	23.3	72.9	17.7	108.4	108.6	124.7
13	22.8	23.8	22.8	22.7	22.8	22.6	22.9	23.1	22.7	22.5	13.3	16.8	21.1	21.0	168.1
14	23.5	25.9	23.6	21.4	19.1	18.9	19.6	19.3	17.5	16.7	17.0	24.9	17.0	15.5 ^b	69.1
15	12.7	12.7	12.7	18.6	18.0	17.6	16.9	18.3	18.9	19.4	19.7	13.5	21.8	16.8 ^b	15.8
Site	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270
1	83.1	76.1	75.9	75.3 ^a	76.0	75.5	75.5	77.2	215.5	215.3	32.1	34.1	31.7 ^a	41.1	44.5 ^a
2	26.6 ^a	29.6	29.6	29.3	27.7	27.8	27.8	29.1	34.1	33.0	23.3	27.3	37.9	20.2	20.1
3	27.4 ^a	39.1	39.1	36.5	35.5	35.6	35.5	33.0	30.1	30.5	79.3	77.6	207.7	43.4	43.4 ^a
1	33.6	65.9	66.8	78.8	81.3	81.3	82.1	60.8	40.5	31.7	71.5	71.7	71.7	72.3	72.0
5	53.1	60.6	60.5	57.0	56.6	56.7	56.5	49.4	78.5	53.7	46.9	49.6	65.4	54.9	54.9
5	70.1	66.3	66.8	72.3	71.6	71.7	71.6	68.2	28.0	25.6	29.4	23.7	26.9	26.1	27.3 ^b
7	50.2	56.3	52.6	50.6	50.6	50.7	50.6	54.9	39.3	39.5	36.2	40.4	38.0	46.4	40.4
3	23.5	67.5	70.8	28.3	25.3	25.2	25.1	70.4	25.4	26.7	205.8	26.0	31.5 ^a	26.9	26.4 ^b
)	39.4	44.5	41.2	40.8^{b}	39.9 ^a	39.9 ^a	39.7	42.2	37.2	79.0	58.9	44.2	33.3 ^a	44.7	40.9^{a}
0	40.4	42.4	42.6	41.7 ^b	40.2^{a}	40.8^{a}	40.4	41.2	51.2	51.2	32.8	34.3	33.8	34.7	34.6
11	144.4	137.7	137.5	144.2	143.6	143.7	143.6	137.5	149.4	150.6	144.3	145.5	144.3	150.7	145.7
12	168.1	128.8	128.4	124.7	125.2	125.2	125.1	128.2	108.8	108.5	124.1	122.5	123.7	108.2	122.5
13	124.7	167.4	167.0	168.1	167.8	167.9	167.8	166.8	21.0	21.0	174.0	167.8	167.1	21.1	167.8
14	69.0	63.7	63.6	76.0^{a}	74.7	74.8	74.6	51.4	20.3	19.6	22.4	21.0	20.7	22.8	22.5
15	15.7	12.9	12.7	15.0	15.3	153	153	12.8	177	174	18.2	18.4	11.4	187	187

Table 2 (continued)

Site	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285
1	42.9 ^a	41.4	41.8	41.0	41.0	40.9	40.7	41.0	41.0	26.1	133.2	156.6	155.2	156.2	153.1
2	19.5	20.2	23.0	22.5	23.4	22.7	23.5	23.2	23.0	17.0	123.5	126.1	126.1	125.4	126.9
3	43.6	43.6	35.6	40.0	40.1	39.7	40.9	40.1	39.8	28.1	116.8	186.5	186.2	186.4	185.7
4	73.5	72.1	83.4	77.2	79.4	79.7	79.8	79.4	79.2	41.2	139.8	129.2	129.8	129.2	131.2
5	57.9	49.2	48.6	47.6	47.5	47.3	47.4	47.3	47.4	75.7	47.7	160.5	157.3	159.8	153.8
6	73.3	22.8	18.2	19.2	19.8	19.6	19.7	19.6	19.7	37.6	27.3	28.7	28.5	26.9	29.4
7	50.3	39.4	39.4	39.0	39.5	39.4	39.5	39.2	39.5	40.0	47.3	50.5	48.4	46.6	50.8
8	26.8	23.6	23.4	23.1	23.0	23.3	23.0	23.2	22.9	34.9	24.8	22.0	66.7	66.2	206.0
9	42.6^{a}	40.4	40.1	40.4	40.7	40.6	39.9	40.4	40.6	38.0	39.1	38.0	45.3	44.6	51.2
10	36.3	35.3	34.6	34.6	35.1	35.0	35.2	35.0	35.1	36.7	35.7	40.3	40.8	40.3	42.4
11	142.3	147.0	147.1	146.5	146.7	146.6	146.7	146.6	146.7	150.5	72.8	72.3	39.6	41.9	38.0
12	125.8	110.9	110.7	110.7	110.9	110.8	110.9	110.8	110.8	108.2	26.9 ^a	26.9 ^a	176.1	176.8	175.1
13	168.3	22.8	22.8	22.7	22.9	22.7	22.9	22.6	22.6	21.0	27.1 ^a	27.7 ^a	13.3	15.4	14.4
14	23.8	22.3	25.0	17.9	18.2	18.1	18.4	18.1	18.4	16.7	26.0	10.4	10.6	10.2	10.9
15	19.7	18.5	18.8	18.6	19.0	18.8	19.0	18.8	19.0	21.6	22.2	23.4	24.6	26.3	25.1
Site	286 ^P	287 ^P	288 ^B	289	290	291	292	293	294 ^P	295	296	297	298	299	300
1	157.5	157.5	139.4	42.5	37.1	38.0	37.9	37.9	80.2	81.8	74.4	66.8	206.3	44.3	54.0
2	125.2	127.3	123.7	126.2	22.9	20.2	22.9	22.9	27.9	29.0	29.7	72.5	78.4	75.3	199.1
3	184.9	183.7	33.3	134.0	124.1	124.3	124.7	120.9	NO ^f	118.9	125.0	118.4	119.7	121.6	126.8
4	129.9	133.2	143.4	69.4	131.2	131.5	131.2	135.1	NO ^f	153.8	136.2	141.8	151.6 ^a	139.0	162.5
5	154.7	159.8	47.9	49.9	132.0	142.9	143.4	46.8^{a}	46.1	47.2	52.3 ^a	36.1	85.3	47.2	44.9
6	98.7	112.6	72.3	27.8	123.7	120.4	120.2	28.9	29.8	28.6	78.1	24.1	29.7 ^b	28.9	33.0
7	49.5	75.7	43.7	39.8	40.7	47.2	45.6	46.7^{a}	45.1	41.5	50.4 ^a	36.2	38.5	40.1	74.7
8	18.6	28.1	22.9	27.0	20.8	20.6	20.1	26.8	26.9	26.9	27.5	25.9	24.8	26.7	31.5
9	36.5	32.0	37.5	41.6	35.7	37.1	37.1	40.2	37.4	35.5	34.7	68.2	29.5 ^b	39.8	37.6
10	39.5	39.6	39.5	31.9	32.3	32.2	32.3	32.3	35.4	36.6	40.9	43.9	44.7	35.2	37.4
11	26.3	32.1	24.3	145.7	33.2	81.0	85.4	151.0	150.7	135.2	144.4	147.3	148.7 ^a	145.1	145.9
12	23.4 ^a	21.7 ^a	22.3	122.7	20.8	22.8	23.2	108.2	108.7	108.0	125.2	108.7	109.5	125.1	114.1
13	24.5 ^a	18.0^{a}	25.6	167.9	20.7	23.2	23.2	20.9	21.0	64.8	168.1	20.6	20.0 ^c	172.3	18.6
14	68.9	71.8	107.5	29.0	23.0	22.0	20.2	21.2	NO	10.4	69.8	22.4	20.9 ^c	21.0	16.9
15	19.3	17.5 ^a	20.8	18.9	20.1	24.4	23.7	15.6	10.9	20.6	12.1	60.8	17.7 ^c	16.4	22.0

Table 2 (continued)

Site	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315
1	31.1	33.0	28.8	37.9	37.8	36.5	36.6	39.4	39.4	74.4	39.7	35.4	27.5	30.7	31.2
2	22.7	22.4	22.3	23.0	23.0	24.5	23.3	17.8	18.4	42.4	18.7	18.1	27.0	18.5	23.7
3	121.9	121.1	121.8	121.1	121.1	152.7	137.1	23.8	28.0	197.5	32.8 ^a	27.9	31.8	32.2	31.3
4	138.8	133.8	132.6	134.9	134.8	142.5	134.0	132.7	124.3	129.5	126.1	126.8	144.7	143.4	144.6
5	75.5	45.1	46.1	46.9	46.9	43.5	43.7	164.2	149.4	161.9	142.0	146.7	124.5	129.0	124.7
6	39.4	28.1	28.2	29.4	29.4	26.8	28.0	29.3	32.9	32.8	30.5 ^a	32.1	31.4	32.9	31.2
7	40.2	43.6	45.7	42.4	40.1	46.0	46.1	47.4	46.9	45.1	48.3	42.8	39.5	37.1	38.4
8	26.6	35.0	41.9	27.5	27.4	26.5	26.7	27.0	27.2	26.5	70.6	35.4	38.6	35.7	38.3
9	36.6	78.1	215.3	40.3	40.1	39.7	39.8	41.4	41.7	37.7	50.3	78.1	78.2	79.9	80.1
10	35.7	37.6	46.7	32.3	32.3	32.2	32.4	36.7	35.3	41.3	35.8	40.9	39.3	39.1	39.4
11	150.2	149.3	147.7	154.5	145.3	150.3	150.4	148.9	149.7	148.9	132.4	148.2	132.9	131.6	132.6
12	108.5	109.0	109.9	107.3	172.4	108.5	108.4	109.3	108.6	109.4	126.5	109.2	124.6	125.5	124.8
13	20.9	20.8	20.3	65.1	125.0	21.0	20.9	20.7	20.8	20.6	171.9	20.7	171.9	170.8	170.8
14	17.4	21.7	21.6	21.2	21.1	194.8	168.7	190.7	170.9	16.3	19.4	170.7	18.9	19.8	18.9
15	21.8	10.0	16.2	15.7	15.7	15.7	15.7	25.1	24.9	11.0	25.4	18.1	17.2	19.0	18.3
Site	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330
1	34.7	42.3	81.0	37.0	36.8 ^a	41.0	41.9	76.8	76.4	76.2	81.5	41.9 ^a	41.3	38.9	41.7
2	27.1	19.1	28.2	23.4	23.3	29.4	23.5	42.7	41.0	46.4	27.1 ^a	26.7	23.4	24.5	23.5
3	32.0	33.2	34.1	41.4	37.3 ^a	41.8	36.9	70.5	76.7	198.8	27.7 ^a	37.8	36.8	37.8	36.8
4	144.3	125.0	147.9	149.1	149.5	149.8	150.9	154.0	149.4	148.6	114.1	143.0	150.3	151.0	150.7
5	125.2	134.6	43.4	47.1	48.3	50.6	49.9	45.9 ^a	45.9	44.6	53.9	57.9	43.7	49.8	50.0
6	31.5	31.2	25.5	29.3	27.9	27.4	29.5	29.4 ^b	29.4	29.2	68.3	69.3	34.3	30.8	30.0
7	39.5	42.7	141.6	131.5	126.9	154.0	45.8	45.5 ^a	45.3	46.5	50.0	48.1	72.9	38.5	41.2
8	36.0	28.3	115.8	201.8	34.6	23.1	26.8	27.0 ^b	27.1	26.7	24.7	23.9	31.3	36.5	27.3
9	216.1	40.3	38.1	57.6	79.6	36.4	41.2	37.9	37.9	36.8	36.1	40.4^{a}	35.9	80.0	41.9
10	47.0	34.6	38.1	38.0	41.2	36.1	35.9	40.9	40.7	38.9	41.4	37.4	35.4	42.3	36.0
11	133.5	154.2	35.0	144.1	123.1	125.1	151.0	150.7	150.7	150.1	144.4	147.3	146.7	146.9	154.1
12	125.2	107.6	21.2	22.2	20.2	169.7	108.1	21.0	109.0	109.5	124.9	124.6	167.8	123.4	107.8
13	172.4	65.3	21.2	23.2	20.2	59.0	21.0	108.7	21.1	21.3	168.1	168.1	123.3	170.4	65.3
14	22.1	19.4	108.0	107.0	106.9	105.8	105.3	103.6	105.5	118.5	141.6	106.9	105.1	106.9	105.4
15	18.9	24.7	11.5	17.3	10.1	15.9	16.3	10.9	10.9	10.0	13.0	17.6	15.4	11.2	16.4

Site	331	332 ^B	333 ^B	334 ^B	335 ^B	336	337 ^B	338	339	340	341	342	343	344	345
1	41.0	42.0	42.8	43.6	43.0	35.7	36.3	38.4	26.6	27.7	26.6	121.7	121.7	122.8	121.8
2	23.5	19.3	22.7	22.1	22.1	22.1	22.3	71.5	71.5	71.5	69.0	149.7	150.1	149.7	150.8
3	36.5	33.1	35.7	37.7	37.5	36.9	37.1	79.2	79.3	81.9	93.4	181.4	180.8	182.4	181.8
4	150.8	133.5	33.2	33.6	33.6	33.8	34.0	41.7	40.5	39.2	40.5	126.5	133.1	128.8	122.0
5	49.8	147.9	149.6	147.7	147.3	143.3	142.5	129.1	129.1	129.3	128.6	154.6	150.1	157.5	162.1
6	29.5	30.6	115.5	114.6	115.4	120.2	120.6	31.2	31.1	32.7	31.1	117.7	133.5	116.6	120.1
7	36.9	125.7	142.8	131.8	131.4	127.7	128.2	40.5	41.7	41.9	40.5	153.7	147.9	156.4	155.4
8	27.0	26.8	114.1	65.5	67.9	23.0	23.0	26.6	38.4	33.1	37.7	23.6	196.2	23.7	24.1
9	41.9	39.5	41.0	46.7	44.2	34.5	34.4	29.7	29.7	30.3	29.6	33.6	49.8	33.3	33.6
10	35.9	34.9	34.9	34.5	34.3	40.3	39.0	124.9	124.8	123.2	124.7	36.5	40.6	37.1	37.7
11	155.5	120.6	71.4	128.8	127.4	126.2	125.5	148.9	148.9	-	148.8	35.4	29.0	35.5	35.2
12	133.0	62.3	29.3 ^a	25.8	25.2	20.7	20.7	109.0	109.0	109.4	108.9	20.9	21.4	20.9	20.9
13	194.9	62.1	29.5 ^a	19.0	18.9	19.8	19.7	21.1	21.1	20.9	20.5	21.2	21.7	21.1	21.2
14	105.6	19.3	18.7	19.8	19.9	18.9	19.1	16.5	16.4	17.9	16.4	9.9	11.0	55.9	-
15	16.4	24.5	22.4	20.2	20.6	65.2	64.8	-	-	_	-	25.4	26.8	26.5	26.5
Site	346	347	348	349	350										
1	126.0	156.6	72.8	135.6	133.8										
2	153.2	126.3	133.0	122.1	120.5										
3	185.4	186.6	127.0	120.1	38.6										
4	112.8	129.8	145.0	136.9	133.8										
5	156.2	158.8	38.7	42.9	163.1										
6	145.7	26.6	27.2	36.7	188.2										
7	144.3	40.6	38.1	116.7	150.7										
8	191.1	33.2	29.6	149.9	140.1										
9	48.3	37.8	33.4	19.8	35.1										
10	40.4	40.2	37.4	35.3	39.5										
11	28.8	143.4	145.0	119.4	119.6										
12	21.6	125.8	125.0	137.5	139.4										
13	21.6	170.7	171.8	8.2	9.1										
14	_	10.6	113.1	20.4	28.0										
15	26.0	23.6	17.0	15.4	20.9										

^{a,b,c} Identically marked assignments within a column are interchangeable. ^d Incorrect data from literature.

^e Data not attributed by the authors from the original papers. ^f NO = Not observed.

Table 3

¹³C NMR shift ranges for several substructures

Substructure	No. of C	¹³ C NMR shifts range	% Recognition
[80X0]	5	50.5–44.7 d	100.0
	8	214.3-200.0 s	
	9	60.4–56.7 t	
	10	41.2–32.7 s	
[1,90R; 5,110XY]	1	80.5–66.8 d	100.0
	5	94.5–57.4 s	
	7	65.8–43.0 d	
	9	80.9–66.0 d	
	10	56.0–43.9 s	
	11	85.8–69.8 s	
[1,6,90R; 5,110XY]	1	80.5–67.8 d	100.0
	5	94.5-88.0 s	
	6	80.9–67.9 d	
	7	57.5–48.2 d	
	9	80.9–68.0 d	
	10	55.5–45.7 s	
	11	85.8–69.8 s	
[5,110XY; 60X0]	5	86.0-84.9 s	100.0
	6	212.6–211.0 s	
	7	55.5–55.2 d	
	11	78.6–77.5 s	
[1.4.90R: 5.110XY: 60X0]	1	72.5–72.0 d	100.0
[1,1,2,011,0,110111,00110]	4	71.0-69.9 8	10010
	5	86.0-84.9 8	
	6	212.6–211.0 s	
	7	55.5–55.2 d	
	9	72.3–72.0 d	
	10	56.0–55.0 s	
	11	78.6–77.5 s	
[1.4.6.90R: 5.110XY]	1	76.5–67.8 d	100.0
[1, 1,0,2 011, 0,110111]	4	85.1–69.5 s	10010
	5	94.5–91.0 s	
	6	80.4–67.9 d	
	7	65.0–48.2 d	
	9	79.6–68.0 d	
	11	85.8–69.8 s	
[10R]	1	83.0–80.3 d	100.0
L - J	2	27.2–26.6 t	
	3	31.5–27.3 t	
	4	33.7–33.0 d	
	5	53.0–45.9 d	
	10	40.9–39.2 s	
[1.2.3.4.8.9.15OR: 5.11OXY]	1	75.5–70.8 d	100.0
[-,-,-, ., ., ., .,]	2	73.5–69.0 d	
	3	78.4–75.1 d	
	4	72.6–69.6 s	
	5	94.5–93.0 s	
	7	52.5–49.2 d	
	8	74.5–68.9 d	
	9	76.3–70.5 d	
	11	85.5-84.0 s	
	15	62.5-60.2 t	

Substructure	No. of C	¹³ C NMR shifts range	% Recognition
[4OR]	1	45.2–40.5 t	55.8
	2	23.3–19.2 t	
	3	45.4–35.5 t	
	4	83.4–71.6 s	
	5	57.2–46.2 d	
	10	39.4–33.7 s	
[6OR]	5	60.2–45.7 d	72.3
	6	78.0–66.3 d	
	7	51.2–43.2 d	
	8	28.2–16.2 t	
	9	45.2–28.8 t	
	10	48.5–33.2 s	
[110H]	5	54.9–42.5 d	90.6
	6	40.9–20.5 t	
	7	50.7–41.0 d	
	8	24.7-20.6 t	
	9	44./-21./ t	
	10	48.2-30.2 s	
	11	85.0-72.4 s	
	12	29.8–25.5 q	
[1,4OR]	1	91.3–75.3 d	52.8
	2	40.7–23.3 t	
	3	45.2–33.0 t	
	4	82.5–65.9 s	
	5	60.5–44.9 d	
	10	48.5–33.2 s	
[3,4OR]	1	40.7–31.7 t	71.4
	2	27.2–23.0 t	
	3	79.3–71.5 d	
	4	87.6–71.5 s	
	5	55.0-44.7 d	
	10	39.2–32.7 s	
[3,4OR]	1	40.7–31.7 t	73.9
	2	27.2–23.0 t	
	3	79.3–70.6 d	
	4	87.6–68.6 s	
	10	39.2–32.7 s	
[4,6OR]	4	84.3–71.0 s	78.9
	5	57.7–45.7 d	
	6	77.9–66.3 d	
	7	51.2–43.2 d	
	11	29.7–23.5 d	
[4,110R]	4	77.0–72.0 s	100.0
	5	54.9–47.2 d	
	6	21.6–20.5 t	
	7	50.7–41.0 d	
	11	85.0–73.0 s	
[1,11OH]	1	91.3–76.3 d	100.0
	5	48.9–45.4 d	
	10	40.2–36.2 s	
	11	75.1–72.5 s	

Substructure	No. of C	¹³ C NMR shifts range	% Recognition	_
[10R: 4.110H]	1	91.3-80.0 d	100.0	
	4	72.8–72.0 s		
	5	48.5–47.2 d		
	10	40.2–38.7 s		
	11	75.1–74.5 s		
[1EN; 3OXO]	1	160.8–153.1 d	100.0	
	2	127.3–125.1 d		
	3	204.0–183.6 s		
	10	42.4–36.0 s		
[3EN]	1	40.0–28.7 t	81.8	
	2	23.7–20.2 t		
	3	124.6–119.0 d		
	4	138.8–131.1 s		
	5	47.4–42.5 d		
	10	46.7-30.2 s		
[10R; 3EN]	1	81.0–74.4 d	100.0	
	2	32.2–29.0 t		
	3	125.0–118.9 d		
	4	153.8–133.5 s		
	5	52.2–46.4 d		
	10	40.9–36.2 s		
[10R; 4EN]	1	80.3–75.4 d	50.0	
	2	27.7–23.8 t		
	3	32.7–31.2 t		
	4	133.3–123.8 s		
	5	133.6–125.4 s		
[3OXO; 4EN]	3	200.3–180.8 s	100.0	
	4	133.8–125.9 s		
	5	164.1–150.1 s		
	10	42.4–35.0 s		
[3OXO; 4EN; 11OR]	3	200.3–186.5 s	100.0	
	4	131.3–125.9 s		
	5	164.1–158.8 s		
	7	50.5–49.5 d		
	11	73.4–72.0 s		
[4EN; 11OR]	4	215.0-123.8 s	56.2	
	5	208.1–133.3 s		
	6	39.2–25.2 t		
	7	50.5–44.0 d		
	11	78.6–72.0 s		
	14	29.5–10.3 q		
[4(14)EN]	1	41.9-30.7 t	61.5	
	2	29.3–22.2 t		
	3	41.7–30.2 t		
	4	154.1–146.8 s		
	5	60.2–43.7 d		
	10	42.2–35.4 s		
	14	112.3–104.9 t		
	15	28.2–10.1 q		

Substructure	No. of C	¹³ C NMR shifts range	% Recognition
[4(14)EN]	3	46.5–30.2 t	69.2
	4	154.1–143.3 s	
	5	60.2–43.4 d	
	10	42.2–35.2 s	
	14	112.3–104.9 t	
[4(14)EN; 11OH]	4	151.1–147.1 s	81.8
	5	49.7–43.5 d	
	6	40.9–24.2 t	
	7	59.0–47.5 d	
	11	80.6–71.5 s	
	14	109.0–105.3 t	
[5EN]	1	43.5–39.5 t	100.0
	2	22.7–17.7 t	
	3	37.7–33.2 t	
	4	39.2–33.2 d	
	5	152.6–133.1 s	
	6	129.1–114.5 d	
	10	34.9–34.2 s	
	14	27.7–18.7 q	
	15	22.3–20.2 q	
[5EN; 11OR]	5	152.6-133.1 s	62.5
	6	129.1–119.6 d	
	7	47.2–44.0 d	
	11	85.4–60.5 s	
[4OR; 6EN]	4	82.5–71.0 s	100.0
	5	54.4–48.5 d	
	6	140.8–115.3 d	
	7	146.1–142.3 s	
	10	39.0–33.7 s	
[6EN; 8OXO]	6	145.6–133.5 d	100.0
	7	147.8–142.3 s	
	8	201.6-191.1 s	
	9	58.5–48.2 t	
	10	40.5–36.9 s	
[4OR; 7EN]	4	84.5-70.9 s	100.0
	5	52.0–42.9 d	
	6	33.9–23.1 t	
	7	142.1–141.6 s	
	8	116.1–115.8 d	
[7(11)EN]	7	131.8-126.9 s	76.9
	10	41.2–34.2 s	
	11	146.1–123.0 s	
	12	25.7–20.2 q	
	13	23.2–18.8 q	
[7(11)EN; 80XO]	7	131.5–129.6 s	100.0
	8	210.6–200.8 s	
	9	60.0–56.7 t	
	10	41.2–35.4 s	
	11	146.1–144.1 s	

[11EN] 5 55.0-44.5 d 73.7 6 29.5-18.2 t 7 46.7-39.0 d 8 27.3-23.0 t 9 44.7-36.7 t	
$\begin{array}{cccc} 6 & 29.5-18.2 t \\ 7 & 46.7-39.0 d \\ 8 & 27.3-23.0 t \\ 9 & 44.7-36.7 t \end{array}$	
7 46.7–39.0 d 8 27.3–23.0 t 9 44.7–36.7 t	
8 27.3–23.0 t 9 44.7–36.7 t	
9 44.7–36.7 t	
10 40.9–32.2 s	
11 151.0–146.5 s	
12 $110.9-108.0 t$	
15 22.8–20.0 q	
[50R; 11EN] 4 41.4–40.5 d 100.0	
5 85.3–75.5 s	
11 150.5–145.6 s	
12 109.5–108.1 t	
13 21.1–20.0 q	
14 20.2–15.5 q	
[11EN: 13OH] 7 42.7–41.5 d 100.0	
11 154.5–135.1 s	
12 108.0–107.1 t	
13 65.3–64.8 t	
111EN: 120V0: 12 0B1 6 215 22.7 6 04.0	
$\begin{bmatrix} 11 \text{EN}, 130 \text{AO}; 13 \text{ OK} \end{bmatrix} \qquad 0 \qquad 51.3-23.7 \text{ t} \qquad 94.0$	
/ 40.4-3.5 U	
$0 \qquad 50.5-2.11$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
12 $123.1-121.9$ t 13 $172.3-167.1$ s	
15 172.3-107.1 \$	
[1,4EN; 30XO] 1 158.1–153.1 d 100.0	
2 127.3–125.1 d	
3 187.6–183.6 s	
4 133.1–129.1 s	
5 160.5–153.8 s	
[1,4(14)EN] 1 139.3–124.8 d 100.0	
2 133.1–123.6 d	
3 35.0–33.2 t	
4 143.6–143.3 s	
14 114.5–107.5 t	
[3 5FN] 3 124 6-124 0 d 100 0	
$4 \qquad 1315-1311 \text{ s}$	
5 143 3-132 0 s	
6 123 6-120 1 d	
14 $230-202 \mathrm{g}$	
[5,/(11)EN] 5 147.6–142.5 s 100.0	
6 120.5–114.5 d	
/ 131.8–127.6 s	
$10 \qquad 40.2-54.2$ \$	
11 120.0-120.0 8	
[7,11EN; 8,12OXY] 7 117.3–115.6 s 100.0	
8 150.1–149.2 s	
11 119.9–118.8 s	
12 138.2–136.9 d	
13 8.7–8.1 q	

Table 4Substructures proposed by the system for eudesmanes in Fig. 3

Eudesmane	13 C NMR data (C ₁ -C ₁₅)	Proposed substructures	References
I	73.4d, 38.6t, 23.5t, 70.5s 91.6s, 73.4d, 49.1d, 31.9t 79.8d, 51.8s, 84.4s, 25.8q 29.6q, 24.1q, 20.0q	[1,9OR; 5,11Oxy]—100.0% [1,6,9OR; 5,11Oxy]—100.0% [1,4,6,9OR; 5,11Oxy]—100.0%	[153]
п	73.4d, 39.0t, 23.5t, 70.8s 91.6s, 73.4d, 49.1d, 31.9t 80.6d, 51.8s, 84.5s, 25.9q 29.7q, 24.0q, 20.1q	[1,9OR; 5,11Oxy]—100.0% [1,6,9OR; 5,11Oxy]—100.0% [1,4,6,9OR; 5,11Oxy]—100.0%	[153]
III	72.5d, 23.6t, 37.1t, 73.0s 91.2s, 79.2d, 49.9d, 34.2t 68.4d, 53.4s, 84.7s, 30.0q 26.6q, 23.3q, 65.0t	[1,9OR; 5,11Oxy]—100.0% [1,6,9OR; 5,11Oxy]—100.0% [1,4,6,9OR; 5,11Oxy]—100.0%	[154]
IV	73.2d, 23.5t, 38.9t, 70.8s 91.6s, 80.9d, 49.1d, 31.9t 73.3d, 51.8s, 84.5s, 29.7q 26.0q, 24.0q, 20.1q	[1,90R; 5,110xy]—100.0% [1,6,90R; 5,110xy]—100.0% [1,4,6,90R; 5,110xy]—100.0%	[154]
V	73.2d, 68.7d, 75.7d, 70.6s 93.7s, 73.9d, 50.3d, 68.9d 70.6d, 52.1s, 84.1s, 18.5q 69.8t, 22.9q, 60.0t	[1,90R; 5,110xy]—100.0% [1,6,90R; 5,110xy]—100.0% [1,4,6,90R; 5,110xy]—100.0% [1,2,3,4,8,9,150R; 5,110xy]—100.0%	[155]
VI	73.1d, 68.7d, 75.6d, 70.6s 94.0s, 74.2d, 50.5d, 68.8d 70.2d, 52.7s, 84.3s, 18.6q 69.8t, 23.8q, 60.0t	[1,90R; 5,110xy]—100.0% [1,6,90R; 5,110xy]—100.0% [1,4,6,90R; 5,110xy]—100.0% [1,2,3,4,8,9,150R; 5,110xy]—100.0%	[155]
VII	73.2d, 69.0d, 75.6d, 70.7s, 94.0s, 74.2d, 50.4d, 69.0d 70.6d, 52.6s, 84.4s, 18.6q 69.9t, 24.1q, 61.0t	[1,9OR; 5,11Oxy]—100.0% [1,6,9OR; 5,11Oxy]—100.0% [1,4,6,9OR; 5,11Oxy]—100.0% [1,2,3,4,8,9,15OR; 5,11Oxy]—100.0%	[155]
VIII	73.2d, 68.7d, 75.8d, 70.6s 93.7s, 74.8d, 50.4d, 69.1d 70.8d, 52.2s, 84.2s, 18.4q 69.9t, 22.9q, 60.0t	[1,90R; 5,110xy]—100.0% [1,6,90R; 5,110xy]—100.0% [1,4,6,90R; 5,110xy]—100.0% [1,2,3,4,8,9,150R; 5,110xy]—100.0%	[155]
IX	72.4d, 68.5d, 75.2d, 70.6s 94.5s, 74.6d, 49.3d, 74.5d 73.7d, 51.3s, 85.7s, 19.6q 69.8t, 23.8q, 60.7t	[1,90R; 5,110xy]—100.0% [1,6,90R; 5,110xy]—100.0% [1,4,6,90R; 5,110xy]—100.0% [1,2,3,4,8,9,150R; 5,110xy]—100.0%	[156]
X	74.5d, 69.3d, 77.1d, 70.7s 94.4s, 74.6d, 51.8d, 74.5d 77.2d, 52.0s, 85.5s, 19.5q 70.1t, 23.8q, 61.3t	[1,9OR; 5,11Oxy]—100.0% [1,6,9OR; 5,11Oxy]—100.0% [1,4,6,9OR; 5,11Oxy]—100.0% [1,2,3,4,8,9,15OR; 5,11Oxy]—100.0%	[156]
XI	72.2d, 68.3d, 75.1d, 70.6s 94.2s, 74.8d, 51.1d, 74.1d 76.9d, 51.3s, 85.5s, 19.6q 70.2t, 23.5q, 60.7t	[1,9OR; 5,11Oxy]—100.0% [1,6,9OR; 5,11Oxy]—100.0% [1,4,6,9OR; 5,11Oxy]—100.0% [1,2,3,4,8,9,15OR; 5,11Oxy]—100.0%	[157]

Eudesmane	13 C NMR data (C ₁ -C ₁₅)	Proposed substructures	References
XII	72.4d, 68.5d, 75.2d, 70.6s 94.5s, 74.9d, 49.4d, 74.6d 73.7d, 52.6s, 85.6s, 19.7q 69.8t, 23.8q, 60.7t	[1,90R; 5,110xy]—100.0% [1,6,90R; 5,110xy]—100.0% [1,4,6,90R; 5,110xy]—100.0% [1,2,3,4,8,9,150R; 5,110xy]—100.0%	[157]
XIII	73.1d, 68.8d, 78.0d, 70.9s 93.6s, 75.4d, 51.0d, 69.2d 71.1d, 53.4s, 83.8s, 18.7q 70.0t, 23.4q, 60.4t	[1,90R; 5,110xy]—100.0% [1,6,90R; 5,110xy]—100.0% [1,4,6,90R; 5,110xy]—100.0% [1,2,3,4,8,9,150R; 5,110xy]—100.0%	[158]
XIV	73.0d, 68.3d, 77.9d, 71.7s 93.6s, 74.7d, 51.1d, 69.3d 71.2d, 52.8s, 83.6s, 18.7q 69.9t, 22.8q, 60.6t	[1,90R; 5,110xy]—100.0% [1,6,90R; 5,110xy]—100.0% [1,4,6,90R; 5,110xy]—100.0% [1,2,3,4,8,9,150R; 5,110xy]—100.0%	[158]
XV	72.8d, 68.4d, 77.5d, 70.3s 93.2s, 74.1d, 50.6d, 68.8d 70.6d, 52.2s, 83.3s, 18.6q 69.7t, 22.6q, 60.3t	[1,90R; 5,110xy]—100.0% [1,6,90R; 5,110xy]—100.0% [1,4,6,90R; 5,110xy]—100.0% [1,2,3,4,8,9,150R; 5,110xy]—100.0%	[158]
XVI	73.3d, 69.1d, 76.0d, 71.0s 94.4s, 74.4d, 50.8d, 69.0d 70.4d, 53.0s, 84.6s, 18.7q 70.3t, 23.8q, 60.1t	[1,90R; 5,110xy]—100.0% [1,6,90R; 5,110xy]—100.0% [1,4,6,90R; 5,110xy]—100.0% [1,2,3,4,8,9,150R; 5,110xy]—100.0%	[158]
XVII	73.3d, 69.0d, 76.6d, 70.4s 93.1s, 74.6d, 50.7d, 68.3d 70.6d, 52.7s, 83.5s, 17.9q 70.1t, 23.4q, 60.0t	[1,90R; 5,110xy]—100.0% [1,6,90R; 5,110xy]—100.0% [1,4,6,90R; 5,110xy]—100.0% [1,2,3,4,8,9,150R; 5,110xy]—100.0%	[159]
XVIII	52.7t, 65.3d, 54.3t, 72.7s 48.1d, 21.8t, 42.5d, 21.6t 42.7t, 34.3s, 81.5s, 25.9q 27.1q, 20.5q, 23.9q	[4,11OR]—100.0%	[160]
XIX	79.4d, 29.4t, 39.1t, 79.3s 47.0d, 21.6t, 42.5d, 21.6t 42.6t, 39.5s, 73.7s, 29.5q 30.3q, 14.6q, 19.6q	[1,11OH]—100.0% [1,4OR]—52.8%	[160]
XX	52.7t, 65.7d, 54.4t, 72.4s 49.4d, 21.7t, 43.1d, 21.8t 42.8t, 34.4s, 73.8s, 29.7q 30.6q, 20.5q, 24.0q	[4,11OR]—100.0%	[160]
XXI	215.8s, 33.6t, 36.0t, 70.3s 48.0d, 21.6t, 42.4d, 22.1t 41.2t, 46.5s, 73.4s, 29.5q 30.1q, 23.7q, 19.2q	[11OH]—90.6%	[161]
XXII	43.5t, 21.0t, 44.3t, 71.6s 52.0d, 21.5t, 48.4d, 68.6d 52.0t, 35.2s, 73.9s, 25.8q 30.1q, 23.8q, 23.3q	[4,11OR]—100.0% [4OR]—55.8%	[161]

Eudesmane	13 C NMR data (C ₁ -C ₁₅)	Proposed substructures	References
		[1 400] 52 80/	[16]
АЛШ	79.50, 29.4t, 50.7t, 72.7s	[1,40K]—52.8%	[101]
	47.9a, 75.1a, 51.2a, 25.4a	[4,00K]—78.9% [60R]—72.3%	
	25.1q, 22.6q, 14.7q	[0014] 72.576	
XXIV	36.0t, 24.6t, 75.7d, 72.8s	[4,60R]—78.9%	[162]
	49.0d, 70.4d, 50.2d, 21.2t	[5,40K]—73.9%	
	44.9t, 54.2s, 28.9d, 20.5q	[00K] = 72.3%	
	20.84, 21.14, 25.84	[1,40K]—32.8%	
XXV	36.1t, 24.7t, 75.7d, 72.9s	[4,6OR]—78.9%	[162]
	49.0d, 70.0d, 50.0d, 21.3t	[3,4OR]—73.9%	
	45.0t, 34.3s, 28.8d, 20.7q	[6OR]—72.3%	
	21.1q, 21.1q, 23.8q	[1,4OR]—52.8%	
XXVI	38.2t, 25.5t, 81.0d, 73.8s	[80X0]—100.0%	[163]
	52.0d, 26.2t, 70.1s, 205.5s	[4OR]—55.8%	
	59.4t, 38.4s, 63.7s, 19.7q	[3,4OR]—73.9%	
	19.4q, 18.9q, 18.0q	[3,4OR]—71.4%	
XXVII	38.1t, 25.6t, 74.0d, 85.5s	[80X0]—100.0%	[163]
	44.4d, 26.4t, 67.2s, 206.0s	[4OR]—55.8%	
	57.8t, 37.9s, 65.7s, 20.8q	[3,4OR]—73.9%	
	21.0q, 20.0q, 16.9q	[3,4OR]—71.4%	
XXVIII	38.6t, 25.6t, 81.3d, 74.0s	[80X0]—100.0%	[164]
	57.6d, 23.9t, 47.4d, 213.6s	[3,4OR]—73.9%	
	56.0t, 39.2s, 28.1d, 20.7q	[3,4OR]—71.4%	
	20.9q, 18.9q, 17.9q		
XXIX (not	83.3s, 74.9d, 72.0s, 71.7d	[1.4OR]—52.8%	[165]
attributed)	70.1t, 56.2d, 49.9s, 43.9d	[6OR]—72.3%	
	40.9t, 30.5q, 30.3t, 29.4q		
	22.8t, 22.6q, 17.6t		
XXX	80.4d, 30.4t, 42.3t, 72.0s	[1.4OR]—52.8%	[165]
	59.9d, 80.5d, 46.1d, 18.1d	[1.110H]—100.0%	
	28.5t, 44.1s, 71.4s, 30.4g	[6OR]—72.3%	
	30.1q, 24.1q, 62.9t		
XXXI	77 4d. 32 2t. 120 9d	[10R: 3EN]—100.0%	[166]
	135.1s		[]
	50.3d, 69.5d, 45.1d, 19.6t		
	33.5t, 36.3s, 27.3d, 22.2q		
	22.0q, 21.4q, 15.4q		
XXXII	76.6d, 32.3t, 121.9d.	[10R: 3EN]—100.0%	[166]
	133.7s		L - 21
	50.8d, 68.4d, 49.0t, 20.5t		
	35.3t, 37.0s, 29.1d, 20.7q		
	21.0q, 20.3q, 11.8q		

Eudesmane	13 C NMR data (C ₁ -C ₁₅)	Proposed substructures	References
XXXIII	47.7t, 198.4s, 125.5d, 168.2s 76.2s, 35.4t, 42.9d, 23.0t 76.2t, 41.5s, 71.8s, 23.2q 27.1e, 28.1e, 18.0e	_	[161]
VVVIV	27.1q, 28.1q, 18.9q	[1 1101] 100.0%	[165]
AAAIV	76.7d, 53.2t, 121.5d, 134.9s 51.4d, 79.1d, 44.9d, 18.2t 26.5t, 42.2s, 72.4s, 30.1q 30.6q, 22.9q, 61.9t	[1,110H]—100.0% [10R; 3EN]—100% [6OR]—72.3%	[103]
XXXV	38.2t, 19.0t, 32.8t, 126.0s 135.1s, 27.0t, 44.2d, 22.7t 39.5t, 34.5s, 74.6s, 29.9q 28.0q, 19.7q, 26.0q	[4EN; 11OH]—56.2%	[167]
XXXVI	42.6t, 21.1t, 37.3t, 151.5s 44.5d, 24.1t, 42.4d, 23.8t 38.3t, 35.4s, 74.7s, 29.7q 29.3q, 105.4t, 17.2q	[11OH]—90.6% [4(14)EN]—61.5% [4(14)EN]—69.2%	[167]
XXXVII	81.4d, 33.7t, 36.2t, 147.2s 51.3d, 77.4d, 46.1d, 20.1t 28.4t, 42.9s, 72.6s, 31.1q 28.8q, 106.6t, 63.8t	[1,11OH]—100.0% [4(14)EN; 11OH]—81.8% [4(14)EN]—69.2% [6OR]—72.3%	[165]
XXXVIII	88.6d, 74.8d, 40.5t, 141.5s 47.6d, 72.5d, 43.0d, 22.2t 31.5t, 39.1s, 27.2d, 22.2q 24.1q, 113.2t, 12.6q	[4(14)EN]—69.2% [6OR]—72.3%	[168]
XXXIX	80.0d, 32.4t, 35.5t, 150.8s 48.9d, 24.7t, 45.2d, 23.4t 38.4t, 41.4s, 75.5s, 20.8q 69.1t, 107.0t, 10.7q	[4(14)EN; 11OH]—81.8% [11OH]—90.6% [4(14)EN]—69.2%	[169]
XL	80.1d, -, 34.8t, 144.5s, 55.4d 68.7d, 53.0d, 22.1t, 36.1t 40.6s, 74.3s, 24.2q, 29.8q 108.9t, 12.7q	[4(14)EN]—69.2% [6OR]—72.3%	[170]
XLI	35.2t, 29.7t, 73.5d, 151.8s 38.3d, 28.9t, 75.4s, 26.5t 35.9t, 35.4s, 76.4s, 24.6q 24.7q, 108.8t, 14.5q	-	[171]
XLII	41.0t, 22.2t, 36.8t, 151.0s 49.7d, 24.9t, 48.3d, 23.4t 41.7t, 35.5s, 80.8s, 23.6q 24.2q, 105.3t, 16.3q	[110H]—90.6% [4(14)EN]—61.5% [4(14)EN]—69.2% [4(14)EN; 110H]—81.8%	[172]

Eudesmane	13 C NMR data (C ₁ -C ₁₅)	Proposed substructures	References
XLIII	41.0t, 22.2t, 36.8t, 151.1s 49.8d, 25.0t, 48.2d, 23.4t 41.8t, 35.9s, 80.6s, 23.7q 24.1q, 105.4t, 16.3q	[11OH]—90.6% [4(14)EN]—61.5% [4(14)EN]—69.2% [4(14)EN;11OH]—81.8%	[172]
XLIV	37.9t, 25.3t, 79.1d, 75.2s 156.2s, 121.3d, 66.9s, 203.2s 57.8t, 41.3s, 66.6s, 19.3q 20.6q, 26.7q, 24.7q	[3,4OR]—73.9%	[163]
XLV	42.0t, 20.8t, 44.1t, 71.5s 56.2d, 26.2t, 132.9s,25.3t 56.2t, 35.3s, 120.5s, 20.1q 20.1q, 22.6q, 18.5q	[4OR]—55.8% [7(11)EN]—76.9%	[161]
XLVI	41.4t, 20.2t, 43.5t, 72.1s 49.1d, 22.7t, 39.4d, 23.5t 40.4t, 35.2s, 146.9s, 110.8t 22.6q, 22.3q, 18.5q	[4OR]—55.8% [11EN]—73.7%	[173]
XLVII	37.6t, 25.6t, 73.7d, 86.7s 44.5d, 33.3t, 80.3s, 211.3s 55.0t, 40.5s, 143.9s, 115.1t 18.2q, 19.3q, 16.8q	[8OXO]—100.0% [3,4OR]—73.9% [3,4OR]—71.4%	[164]
XLVIII	41.1t, 20.2t, 43.5t, 72.0s 55.0d, 26.6t, 40.6d, 27.4t 44.6t, 34.6s, 145.9s, 122.3t 167.9s, 22.5q, 18.7q	[11EN; 13OXO; 13OR]—100.0% [4OR]—55.8%	[174]
XLIX	33.5t, 14.7t, 31.9t, 68.1s 72.3s, 26.8t, 37.6d, 19.9t 37.4t, 33.6s, 143.5s, 126.0t 171.3s, 201.9d, 20.7q	[11EN; 13OXO; 13OR]—100.0%	[166]
L	32.0t, 15.5t, 34.4t, 68.5s 71.3s, 26.9t, 38.3d, 22.1t 34.6t, 34.1s, 143.3s, 125.4t 170.5s, 201.4d, 23.1q	[11EN; 13OXO; 13OR]—100.0%	[166]
LI (not attributed)	150.8s, 108.2t, 80.0s, 52.1d 46.3d, 45.0t, 40.8t, 39.2t 26.9t, 26.1t, 19.8t, 27.5q 21.0q, 20.4q, 34.8s	[4OR]—55.8% [11EN]—73.7%	[175]
LII (not attributed)	150.8s, 108.2t, 80.0s, 52.1d 46.3d, 45.0t, 40.8t, 39.2t 26.9t, 26.1t, 19.8t, 20.7q 20.7q, 19.8q, 34.8s	[4OR]—55.8% [11EN]—73.7%	[175]
LIII	39.5t, 27.4t, 79.7d, 75.8s 47.1d, 22.5t, 38.8d, 23.4t	[3,4OR]—73.9% [3,4OR]—71.4%	[176]

Eudesmane	13 C NMR data (C ₁ -C ₁₅)	Proposed substructures	References
	40.1t, 35.2s, 146.7s, 111.0t 22.8q, 16.2q, 18.7q	[11EN]—73.7%	
LIV	39.2t, 25.8t, 82.1d, 74.5s 48.3d, 22.1t, 38.8d, 23.1t 40.2t, 35.2s, 146.8s, 111.5t 22.7q, 17.5q, 18.9q	[3,4OR]—73.9% [3,4OR]—71.4% [11EN]—73.7%	[176]
LV	37.3t, 20.6t, 120.1d, 144.1s 131.5s, 124.9d, 48.5d, 23.0t 38.2t, 32.3s, 73.3s, 25.9q 28.1q, 20.3q, 23.4q	[3.5EN]—100.0%	[170]
LVI	40.3t, 71.5d, 124.3d, 143.3s 81.6s, 30.2t, 34.6d, 26.4t 36.2t, 33.2s, 144.2s, 125.9t 171.1s, 25.1q, 17.4q	[11EN; 13OXO; 13OR]—100.0%	[174]
LVII (not	199.1s, 171.5s, 161.0s,	[3OXO; 4EN]—100.0%	[177]
attributed)	143.88 129.1s, 35.7s, 39.6d, 125.6t 41.7t, 37.3t, 33.7t, 33.2t 27.1t, 22.4q, 10.8q	[11EN; 13OXO; 13OR]—100.0%	
LVIII	40.0t, 19.0t, 27.2t, 129.0s 140.5s, 32.0t, 41.2d, 29.9t 41.7t, 35.0s, 144.8s, 124.2t 171.3s, 62.9t, 24.8q	[11EN; 13OXO; 13OR]—100.0%	[166]
LIX	39.3t, 17.7t, 23.7t, 133.0s 163.6s, 29.9t, 40.9d, 26.9t 41.2t, 36.6s, 143.6s, 125.6t 171.6s, 191.7d, 25.1q	[11EN; 13OXO; 13OR]—100.0%	[166]
LX	35.0t, 22.2t, 31.7t, 151.9s 75.8s, 35.4t, 40.0d, 26.0t 34.3t, 37.7s, 150.5s, 108.5t 21.1q, 107.6t, 19.9q	[50R; 11EN]—100.0%	[178]
LXI	47.3t, 70.8d, 42.8t, 146.5s 49.8d, 26.6t, 40.4d, 30.0t 41.2t, 35.9s, 146.6s, 123.7t 168.3s, 109.1t, 24.0q	[11EN; 13OXO; 13OR]—100.0% [4(14)EN]—69.2%	[161]
LXII	30.2t, 28.2t, 74.9d, 146.9s 76.9s, 36.6t, 36.0d, 25.6t 33.0t, 38.6s, 144.4s, 124.2t 171.3s, 116.4t, 22.3q	[11EN; 13OXO; 13OR]—100.0%	[179]
LXIII	79.3d, 31.5t, 34.2t, 148.7s 47.6d, 26.5t, 45.3d, 28.9t	[4(14)EN]—69.2% [11EN]—73.7%	[180]

Eudesmane	13 C NMR data (C ₁ -C ₁₅)	Proposed substructures	References
	37.0t, 40.2s, 150.3s, 108.3t 20.9q, 106.8t, 10.2q		
LXIV	A-41.9t, 23.5t, 36.9t, 150.6s	[11EN; 13OXO;13OR]—100.0%	[181]
	50.0d, 29.9t, 39.9d, 27.4t 41.2t, 36.0s, 145.3s, 123.7t 168.8s, 105.6t, 16.4q B-126.7s, 195.6s, 82.9d 75.3s, 54.6d, 82.2d, 50.0d 24.9t, 38.5t, 158.2s, 137.8s 166.3s, 120.2t, 24.7q, 17.6q	[4(14)EN]—61.5% [4(14)EN]—69.2%	
LXV	47.2t, 67.8d, 39.0t, 39.4d 147.8s, 126.0d, 42.0d, 27.5t 42.0t, 39.4s, 146.7s, 123.1t 168.5s, 19.3q, 28.2q	_	[161]
LXVI (not attributed)	19.4q, 21.4q, 26.8t, 29.0t 35.7t, 37.3s, 38.8t, 46.2d 48.4d, 106.4t, 108.7t, 123.3d 139.7d, 148.0s, 151.0s	[1,4(14)EN]—100.0% [11EN]—73.7%	[182]
LXVII	40.9t, 126.9d, 130.1d, 145.3s 45.1d, 27.5t, 39.1d, 29.7t 42.8t, 33.6s, 146.0s, 125.1t 172.5s, 109.6t, 17.0q	[11EN; 13OXO; 130R]—100.0%	[174]
LXVIII	77.1d, 29.0t, 119.7d, 134.6s	[10R; 3EN]—100.0%	[183]
	44.2d, 21.2t, 116.6s, 150.1s 35.0t, 37.5s, 119.4s, 137.8d 8.1q, 20.8q, 11.4q	[7,11EN; 8,12OXY]—100.0%	
LXIX	80.1d, 28.3t, 34.0t, 147.4s 44.1d, 20.7t, 115.7s, 149.1s 36.0t, 40.2s, 119.3s, 137.8d 8.1q, 109.0t, 12.0q	[4(14)EN]—69.2% [7,11EN; 8,12OXY]—100.0%	[183]
	210.8s, 38.7t, 34.7t, 146.1s 44.9d, 20.7t, 114.9s, 149.7s 32.0t, 49.2s, 119.1s, 138.1d 8.1q, 109.9t, 17.3q	[7,11EN; 8,12OXY]—100.0%	[184]

	R ₁	R ₂	R ₃	R4	Name
I	OBz	Ac	Bz	Н	
Π	OBz	Bz	Bz	Н	
III	β-OAc	Н	Bz	OCin	TWHR-1
IV	β-OBz	Nic	Bz	Н	Regelidine

	R ₁	R ₂	R ₃	R ₄	Name
V	Ac	Fur	β-OAc	Ac	Hyponine-A
VI	Ac	Ac	β-OAc	Fur	Hyponine-B
VII	Ac	Ac	β-OAc	Bz	Hyponine-C
VIII	Ac	Bz	β-OAc	Ac	Cangorinine E-I
IX	Ac	Ac	α-OBz	Ac	Aquifoliunine E-I
Х	Н	Ac	α-ΟΗ	Ac	Aquifoliunine E-II
XI	Ac	Ac	α-ΟΗ	Ac	Aquifoliunine E-III
XII	Ac	Ac	α -ONic	Ac	Aquifoliunine E-IV

Fig. 3. Eudesmanes used to test the program.

this way, through the overlap of two or more presented substructures, we can achieve a complete structure for the new eudesmane.

In order to check if the chemical shift ranges

obtained were useful for structure determination of new substances, eudesmanes published in the literature from 1997 (included in Fig. 3) were deliberately not fed into the database for calculating the ranges

	R ₁	R ₂	R ₃	Name
XIII	Ac	Fur	OH	Hypoglaunine A
XIV	Fur	Ac	OH	Hypoglaunine B
XV	Bz	Ac	OH	Hypoglaunine C
XVI	Ac	Fur	Н	Hypoglaunine D
XVII	Ac	Fur	OH	Hypoglaunine

	R ₁	R ₂	R ₃	R4	R5	R ₆	R ₇	Name
XVIII	Н	Н	OH	OH	Н	Н	OGlu	Pterodontoside A
XIX	н	OH	Η	OGlu	Н	Η	OH	Pterodontoside B
XX	н	н	OH	OH	н	Н	OH	Pterodontriol A
XXI	(OXO	Н	OH	Н	Н	OH	
XXII	Н	Н	Н	OH	Н	OH	OH	Pterodontriol C
XXIII	OH	Н	Н	OH	OH	Н	Н	Pterodontriol D

Fig. 3. (continued)

shown in Table 3, and these values were then used to test the efficiency of obtaining substructures from the chemical shifts of a new substances. The results of these tests are presented in Table 4, where only the first 15 chemical shifts of the compound are given, after the chemical shifts of the substituents had been previously removed by the MACRONO program [152].

6. Discussion of results and conclusions

The system used here was able to propose substructures in 95.7% of the cases considered. The negative results for a few cases (eudesmanes XXXIII, XLI and LXV) were probably due to the non-existence of precise rules for these compounds. A more detailed

 $\begin{array}{rl} XXXV - \Delta^4 & - & 7\text{-epi-}\gamma\text{-eudesmol} \\ XXXVI - \Delta^{4(14)} & - & 7\text{-epi-}\beta\text{-eudesmol} \end{array}$

Fig. 3. (continued)

Fig. 3. (continued)

analysis of the cases where the program was able to propose overlapping substructures gave a 98.8% success rate, where it was possible to build up a complex molecular structure. A few imprecise assignments occurred in some cases (tests XXIV and XXV). In both tests, four substructures were proposed with incorrect positioning of one of the groups "–OR" (position 1 or 6 of the skeleton), but the correct structure was always displayed as one the three first options. It is worth noting that in many

	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈
XLVII	OAng	OAc	CH ₃	α-H	ОН	(OXO	CH ₃
XLVIII	Η	CH ₃	OH	α-Η	Η	Н	Н	CO ₂ Me
XLIX	Н	OH	CHO	α-OH	Н	Н	Н	CO ₂ H
L	Н	OH	CHO	β-ОН	Η	Н	Н	CO ₂ H
LI	Н	CH_3	Α	α-Η	Η	Н	Н	CH ₃
LII	Η	CH ₃	В	α-Η	Η	Н	Н	CH ₃
A - 3'-senecioyloxy-6'-deoxyglucopyranoside								
B - 3'-tigloyloxy-6'-deoxyglucopyranoside								

Fig. 3. (continued)

cases the overlapping of two or more proposed substructures resulted in the correct assignment of the compound structure. For example, in tests I– XVII, the user selection could choose the correct position of the groups indicated by the MACRONO program [152].

The results obtained with this new class of compounds, not previously presented in the SISTEMAT

	R ₁	R ₂	R ₃	R ₄	R ₅	Name
LX	Н	Н	Н	α-OH	CH ₃	
LXI	Η	OAc	Η	α-Η	CO ₂ H	2α-Acetoxycostoate
LXII	н	Η	OH	β-ΟΗ	CO ₂ H	
LXIII	OH	Н	Η	α-H	CH ₃	β-Dictyopterol

LXV - 2β-Acetoxy pterodontic acid

LXVII

ĊO₂H

	R ₁	R ₂	
LXVIII	OAc	Н	Δ^3
LXIX	OAc	Н	$\Delta^{4(14)}$
LXX	OXO		$\Delta^{4(14)}$

Fig. 3. (continued)

system, confirm the power of these expert systems in the field of structural elucidation and as a new tool for use in the search for heuristic rules.

Acknowledgements

This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), CAPES and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors thank Paulo H. Moreno for helpful discussion during the preparation of the manuscript.

References

- J.D. Connolly, R.A. Hill, Dictionary of Terpenoids, Chapman & Hall, London, 1991.
- [2] I.W. Southon, J. Buckingham, in: G.A. Cordell, J.E. Saxton, M. Shamma, G.F. Smith (Eds.), Dictionary of Alkaloids, Chapman & Hall, London, 1989.
- [3] F.C. Seaman, The Botanical Review 48 (1982) 123.
- [4] J.P. Gastmans, M. Furlan, M.N. Lopes, J.H.G. Borges, V.P. Emerenciano, Química Nova 13 (1990) 10.
- [5] V.P. Emerenciano, G.V. Rodrigues, J.P. Gastmans, Química Nova 16 (1993) 431.
- [6] V.P. Emerenciano, G.V. Rodrigues, P.A.T. Macari, S.A. Vestri, J.H.G. Borges, J.P. Gastmans, D.L.G. Fromauteau, Spectroscopy 12 (1994) 91.
- [7] M.J.P. Ferreira, V.P. Emerenciano, G.A.R. Linia, P. Romoff, P.A.T. Macari, G.V. Rodrigues, Progress in Nuclear Magnetic Resonance Spectroscopy 33 (1998) 153.
- [8] S.A.V. Alvarenga, J.P. Gastmans, G.V. Rodrigues, V.P. Emerenciano, Spectroscopy 13 (1997) 227.
- [9] P.A.T. Macari, J.P. Gastmans, G.V. Rodrigues, V.P. Emerenciano, Spectroscopy 12 (1994/1995) 139.
- [10] V.P. Emerenciano, L.D. Melo, G.V. Rodrigues, J.P. Gastmans, Spectroscopy 13 (1997) 181.
- [11] G. Cordano, M.A. Merrien, J. Polonsky, R.M. Rabanal, P. Varenne, Journal of the Indian Chemical Society 55 (1978) 1148.
- [12] T.V. Sung, B. Steffan, W. Steglich, G. Klebe, G. Adam, Phytochemistry 31 (1992) 3515.
- [13] O. Muñoz, C. Galeffi, E. Federici, J.A. Garbarino, M. Piovano, M. Nicoletti, Phytochemistry 40 (1995) 853.
- [14] F. Bohlmann, M. Grenz, R.K. Gupta, A.K. Dhar, M. Ahmed, R.M. King, H. Robinson, Phytochemistry 19 (1980) 2391.
- [15] J. Jakupovic, E. Ellmauerer, Y. Jia, F. Bohlmann, X.A. Dominguez, G. Schmeda-Hirsch, Planta Medica 53 (1987) 39.
- [16] A. García-Granados, A. Martínez, A. Molina, M.E. Onorato, Phytochemistry 25 (1986) 2171.
- [17] N. Fang, S. Yu, T.J. Mabry, K.A. Abboud, S.H. Simonsen, Phytochemistry 27 (1988) 3187.

- [18] J. Jakupovic, M. Jaensch, F. Bohlmann, M.O. Dillon, Phytochemistry 27 (1988) 3551.
- [19] E. Cabrera, A. Garcia-Granados, M.A. Quecuty, Phytochemistry 27 (1988) 183.
- [20] M.R. Brennan, K.L. Erickson, Journal of Organic Chemistry 47 (1982) 3917.
- [21] A.F. Thomas, M. Ozainne, Tetrahedron Letters 20 (1976) 1717.
- [22] Y.Q. Tu, D.Z. Wang, H.J. Zhang, L. Zhou, Phytochemistry 30 (1991) 271.
- [23] W. Dagang, L. Jikai, C. Chunquan, Phytochemistry 31 (1992) 4219.
- [24] Y.-H. Kuo, C.-J. Chou, L.-M.Y. Kuo, Y.-Y. Hu, Y.-C. Chen, C.-F. Chen, K.-H. Lee, Phytochemistry 41 (1996) 549.
- [25] Y.-H. Kuo, C.-H. Chen, M.-L. King, T.-S. Wu, K.-H. Lee, Phytochemistry 35 (1994) 803.
- [26] Y. Takaishi, H. Noguchi, K. Murakami, K. Nakano, T. Tomimatsu, Phytochemistry 29 (1990) 3869.
- [27] Y. Takaishi, K. Tokura, H. Noguchi, K. Nakano, K. Murakami, T. Tomimatsu, Phytochemistry 30 (1991) 1561.
- [28] L. Ya, G.M. Strunz, L.A. Calhoun, Canadian Journal of Chemistry 68 (1990) 371.
- [29] T. Yongqiang, W. Dagang, Z. Jun, C. Yaozu, Phytochemistry 29 (1990) 2923.
- [30] H. Sang, H. Wang, Y. Tu, Y. Chen, Magnetic Resonance in Chemistry 29 (1991) 650.
- [31] C. Chunquan, W. Dagang, L. Jikai, Phytochemistry 31 (1992) 2777.
- [32] Y.Q. Tu, Y.J. Hu, W.J. Wu, N.Y. Chen, X.F. Pan, Phytochemistry 31 (1992) 3633.
- [33] S. Hong, W. Hanqing, T. Yongqiang, C. Yaozu, Phytochemistry 30 (1991) 1547.
- [34] L. Jikai, C. Chunquan, W. Dagang, Phytochemistry 32 (1993) 379.
- [35] T. Yongqiang, Phytochemistry 30 (1991) 1321.
- [36] Y.Q. Tu, Phytochemistry 31 (1992) 2155.
- [37] Y.Q. Tu, Z.Z. Li, Y.Z. Chen, Phytochemistry 31 (1992) 1415.
- [38] T. Yonggian, W. Dagang, Z. Jun, C. Yaozu, Phytochemistry 31 (1992) 1281.
- [39] Y. Takaishi, F. Aihara, S. Tamai, K. Nakano, T. Tomimatsu, Phytochemistry 31 (1992) 3943.
- [40] J. Becerra, L. Gaete, M. Silva, F. Bohlmann, J. Jakupovic, Phytochemistry 26 (1987) 3073.
- [41] Y. Takaishi, K. Ujita, K. Nakano, K. Murakami, T. Tomimatsu, Phytochemistry 26 (1987) 2325.
- [42] Y. Takaishi, K. Tokura, S. Tamai, K. Ujita, K. Nakano, T. Tomimatsu, Phytochemistry 30 (1991) 1567.
- [43] J. Hohmann, Z. Dini, I. Pelczer, G. Jerkovich, Phytochemistry 35 (1994) 1267.
- [44] W. Vichnewski, J.S. Prasad, W. Herz, Phytochemistry 23 (1984) 1655.
- [45] Y. Takaishi, K. Ujita, K. Kida, M. Shibuya, T. Tomimatsu, Phytochemistry 26 (1987) 2581.
- [46] H. Itokawa, O. Shirota, H. Morita, K. Takeya, Y. Iitaka, Journal of the Chemical Society, Perkin Transactions 1 (1993) 1247.

- [47] Y.Q. Tu, Journal of the Chemical Society, Perkin Transactions 1 (1991) 425.
- [48] A.G. González, I.A. Jiménez, A.G. Ravelo, I.L. Bazzocchi, Phytochemistry 29 (1990) 2577.
- [49] Y.-H. Kuo, C.-J. Chou, L.-M.Y. Kuo, Y.-Y. Hu, Y.-C. Chen, C.-F. Chen, K.-H. Lee, Phytochemistry 41 (1996) 549.
- [50] T. Yongqiang, C. Yaozu, Phytochemistry 30 (1991) 4169.
- [51] K. Ujita, Y. Takaishi, A. Iida, T. Fujita, Phytochemistry 31 (1992) 1289.
- [52] J. Hohmann, G. Nagy, G. Günther, Phytochemistry 33 (1993) 503.
- [53] L. Rodríguez-Hahn, M. Mora, M. Jiménez, R. Saucedo, E. Díaz, Phytochemistry 20 (1981) 2525.
- [54] A.G. González, C.M. González, A.G. Ravelo, B.M. Fraga, X.A. Dominguez, Phytochemistry 27 (1988) 473.
- [55] A.G. González, I.A. Jiménez, A.G. Ravelo, J.G. Luis, I.L. Bazzocchi, Phytochemistry 28 (1989) 173.
- [56] M. Jiménez, E. García, L. Gardida, A. Lira-Rocha, Phytochemistry 27 (1988) 2213.
- [57] M. Martínez, A. Romo de Vivar, E. Diaz, M. Jiménez, L. Rodriguez-Hahn, Phytochemistry 21 (1982) 1335.
- [58] M. Martínez, B. Esquivel, L. Rodríguez-Hahn, Phytochemistry 23 (1984) 1651.
- [59] A.G. González, J.G. Luis, T.A. Grillo, J.T. Vásquez, Journal of Natural Products 54 (1991) 579.
- [60] A.G. González, I.A. Jiménez, I.L. Bazzocchi, A.G. Ravelo, Phytochemistry 35 (1994) 187.
- [61] J.-K. Liu, Z.-J. Jia, D.-G. Wu, J. Zhou, Qq.-G. Wang, Phytochemistry 29 (1990) 2503.
- [62] V.U. Ahmad, K. Fizza, A. Sultana, Phytochemistry 28 (1989) 3081.
- [63] E. Guerreiro, M.J. Pestchankeer, L. Vitto, O.S. Giordano, Phytochemistry 29 (1990) 877.
- [64] F. Bohlmann, M. Wallmeyer, J. Jakupovic, T. Gerke, R.M. King, H. Robinson, Phytochemistry 24 (1985) 505.
- [65] R. Uegaki, S. Kubo, T. Fujimori, Phytochemistry 27 (1988) 365.
- [66] P. Raharivelomanara, J.P. Bianchini, R. Faure, A. Cambon, M. Azzaro, Phytochemistry 41 (1996) 243.
- [67] S. Torii, T. Inokuchi, Bulletin of the Chemical Society of Japan 53 (1980) 2642.
- [68] W. Herz, N. Kumar, Phytochemistry 20 (1981) 247.
- [69] Y.-F. Shu, H.-C. Wei, C.-L. Wu, Phytochemistry 37 (1994) 773.
- [70] R. Mata, A. Navarrete, L. Alavarez, R. Pereda-Miranda, G. Delgado, A.R. Vivar, Phytochemistry 26 (1987) 191.
- [71] W.-C. Su, J.-M. Fang, Y.-S. Cheng, Phytochemistry 39 (1995) 603.
- [72] J.-F. Hu, S.-P. Bai, Z.-J. Jia, Phytochemistry 43 (1996) 815.
- [73] T. Lu, D. Vargas, N.H. Fischer, Phytochemistry 34 (1993) 737.
- [74] J. Jakupovic, U. Ganzer, P. Pritschow, L. Lehmann, F. Bohlmann, R.M. King, Phytochemistry 31 (1992) 863.
- [75] N.N. Gerber, D.Z. Denney, Phytochemistry 16 (1977) 2025.
- [76] C.S. Mathela, A.B. Melkani, A. Pant, V. Dev, T.E. Nelson, H. Hope, A.T. Bottini, Phytochemistry 28 (1989) 936.

- [77] A. Stoessl, J.B. Stothers, E.W.B. Ward, Canadian Journal of Chemistry 53 (1975) 3351.
- [78] R.B. Kelly, S.J. Alward, K.S. Murty, J.B. Stothers, Canadian Journal of Chemistry 56 (1978) 2508.
- [79] M. Toyota, E. Nakaishi, Y. Asakawa, Phytochemistry 41 (1996) 833.
- [80] T.A. Beek, R. Kleis, M.A. Posthumus, A. Veldhuizen, Phytochemistry 28 (1989) 1909.
- [81] P.S. Beauchamp, V. Dev, D.R. Docter, R. Ehsani, G. Vita, A.B. Melkani, C.S. Mathela, A.T. Bottini, Journal of Essential Oil Research 8 (1996) 117.
- [82] C. Zdero, F. Bohlmann, Phytochemistry 28 (1989) 1949.
- [83] P. Raharivelomanana, J.-P. Bianchini, A. Cambon, M. Azzaro, R. Faure, Magnetic Resonance in Chemistry 33 (1995) 233.
- [84] M.G. El-Ghazouly, N.A. El-Sebakhy, A.A.S. El-Din, C. Zdero, F. Bohlmann, Phytochemistry 26 (1987) 439.
- [85] K. Nawamaki, M. Kuroyanagi, Phytochemistry 43 (1996) 1175.
- [86] H. Achenbach, R. Waibel, I. Addae-Mensah, Phytochemistry 24 (1985) 2325.
- [87] J.A. Marco, M. Carda, Magnetic Resonance in Chemistry 25 (1987) 1087.
- [88] A.F. Thomas, M. Ozainne, R. Decorzant, F. Näf, G. Lukacs, Tetrahedron 32 (1976) 2261.
- [89] M.H. Elgamal, P. Wolff, Planta Medica 53 (1987) 293.
- [90] S.D. Jolad, B.N. Timmermann, J.J. Hoffmann, R.B. Bates, F.A. Camou, T.J. Siahaan, Phytochemistry 27 (1988) 2199.
- [91] M.P. Maqua, A.C.G. Vines, E. Caballero, M.C. Grande, M. Medarde, I.S. Bellido, Phytochemistry 27 (1988) 3664.
- [92] A.A. Ahmed, O. Sring, M.H.A. El-Razek, N.S. Hussein, T.J. Mabry, Phytochemistry 39 (1995) 1127.
- [93] D. Adinarayana, K.V. Syamasundar, Phytochemistry 21 (1982) 1083.
- [94] G. Nasini, F. Piozzi, Phytochemistry 20 (1981) 514.
- [95] I.A. Southwell, Tetrahedron Letters 10 (1977) 873.
- [96] P. Ciminiello, E. Fattorusso, S. Magno, L. Mayol, Canadian Journal of Chemistry 65 (1987) 518.
- [97] M. Pais, C. Fontaine, D. Laurent, S. La Barre, E. Guittet, Tetrahedron Letters 28 (1987) 1409.
- [98] A.S. Feliciano, M. Medarde, M. Gordaliza, E. Olmo, J.M. Corral, Phytochemistry 28 (1989) 2717.
- [99] J. Yue, Z. Lin, D. Wang, H.H. Sun, Phytochemistry 36 (1994) 717.
- [100] V.U. Ahmad, K. Fizza, Phytochemistry 25 (1986) 949.
- [101] V.U. Ahmad, T.A. Farooqui, A. Sultana, K. Fizza, R. Khatoon, Phytochemistry 31 (1992) 2888.
- [102] E. Maldonado, Phytochemistry 28 (1989) 1973.
- [103] V.U. Ahmad, K. Fizza, Phytochemistry 27 (1988) 1861.
- [104] G.M.S.P. Guilhon, A.H. Müller, Phytochemistry 43 (1996) 417.
- [105] M. Martínez, A.R. Vivar, A. Ortega, A.L. Quintero, C. García, F.R. Fronczek, Phytochemistry 22 (1983) 979.
- [106] S. Sakamoto, N. Tsuchiya, M. Kuroyanagi, A. Ueno, Phytochemistry 35 (1994) 1215.
- [107] N. Sakui, M. Kuroyanagi, Y. Ishitobi, M. Sato, A. Ueno, Phytochemistry 31 (1992) 143.

- [108] K. Nakanishi, R. Crouch, I. Miura, X. Dominguez, A. Zamudio, R. Villarreal, Journal of the American Chemical Society 96 (1974) 609.
- [109] V.U. Ahmad, K. Fizza, Planta Medica 54 (1988) 462.
- [110] S.R. Rojatkar, V.G. Puranik, S.S. Tavale, T.N.G. Row, B.A. Nagasampagi, Phytochemistry 26 (1987) 569.
- [111] B. Nyasse, R.G. Tih, B.L. Sondengam, M.T. Martin, B. Bodo, Phytochemistry 27 (1988) 179.
- [112] T. Warashina, M. Ishino, T. Miyase, A. Ueno, Phytochemistry 29 (1990) 3217.
- [113] L. Cardona, R.A. Alemañ, B. García, J.R. Pedro, Phytochemistry 31 (1992) 3630.
- [114] L. Cardona, A. Bardon, B. García, J.R. Pedro, Phytochemistry 33 (1993) 1457.
- [115] J.A. Garbarino, M.C. Chamy, V. Gambaro, Phytochemistry 24 (1985) 2726.
- [116] C. Zdero, F. Bohlmann, A. Anderberg, R.M. King, Phytochemistry 30 (1991) 2643.
- [117] C. Zdero, F. Bohlmann, M. Müller, Phytochemistry 26 (1987) 2763.
- [118] J.A. Marco, J.F. Sanz, A. Yuste, M. Carda, J. Jakupovic, Phytochemistry 30 (1991) 3661.
- [119] J.F. Sanz, G. Castellano, J.A. Marco, Phytochemistry 29 (1990) 541.
- [120] M. Vasquez, F.A. Macias, L.E. Urbatsch, N.H. Fischer, Phytochemistry 27 (1988) 2195.
- [121] R.K. Thappa, K.L. Dhar, C.K. Atal, Phytochemistry 18 (1979) 671.
- [122] A.S. Feliciano, M. Medarde, B. Rey, J.M.M. Corral, A.F. Barrero, Phytochemistry 29 (1990) 3207.
- [123] A.H. Elmi, M.H. Farah, E. Fattorusso, S. Magno, L. Mayol, Phytochemistry 26 (1987) 3069.
- [124] R. Näf, A. Velluz, A.P. Meyer, Journal of Essential Oil Research 8 (1996) 587.
- [125] R. Uegaki, T. Fujimori, S. Kubo, K. Kato, Phytochemistry 24 (1985) 2445.
- [126] A. Perales, M. Martinez-Ripoll, J. Fayos, G. Savona, M. Bruno, B. Rodriguez, Journal of Organic Chemistry 48 (1983) 5318.
- [127] J.F. Sanz, C. Ferrando, J.A. Marco, Phytochemistry 30 (1991) 3653.
- [128] H.J. Williams, I. Sattler, G. Moyna, A.I. Scott, A.A. Bell, S.B. Vinson, Phytochemistry 40 (1995) 1633.
- [129] K. Ohmura, T. Miyase, A. Ueno, Phytochemistry 28 (1989) 1919.
- [130] A. Rustaiyan, M. Saberi, Z. Habibi, J. Jakupovic, Phytochemistry 30 (1991) 1929.
- [131] C. Zdero, F. Bohlmann, H.M. Niemeyer, Phytochemistry 27 (1988) 2165.
- [132] J.F. Sanz, J.A. Marco, Phytochemistry 29 (1990) 2913.
- [133] B.M. Fraga, M.G. Hernández, T. Mestres, D. Terrero, J.M. Arteaga, Phytochemistry 39 (1995) 617.
- [134] M. Ishihara, T. Tsuneya, M. Shiga, K. Uneyama, Phytochemistry 30 (1991) 563.
- [135] R. Lanzetta, G. Lama, G. Mauriello, M. Parrilli, R. Racioppi, G. Sodano, Phytochemistry 30 (1991) 1121.

- [136] M. Ishihara, T. Tsuneya, K. Uneyama, Phytochemistry 33 (1993) 1147.
- [137] F. Bohlmann, C. Trinks, J. Jakupovic, S. Huneck, Phytochemistry 24 (1985) 995.
- [138] A. Rustaiyan, A. Bamonieri, M. Raffatrad, J. Jakupovic, F. Bohlmann, Phytochemistry 26 (1987) 2307.
- [139] S. Huneck, K. Schreiber, J.D. Connolly, L.J. Harrison, D.S. Rycroft, Phytochemistry 23 (1984) 1792.
- [140] C. Zdero, F. Bohlmann, R.M. King, H. Robinson, Phytochemistry 26 (1987) 187.
- [141] Y. Maruta, Y. Fukushi, K. Ohkawa, Y. Nakanishi, S. Tahara, J. Mizutani, Phytochemistry 38 (1995) 1169.
- [142] V.S. Sepúlveda-Boza, E. Breitmaier, Chemiker-Zeitung 111 (1987) 187.
- [143] M. D'Ambrosio, A. Guerriero, F. Pietra, Helvetica Chimica Acta 70 (1987) 612.
- [144] A. Guerriero, B. Dematté, M. D'Ambrosio, F. Pietra, Journal of Natural Products 49 (1986) 608.
- [145] J.B. Stothers, Pure & Applied Chemistry 53 (1981) 1241.
- [146] A. Stoessl, E.W.B. Ward, J.B. Stothers, Tetrahedron Letters 37 (1976) 3271.
- [147] H. Kodama, T. Fujimori, K. Kato, Phytochemistry 23 (1984) 690.
- [148] A. Stoessl, J.B. Stothers, E.W.B. Ward, Canadian Journal of Chemistry 56 (1978) 645.
- [149] G.T. Maatooq, D.K. Stumpf, J.J. Hoffmann, L.K. Hutter, B.N. Timmermann, Phytochemistry 41 (1996) 519.
- [150] J.A. Marco, J.F. Sanz, P. Hierro, Phytochemistry 30 (1991) 2403.
- [151] C.H. Brieskorn, P. Noble, Phytochemistry 22 (1983) 187.
- [152] G.V. Rodrigues, I.P.A. Campos, V.P. Emerenciano, Spectroscopy 13 (1997) 191.
- [153] K. Zhang, Y. Wang, Y. Chen, Y. Tu, H. Jing, H. Huimin, H. Xiaofeng, F. Jinsong, Phytochemistry 48 (1998) 1067.
- [154] K. Nakano, C. Yoshida, W. Furukawa, Y. Takaishi, K. Shishido, Phytochemistry 49 (1998) 1821.
- [155] H. Duan, K. Kawazoe, Y. Takaishi, Phytochemistry 45 (1997) 617.
- [156] J. Corsino, V.D.S. Bolzani, A.M.S. Pereira, S.C. França, M. Furlan, Phytochemistry 48 (1998) 137.
- [157] J. Corsino, V.D.S. Bolzani, A.M.S. Pereira, S.C. França, M. Furlan, Phytochemistry 49 (1998) 2181.
- [158] H. Duan, Y. Takaishi, Phytochemistry 49 (1998) 2185.
- [159] W. Li, B. Li, Y. Chen, Phytochemistry 50 (1999) 1091.
- [160] S. Li, J. Ding, B. Jiang, B. Na, Phytochemistry 49 (1998) 2035.
- [161] Y. Zhao, J. Yue, Z. Lin, J. Ding, H. Sun, Phytochemistry 44 (1997) 459.
- [162] A.A. Ahmed, B.A.A. Balboul, A.I. Scott, H.H. Williams, B. Miao, T.J. Mabry, Phytochemistry 47 (1998) 411.
- [163] G.M.S.P. Guilhon, A.H. Müller, Phytochemistry 49 (1998) 1347.
- [164] G.M.S.P. Guilhon, A.H. Müller, Phytochemistry 47 (1998) 227.
- [165] W. Zhao, J. Wolfender, K. Hostettmann, H. Li, H. Stoeckli-Evans, R. Xu, G. Qin, Phytochemistry 47 (1998) 63.
- [166] A.A. Mahmoud, Phytochemistry 45 (1997) 1633.

- [167] P. Raharivelomanana, J. Bianchini, A.R.P. Ramanoelina, J.R.E. Rasoarahona, R. Faure, A. Cambon, Phytochemistry 47 (1998) 1085.
- [168] A.F. Barrero, R. Alvarez-Manzaneda, J.F. Quilez, M.M. Herrador, Phytochemistry 48 (1998) 807.
- [169] M. Miyazawa, Y. Honjo, H. Kameoka, Phytochemistry 44 (1997) 433.
- [170] A.F. Barrero, M.M. Herrador, J.F. Quilez, R. Alvarez-Manzaneda, D. Portal, J.A. Gavin, D.G. Gravalos, M.S.J. Simmonds, W.M. Blaney, Phytochemistry 51 (1999) 529.
- [171] M.N. Todorova, M.L. Krasteva, M.M. Markova, E.T. Tsankova, R.M. Taskova, D.R. Peev, Phytochemistry 49 (1998) 2371.
- [172] M. Martínez-Vázquez, A.N. García-Argáez, J.L. Bueno, G. Espinosa, J.S. Calderón, Phytochemistry 48 (1998) 1221.
- [173] L.R. Salgueiro, R. Vila, F. Tomi, X. Tomas, S. Cañigueral, J. Casanova, A.P. Cunha, T. Adzet, Phytochemistry 45 (1997) 1177.
- [174] M. Grande, I.S. Bellido, P. Torres, F. Piera, Journal of Natural Products 55 (1992) 1074.

- [175] C.Y. Ragasa, J.A. Rideout, D.S. Tierra, J.C. Coll, Phytochemistry 45 (1997) 545.
- [176] A.A. Ahmed, H.R. El-Seedi, A.A. Mahmoud, A. El-Aziz, A. El-Douski, I.F. Zeid, L. Bohlin, Phytochemistry 49 (1998) 2421.
- [177] M.A. Khanina, A.T. Kulyyasov, I.Yu. Bagryanskaya, Yu.V. Gatilov, S.M. Adekenov, V.A. Raldugin, Chemistry of Natural Compounds 34 (1998) 145.
- [178] L. Sy, G.D. Brown, Phytochemistry 48 (1998) 1207.
- [179] M.B.K. Sanz, O.J. Donadel, P.C. Rossomando, C.E. Tonn, E. Guerreiro, Phytochemistry 44 (1997) 897.
- [180] L. Hu, Z. Chen, Phytochemistry 44 (1997) 1287.
- [181] A. Ortega, R.A. Toscano, E. Maldonado, Phytochemistry 49 (1998) 1085.
- [182] A.O. Oyedeji, O. Ekundayo, M.M. Sonwa, C. Fricke, W.A. König, Phytochemistry 48 (1998) 657.
- [183] U. Mölleken, V. Sinnwell, K. Kubeczka, Phytochemistry 47 (1998) 1079.
- [184] U. Mölleken, V. Sinnwell, K. Kubeczka, Phytochemistry 49 (1998) 1709.