

Meliaceous Limonoids: Chemistry and Biological Activities

Qin-Gang Tan^{‡,§} and Xiao-Dong Luo^{*,‡}

[‡]State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, P.R.China

[§]Guilin Medical University, Guilin, 541004, P.R.China

CONTENTS

1.	Bac	kgrour	nd and Introduction	Α
2.	Mel	iaceou	s Limonoids and Their Sources	E
	2.1.	Ring	Intact Limonoids	Е
		2.1.1.	Azadirone-Class	E
		2.1.2.	Cedrelone-Class	F
		2.1.3.	Havanensin-Class	G
		2.1.4.	Trichilin-Class	Н
		2.1.5.	Vilasinin-Class	Н
		2.1.6.	Others	I
	2.2.	Ring-	seco Limonoids	I
		2.2.1.	Demolition of a Single Ring	I
		2.2.2.	Demolition of Two Rings	М
		2.2.3.	Demolition of Three Rings (Rings	
			A,B,D-seco Group)	R
	2.3.	Rearr	anged Limonoids	R
		2.3.1.	1, <i>n</i> -Linkage Group	R
		2.3.2.	2,30-linkage Group	Т
		2.3.3.	8,11-Linkage Limonoids (Trijugin-Class)	AA
		2.3.4.	10,11-Linkage Limonoids	
			(Cipadesin-Class)	AA
		2.3.5.	Other Linkages Group	AB
	2.4.	Limo	noids Derivatives	AC
		2.4.1.	Pentanortriterpenoids, Hexanortriterpe-	
			noids, Heptanortriterpenoids, Octanor-	
			triterpenoids, and Enneanortriterpenoids	
			Derivatives	AC
		2.4.2.	Simple Degraded Derivatives	AD
		2.4.3.	N-Containing Derivatives	AD
3.	Che	motax	onomic Significance of Meliaceous	
	Lim	onoids		AD
4. -	Syn	thesis	of Meliaceous Limonoids	AF
5.	BIO	ogical	Activities of Meliaceous Limonoids	AV
	5.1.	BIOIO	gical Activities in Agricultural Use	AW
		5.1.1.	Insects Antifeeding Activity	AW
		5.1.2.	Insects Growth Regulatory Activity	BC
		5.1.3.	Antiphytopathogon Activity	DV1 DL
		J.1.4.	Antiphytopathogen Activity Others	DIVI
	5 2	J.I.J. Biolog	ourers aical Activities in Medicinal Use	DIVI RD
	J.Z.	5 2 1	Antineonlastic Activity	DP RD
		J.Z.I.		DĽ

5.2.2. Antimicrobial Activity	BR
5.2.3. Antiprotozoal Activity	BR
5.2.4. Others	BS
Author Information	BT
Biographies	BT
Acknowledgment	BT
References	BU

1. BACKGROUND AND INTRODUCTION

The word "limonoids" originated from the bitterness of lemon or other citrus fruit. Structurally, limonoids are formed by loss of four terminal carbons of the side chain in the apotirucallane or apoeuphane skeleton and then cyclized to form the 17β -furan ring, and thus limonoids are also known as tetranortriterpenoids. Limonoids in the plant kingdom occur mainly in the Meliaceae and Rutaceae families and less frequently in the Cneoraceae.¹ With 50 genera and more than 1400 species, Meliaceae are distributed in tropical and subtropical regions throughout the world.² As the characteristic natural products of the Meliaceae, limonoids have attracted considerable interest within the chemical and biological research communities. The neem tree (Azadirachta indica), one of the most famous limonoid producing plants in Meliaceae, has long been recognized as a source of environment-friendly biopesticide. Azadirachtin (292), a complex limonoid from neem seed kernel, is the main component responsible for the toxic effects on insects. The commercial application of the limonoids in the agricultural industry has enjoyed significant growth in recent decades. Commercial neem products (seed kernel extract of A. indica), such as Margosan-O, Azitin, Turplex, and Align were granted approval for pest control usage in the United States by the EPA.^{3–5} Furthermore, *A. indica* was also introduced and has been planted on a large scale in Yunnan province, P. R. China since the 2000s (Figure 1). Three commercial limonoids products (extracts of A. indica, Melia toosendan, and M. azedarach), known as biorational insecticides, were also granted approval in China for insect control on organic vegetable plantings. In a pharmaceutical application from China, a formulation with toosendanin, a limonoid from M. toosendan that displays dramatic antibotulismic effects, was developed as a commercial product from TCM (Traditional Chinese Medicine), where it has been used as an anthelmintic vermifuge against ascarids for a long time.⁶

Some mini-reviews related to limonoids from Meliaceae have been presented since 1966. For example, the chemistry, $^{7-13}$

Received: December 14, 2009

biosynthesis,^{1,13–15} and biological activities^{16–18} of meliaceous limonoids were summarized in different years. It is noteworthy that some reviews emphasize the well-known azadirachtin (**292**) and aspects of its chemistry,^{19–22} synthesis,^{23,24} and bioactivities including antifeedant activity,^{25–27} insecticidal activity,²⁵ and

Figure 1. Azadirachta indica at Yuanmou county, Yunnan Province, P. R. China. (A) Neem seedlings were bred on a large scale. (B) Neem trees were cultivated at both sides of the road. (C) Four-year-old neem trees produced plenty of fruit. Photographs courtesy of Dr. Yanping Zhang.

insect-growth-regulating activity,^{25,28,29} as well as its environmental behavior,¹⁹ and its physiological behavior properties.^{30,31} In addition, the toxicity characteristics of azadirachtin and the mechanisms of its insecticidal action^{32–35} were also reviewed. Reviews on the chemistry and biological activities of limonoids from *Azadirachta indica*,^{36–43} *Melia azedarach*, and *M. toosendan*^{37,44–47} have been presented. Moreover, some other reviews related to meliaceous limonoids have also been published, such as those on the chemistry of cedrelone (**81**),⁴⁸ the biological activity of gedunin (**416**),⁴⁹ and the occurrence, biosynthesis, biological activity, and NMR spectroscopy of D and B,D-ring seco-limonoids from Meliaceae.⁵⁰ However, none of them gave general insight into the chemistry and biological activities of meliaceous limonoids.

During our investigations on the biologically active constituents of Meliaceae, we noticed confusion and ambiguity about limonoids in the literature. (i) Some limonoids structures were

Figure 2. Proposed major biosynthesis routes and classification of meliaceous limonoids.

Table 1. Structures and Sources of Azadirone-Class Limonoids 1-80

no.	compounds	substitution groups and others	sources
1	azadirone	$R_1 = R_3 = R_4 = R_5 = H; R_2 = Ac$	Azadirachta indica; ^{57–59,80–83}
			Entandrophragma delevoyi;
			havanensis ⁸⁶ Turraea robusta ⁸⁷
			Khava anthotheca ⁶⁰
2	7-deacetoxy-7-hydroxyazadirone	$R_1 = R_2 = R_3 = R_4 = R_5 = H$	Walsura piscidia ⁸⁸
3	11 <i>a</i> -acetoxyazadirone	$R_1 = R_4 = R_5 = H; R_2 = Ac,$	Khaya anthotheca ⁶⁰
		$R_3 = \alpha$ -OAc	
4	11eta-acetoxyazadirone	$R_1 = R_4 = R_5 = H; R_2 = Ac,$	K. anthotheca ^{60,89}
		$R_3 = \beta$ -OAc	
5	12 α -acetoxy-7-deacetylazadirone	$R_1 = R_2 = R_3 = R_5 = H; R_4 = OAc$	Turraesa cornucopia ⁹⁰
6	chisosiamensin	$R_1 = R_3 = R_4 = R_5 = H;$ $R_2 = Ac; \Delta^{5,6}$	Chisocheton siamensis ⁹¹
7	nimonol (nimocinol)	$R_1 = \alpha$ -OH; $R_2 = Ac$; $R_3 =$	Azadirachta indica ^{61,62,64,92}
		$R_4 = R_5 = H$	
8	6α -O-acetyl-7-deacetylnimocinol	$R_1 = \alpha$ -OAc; $R_2 = R_3 = R_4 =$ $R_5 = H$	A. indica ⁹³
9	6α -acetoxyazadirone (paniculatin)	$R_1 = \alpha$ -OAc; $R_2 = Ac$; $R_3 =$	Chisocheton paniculatus; ^{69,94–96}
		$R_4 = R_5 = H$	Entandrophragma delevoyi ⁷⁵
10	nimocin	$R_1 = R_3 = R_4 = R_5 = H; R_2 = Bz$	Azadirachta indica ⁸⁰
11	dysobinin	$R_1 = \beta$ -OAc; $R_2 = Ac$; $R_3 = R_4 =$	Dysoxylum binetariferum; ⁶⁶
		$R_5 = H$	Chisocheton siamensis ^{91,97}
12	azadiradione	$R_1 = R_3 = R_4 = H; R_2 = Ac; R_5 = O$	<i>C. siamensis</i> ; ^{91,97} <i>Cedrela odorata</i> ; ⁹⁸
			Quivisia papinae; Lansium domesticum; 100
12	nimborinal (7 dagaatulara dira diana)	$\mathbf{P} = \mathbf{P} = \mathbf{P} = \mathbf{P} = \mathbf{H} = \mathbf{O}$	Azadirachta indica
13	7-desacetyl-7-benzovlazadiradione	$R_1 = R_2 = R_3 = R_4 = H; R_2 = B_2; R_5 = O$	A. indica ^{68,70}
	(7-benzoylnimbocinol)		
15	7-deacetyl-7-angeloyl-6 $lpha$ -hydroxyazadiradione	$R_1 = \alpha$ -OH; $R_2 = Ang$; $R_3 =$	Quivisa papinae ⁹⁹
16	(g has harmon dim diana	$R_4 = H; R_5 = O$	0
10	oa-nydroxyazadiradione	$R_1 = \alpha$ -OH; $R_2 = Ac$; $R_3 = R_4 = H$;	Q. papinae
17	6α -acetoxy-16-oxoazadirone (mahonin)	$R_1 = \alpha$ -OAc: $R_2 = Ac$: $R_2 = R_4 = H$:	Chisocheton paniculatus: ⁶⁹
		$R_5 = O$	Swietenia mahagoni ^{71,111,112}
18	17 β -hydroxyazadiradione	$R_1 = H; R_2 = Ac$	Carapa guianensis; ¹¹³
			Azadirachta indica ^{70,81,103,104,109,114–116}
19	7-deacetyl-17 β -hydroxyazadiradione	$R_1 = R_2 = H$	A. indica ^{101,107}
20	6lpha-acetoxy-17 eta -hydroxyazadiradione	$R_1 = OAc; R_2 = Ac$	Chisocheton paniculatus ^{94,117}
21	7-benzoyl-17-hydroxynimbocinol	$\mathbf{R}_1 = \mathbf{H}; \mathbf{R}_2 = \mathbf{B}\mathbf{z}$	Azadirachta indica ⁷⁰
22	15-hydroxyazadiradione		A. indica ⁷⁰
23	7-acetyl-16,17-dehydro-16- hydroxyneotrichilenone		A. indica ⁷⁰
24	isonimolide	$R_1 = OCH_3; R_2 = Ac; R_3 =$	A. indica ¹¹⁸
		$R_4 = R_5 = H; R_6 = OH; R_7 = O$	
25	isolimbolide	$R_1 = R_5 = H; R_2 = Ac; R_3 = OAc;$	A. indica ¹¹⁸
		$R_4 = R_6 = OH; R_7 = O$	
26	nimocinolide	$R_1 = R_7 = OH; R_2 = Ac; R_3 =$	A. indica ⁸⁰
		$R_4 = R_5 = H; R_6 = O$	119
27	23-O-methylnimocinolide	$\kappa_1 = OH; \ \kappa_2 = Ac; \ \kappa_3 = \kappa_4 =$	A. indica
28	7-0-descety-23-0 methyl 7a	$\mathbf{R}_5 = \mathbf{\Pi}; \ \mathbf{R}_6 = \mathbf{O}; \ \mathbf{R}_7 = \mathbf{O} \mathbf{C} \mathbf{H}_3$ $\mathbf{R}_4 = \mathbf{O} \mathbf{H}_4 \ \mathbf{R}_6 = \mathbf{S}_{000}, \ \mathbf{P}_4 = \mathbf{P}_4 = \mathbf{D}_4 = \mathbf{U}_4$	$A indica^{119,120}$
20	<i>O</i> -seneciovlnimocinolide	$R_1 = O(1), R_2 = O(1), R_3 = R_4 = R_5 = R_5;$ $R_4 = O(1), R_7 = O(1), R_7$	21. multu
29	isonimocinolide	$R_1 = R_6 = OH; R_2 = Ac; R_3 = R_4 = R_5 = H;$	A. indica ^{80,118}
		$R_7 = O$	

Table 1. Continued

no.	compounds	substitution groups and others	sources
30	nimbocinolide	$R_1 = R_5 = H; R_2 = Ac; R_3 = OiBu(OH);$	A. indica ¹²¹
		$R_4 = R_7 = OH; R_6 = O$	122
31	isonimbocinolide	$R_1 = R_5 = H; R_2 = Ac; R_3 = OiBu(OH);$ $R_1 = R_2 = OH; R_2 = O$	A. indica ¹²²
32	meliacinanhydride	$R_4 = R_6 = OH; R_7 = O$ $R_1 = OH; R_2 = Ac; R_2 = OCH_2; R_4 = OAc;$	A indica ⁹²
02		$R_5 = H; R_6 = R_7 = O$	
33	22,23-dihydronimocinol	$R_1 = OH; R_2 = Ac; R_3 = R_4 = R_5 = R_6 =$	A. indica ¹²⁰
		R_7 = H; 22,23-dihydro; $\Delta^{20,21}$	
34	azadironolide	$R_1 = R_3 = R_4 = R_5 = H; R_2 = Ac; R_6 = O;$ $R_1 = OH$	A. indica ¹²³
35	<i>O</i> -methylazadironolide	$R_7 = OH$ $R_1 = R_3 = R_4 = R_5 = H; R_2 = Ac; R_5 = O;$	A. indica ¹²⁴
		$R_7 = OCH_3$	
36	12lpha-acetoxyazadironolide	$R_1 = R_3 = R_5 = H; R_2 = Ac; R_4 = OAc;$	Turraea parvifolia ¹²⁵
		$R_6 = O; R_7 = OH$	70
37	23-deoxyazadironolide	$R_1 = R_3 = R_4 = R_5 = R_6 = H;$	Azadirachta indica ⁷⁰
29	isogradiropolida	$R_2 = Ac; R_7 = O$	1 indica 123 Turrana nubaccaus 126
30	isoazadii oliolide	$R_1 = R_3 = R_4 = R_5 = 11; R_2 = R_5;$ $R_4 = OH; R_7 = O$	A. multu; 1 urrueu pubescens
39	azadiradionolide	$R_1 = R_3 = R_4 = R_7 = H; R_2 = Ac;$	Azadirachta indica ^{70,123,127}
		$R_5 = R_6 = O$	
40	salimuzzalin	$R_1 = R_2 = R_3 = R_4 = R_5 = H;$	A. indica ¹²⁸
		$R_6 = R_7 = OAc$	
41	turraparvin A	$R_1 = R_2 = R_3 = R_5 = H; R_4 = OAc;$ $R_1 = O; R_2 = OH$	Turraea parvifolia
42	turraparvin B	$R_6 = 0; R_7 = 011$ $R_1 = R_2 = R_3 = R_5 = H; R_4 = OAc;$	T. parvifolia ¹²⁵
	1	$R_6 = OH; R_7 = O$	1 5
43	turraparvin C	$R_1 = R_3 = R_5 = H; R_2 = Ac; R_4 = OAc;$	T. parvifolia ¹²⁵
		$R_6 = OH; R_7 = O$	
44		$R_1 = OAc; R_2 = Ac; R_3 = R_4 = R_5 = H;$ $R_1 = OH; R_2 = O$	Chisocheton paniculatus ¹¹⁷
45	7a.23-dihydroxy-3-0x0-24.25.26.27-	$R_6 = O(1), R_7 = O$ $R_1 = R_2 = R_2 = R_4 = R_5 = H; R_6 = O;$	Trichilia estipulata ¹²⁹
	tetranortirucall-1,14,20(22)-	$R_7 = OH$	
	trien-21,23-olide		
46	limocin A	$R_1 = R_4 = H$; $R_2 = Ac$; $R_3 = \alpha$ -OCH ₃	Azadirachta indica ⁷⁹
47	limocin B	$R_1 = R_3 = H; R_2 = Ac; R_4 = OCH_3$	A. indica ⁷⁹
48	23-desmethyl limocin B	$R_1 = R_4 = H; R_2 = Ac; R_4 = OH$	A. indica ¹³⁰
49	limocin C	$R_1 = R_4 = H; R_2 = Ac; R_3 = OCH_2CH_3$	A. indica ¹²
50	limocin D	$R_1 = R_3 = H; R_2 = Ac; R_4 = OCH_2CH_3$	A. indica ²⁷
51	limocin E	$R_1 = R_3 = H; R_2 = Ac; R_4 = \alpha - OCH_3$	A. indica ⁷⁰
52	23-epilimocin E	$R_1 = R_3 = H; R_2 = Ac; R_4 = \beta - OCH_3$	A. indica ⁷⁰
53		$R_1 = R_2 = R_3 = H; R_4 = O$	Chisocheton microcarpus ¹³¹
54		$R_1 = OAc; R_2 = Ac; R_3 = H; R_4 = O$	C. paniculatus ¹¹⁷
55		$R_1 = OAc; R_2 = Ac; R_3 = H; R_4 = OH$	C. paniculatus ¹¹
56	20,21,22,23-tetrahydro-23-oxoazadirone	$R_1 = R_3 = H; R_2 = Ac; R_4 = O$	C. microcarpus; ¹³¹ Cedrela odorata; ⁷⁸ C. fissilis: ¹³² Azadirachta indica ⁷⁰
57	meliatoosenin A	$R_1 = R_3 = H; R_2 = R_4 = O$	Melia toosendan ¹³³
58	meliatoosenin B	$R_1 = R_2 = R_3 = H; R_4 = O; 1.2-dihydro$	M. toosendan ¹³³
59	isonimolicinolide		Azadirachta indica ⁷²
60	nimbinin (epoxyazadiradione)	$R_1 = R_3 = R_4 = H; R_2 = Ac; R_5 = O$	A. indica; ^{57,58,70,73,78,80–82,103–106,115,134–136}
			Carapa guianensis; ¹³⁷
			Entandrophragma delevoyi; ⁷⁵
			Chisocheton siamensis ⁹¹
61	7-desacetyl-7-benzoylepoxyazadiradione	$R_1 = R_3 = R_4 = H; R_2 = Bz; R_5 = O$	Azadirachta indica ^{68,70}
62	6α -acetoxyepoxyazadiradione	$R_1 = OAc; R_2 = Ac; R_3 = R_4 = H; R_5 = O$	<i>Carapa guianensis</i> ; ¹³⁷ <i>Chisocheton siamensis</i> ^{91,138}

63 14,15-epoxynimonol

Azadirachta indica¹³⁹

 $R_1 = OH; R_2 = Ac; R_3 = R_4 = R_5 = H$

Table 1. Continued

no.	compounds	substitution groups and others	sources
64	trichilenone acetate $(14eta, 15eta$ -epoxyazadirone; acetyltrichilenone)	$R_1 = R_3 = R_4 = R_5 = H; R_2 = Ac$	Melia toosendan; ^{76,84} Azadirachta indica; ¹²⁴ Trichilia havanensis; ⁷⁴ Entandrophragma delevoyi ⁷⁵
65	6α -acetoxy-14 β ,15 β -epoxyazadirone	$R_1 = OAc; R_2 = Ac; R_3 = R_4 = R_5 = H$	E. delevoyi; ⁷⁵ Toona ciliata; ¹⁴⁰ Chisocheton paniculatus ⁹⁴
66	heudelottin C	$R_1 = R_5 = H; R_2 = iVal(OH); R_3 = OH;$ $R_4 = O-2$ -acetoxy-3-methylpentanoyl	Trichilia heudelottii ⁷⁷
67	heudelottin E	$R_1 = R_5 = H; R_2 = iVal(OH); R_3 = OCHO;$ $R_4 = O-2$ -hydroxy-3-methylpentanoyl	T. heudelottii ^{77,141}
68	heudelottin F	$R_1 = R_5 = H; R_2 = iVal(OH); R_3 = OCHO;$ $R_4 = O-2$ -acetoxy-3-methylpentanoyl	T. heudelottii ⁷⁷
69	6-acetoxy-7α-hydroxy-3-oxo-14β,15β- epoxymeliace-1,5-diene	$R_1 = OAc; R_2 = R_3 = R_4 = R_5 = H; \Delta^{5,6}$	Melia azedarach ¹⁴²
70	7-acetoxyneotrichilenone	$R_1 = R_3 = H; R_2 = Ac$	Azadirachta indica ⁶⁸
71	12 lpha-acetoxyneotrichilenone	$R_1 = R_2 = H; R_3 = OAc;$	Turraea floribunda ¹⁴³
72	walsurin	$R_1 = O; R_2 = R_3 = H$	Walsura yunnanensis ¹⁴⁴
73	toonaciliatone A	$R_1 = OH; R_2 = R_3 = H$	Toona ciliata ¹⁴⁵
74	7-deacetyl-21-hydroxyneotrichilenonelide	$R_1 = OH; R_2 = O$	Trichilia estipulata ¹²⁹
75	7-deacetyl-23-hydroxyneotrichilenonelide	$R_1 = O; R_2 = OH$	T. estipulata ¹²⁹
76	17-epinimbocinol	$R_1 = R_2 = H$	Azadirachta indica ^{110,146}
77	17-epiazadiradione	$R_1 = Ac; R_2 = H$	A. indica ^{70,103,104,114}
78	17-epi-17-hydroxyazadiradione	$R_1 = Ac; R_2 = OH$	A. indica ^{70,107}
79	vepinin		A. indica ⁷⁸
80	limocinin		A. indica ⁷⁹

assigned incorrectly because of the lack of the advanced spectral methods, such as 2D-NMR, HRMS, in the early time. For example, even though azadirachtin (**292**) was found early in 1968,⁵¹ its structure was revised several times before the final unambiguous assignment was made in 1986.⁵² (ii) On one hand, some limonoids were given the same nomenclature but had different structures, such as cipadesin D being used for both compound **578**⁵³ and **1038**⁵⁴ even though they were ascribed to different classes. On the other hand, some limonoids have the same structure but different names. Taking compound **805** as an example, it was first reported as 8,30-epoxy swietenine acetate in 1983⁵⁵ and subsequently mistaken as swietemahonin F in 1990.⁵⁶

This review is an extensive coverage of all naturally occurring limonoids from Meliaceae discovered in the last six decades (from 1942 to June 30, 2010) along with their various bioactivities. The distribution, chemotaxonomy significance, synthesis, and biological activity of meliaceous limonoids are summarized. In the cases where sufficient information is available, the structure– activity relationship (SAR) and the mode of action of the active limonoids have been presented. Furthermore, we try to clarify the confusing trivial names in meliaceous limonoid investigations. However, limonoids whose names were not proposed by their discoverers (44, 53–55, 119, 125-127, 231, 457, 511, 563, 602, 607, and 844) were presented only with numbers in the tables.

2. MELIACEOUS LIMONOIDS AND THEIR SOURCES

Limonoids are supposed to arise from Δ^7 -tirucallol (20*S*) or Δ^7 -euphol (20*R*). The Δ^7 -bond is epoxidized and is then opened inducing a Wagner—Meerwein shift of Me-14 to C-8, which leads to the formation of the OH-7 and the introduction of a double bond at C-14/15. This scheme account for both the ubiquitous presence of oxygen at C-7 and the correct stereochemistry of the C-30 methyl group. Subsequently the side chain is cyclized with

the loss of four carbons to form the 17 β -furan ring. That the latter step is accomplished after the formation of the 4,4,8-trimethyl-steroid skeleton is indicated by the occurrence of several protolimonoids. Followed formation of the basic limonoid skeleton, a variety of oxidations and skeletal rearrangements can occur and lead to various classes of limonoids (Figure 2),¹⁷ which will be discussed in detail in this review.

2.1. Ring Intact Limonoids

2.1.1. Azadirone-Class. Azadirone-type limonoids are characteristic of 3-oxo- $\Delta^{1,2}$ and C-7 oxygenation. In their ¹H NMR spectroscopy, the chemical shifts of H-1 and H-2 were δ 7.0–7.2 and 5.7–6.0, respectively, which showed the coupling constant of ~10 Hz. In their ¹³C NMR spectroscopy, the $\alpha_{,\beta}$ -unsaturated ketone system exhibited signals of δ = 156–160 (C-1), 124–127 (C-2), and 202–205 (C-3), respectively. The signal of H-7 (δ 5.2–5.4) might shift by 0.1–0.2 ppm and the signal of C-7 (~ δ 70–75) shifts to 75–83 ppm if C-6 is oxygenated.

Azadirone (1) was first isolated from oil of *Azadirachta indica* in 1967,⁵⁷ and its structure was later elucidated in 1971.⁵⁸ It was also obtained from a rare stem exudation of *A. indica*, together with nimbin (391) and gedunin (416).⁵⁹ The interrelationship between azadirone (1), azadiradione (12), and nimbinin (60) was analyzed in terms of a possible chemical degradation through a stepwise oxidation and transformation in nature.⁵⁸ The relative stereochemistry of 11*a*- and 11*β*-acetoxyazadirone (3 and 4) was assigned from the downfield shift of the angular methyl groups at C-8 and C-10, in which the shifts in the 11*β*-isomer were more strongly influenced by the acetate function.⁶⁰

The structure corresponding to 7 was assigned to be nimonol^{61,62} and confirmed by crystal analysis⁶³ despite once having been mistaken to be nimocinol.⁶⁴ Photooxygenation of nimonol (7) yielded a novel product, 14,15,20,21-diepoxy-23-nimonolactone, and involved interesting Diels–Alder and ene

Figure 3. Structures of azadirone-class limonoids 1-80.

reactions. This was the first example of the photolysis of intact limonoids in the absence of a sensitizer and of the epoxidation of the D-ring with an α stereochemistry under photolysis.⁶⁵ The structure of dysobinin (11) was elucidated on the basis of chemical evidence⁶⁶ and then confirmed by X-ray diffraction.⁶⁷ 7-Desacetyl-7-benzoylazadiradione $(14)^{68}$ and 6α -acetoxy-16-oxoazadirone $(17)^{69}$ were mistaken for 7-benzoylnimbocinol⁷⁰ and mahonin,⁷¹ respectively. Isonimolicinolide (59), the first limonoid with an acetoxy function at C-17, might be regarded as a possible intermediate in the biosyntheses of 17β -hydroxyazadiradione (18) and nimolicinol (451).⁷² Compound 60 was obtained and named as epoxyazadiradione⁵⁷ and nimbinin⁷³ by two separate research groups in 1967. The structure corresponding to 64 was first named as trichilenone acetate early in 1973,⁷⁴ and mistaken for 14β , 15β -epoxyazadirone in 1994^{75} and acetyltrichilenone in 1995,⁷⁶ when it was isolated from different plants. Heudelottins E and F (67 and 68) were of interest because they were the simplest limonoids containing the 11β -formyloxy- 12α -(2-hydroxy-3-methylvaleryloxy) system, which had been found very commonly in the complex A,B-seco limonoids of prieurianin class.⁷⁷ Three 17-epi isomers 76-78 obtained from A. *indica* were rare in limonoids from Meliaceae. Vepinin $(79)^{78}$ and limocinin (80),⁷⁹ two unique compounds from A. indica,

were distinguished by the 7α ,15 β -epoxy ring of the former and the -OH substitution at C-20 of the latter.

2.1.2. Cedrelone-Class. The cedrelone-class limonoids are characterized as the 5,6-enol-7-one derivatives. The ¹³C NMR spectra showed signals of δ = 132–135 (C-5), 140–143 (C-6), and 196–199 (C-7). The UV spectra showed the absorption at 277 nm (in EtOH) from the diosphenol chromophore.

The molecular formula of cedrelone (**81**), the principal constituent of *Cedrela toona*, was first assigned as $C_{25}H_{30}O_5$,¹⁴⁷ and later was revised to be $C_{26}H_{30}O_5$ based on chemical and mass spectroscopic work.^{148–151} Its structure was finally confirmed by X-ray diffraction.¹⁵² Furthermore, the X-ray study of cedrelone iodoacetate proved its biosynthetic relationship to limonin.^{148,153} On the basis of the HMBC and DEPT experiments, the signals for C-9, -11, -12, -17, -21, -23, and -28 of **81** were reassigned.¹⁵⁴ The chemistry of **81** was reviewed in some detail by Govindachari in 1968.⁴⁸ The structure of one of the photooxidation product of **81**, in particular the product with epoxy lactone, was established by NMR data and confirmed by X-ray crystallography.¹⁵⁵

In the course of model experiments with anthothecol (84) aimed at structural correlation with 11β -acetoxyazadirone (4), a Zn-Cu couple was found in the meliacin series to be a

Table 2. Structures and Sources of Cedrelone-Class Limonoids 81-105

no.	compounds	substitution groups and others	sources
81	cedrelone	$R_1 = R_2 = H$	Cedrela toona; ^{147,158–160} Toona ciliata; ^{154,161} T. australis; ¹⁶² Khaya anthotheca; ^{163,164} Trichilia catigua; ¹⁶⁵ Walsura yunnanensis ¹⁴⁴
82	11β -hydroxycedrelone	$R_1 = \beta$ -OH; $R_2 = H$	W. yunnanensis ¹⁴⁴
83	11β , 12α -diacetoxycedrelone	$R_1 = \beta$ -OAc; $R_2 = \alpha$ -OAc	Turraea holstii ¹⁴³
84	anthothecol	$R_1 = \alpha$ -OAc; $R_2 = H$	Khaya anthotheca ^{60,89,163,164,166–168}
85	deacetylanthothecol	$R_1 = \alpha$ -OH; $R_2 = H$	K. anthotheca ^{89,163}
86	23-hydroxycedrelonelide (walsuranolide)	$R_1 = H; R_2 = O; R_3 = OH$	Toona ciliata; ¹⁵⁴ Walsura yunnanensis ¹⁴⁴
87	11β -acetoxywalsuranolide	$R_1 = OAc; R_2 = O; R_3 = OH$	W. yunnanensis ¹⁴⁴
88	20,22-dihydro-22,23-epoxywalsuranolide	R ₁ = H; R ₂ = O; 20,22- dihydro; 22,23-epoxy	W. yunnanensis ¹⁴⁴
89	21-hydroxycedrelonelide (isowalsuranolide)	$R_1 = H; R_2 = OH; R_3 = O$	W. yunnanensis; ¹⁴⁴ Toona ciliata ¹⁵⁴
90	1,2-dihydrocedrelone	R = H	Cedrela toona ¹⁵⁸
91	11eta-hydroxydihydrocedrelone	$R = \beta$ -OH	Walsura yunnanensis ¹⁴⁴
92	11β -acetoxydihydrocedrelone	$R = \beta$ -OAc	W. yunnanensis ¹⁴⁴
93	1α , $11:14\beta$, 15β -diepoxy-6-hydroxymeliaca-5,9,20,22-tetraene-3,7-dione		Khaya anthothea ⁶⁰
94	hirtin	$R_1 = Ac; R_2 = propanoyl$	Trichilia hirta; ^{169,170} T. pallida ¹⁷¹
95	deacetylhirtin	$R_1 = H; R_2 = propanoyl$	T. hirta; ¹⁶⁹ T. pallida ¹⁷¹
96	methyl 6-hydroxy-11 β -acetoxy-12 α -(2-methylpropanoyloxy)-3, 7-dioxo-14 β ,15 β -epoxy-1,5-meliacadien-29-oate	$R_1 = Ac; R_2 = iBu$	T. pallida ¹⁷¹
97	methyl 6,11 β -dihydroxy-12 α -(2-methylpropanoyloxy)-3, 7-dioxo-14 β ,15 β -epoxy-1,5-meliacadien-29-oate	$R_1 = H; R_2 = iBu$	T. pallida ¹⁷¹
98	methyl 6-hydroxy-11 β -acetoxy-12 α -(2-methylbutanoyloxy)-3, 7-dioxo-14 β ,15 β -epoxy-1,5-meliacadien-29-oate	$R_1 = Ac; R_2 = Piv$	T. pallida ¹⁷¹
99	methyl 11 β -acetoxy-6-hydroxy-12 α -(2-methylpropionyloxy)-3, 7-dioxo-1,5,14,20,22-meliacapentaen-29-oate		T. hirta ¹⁷²
100	methyl 11β-acetoxy-6,23-dihydroxy-12α-(2-methylpropionyloxy)-3, 7,21-trioxo-1,5,14,20,22-meliacatetraen-29-oate		T. hirta ¹⁷²
101	azecin 3	$R_1 = \alpha$ -L-Rha-(1→4)-β-D- Glc-(1→6)-β-D-Glc; $R_2 = H$	Melia azedarach ¹⁷³
102	6,11-diacetoxy-7-oxo-14β,15β-epoxymeliacin-1,5-diene- 3-O-β-D-glucopyranoside	$R_1 = \beta$ -D-Glc; $R_2 = OAc$	M. azedarach ¹⁷⁴
103	6-acetoxy-3 β -hydroxy-7-oxo-14 β ,15 β -epoxymeliac-1,5-diene-	$R_1 = \beta$ -D-Xyl; $R_2 = H$	M. azedarach ¹⁷⁵
104	6 - 2 - p - p - 2 - xy topy fail to state $6 - 2 - 2 - 2 - xy topy fail to state 6 - 2 - 2 - 2 - xy topy fail to state 6 - 2 - 2 - 2 - 2 - xy topy fail to state 6 - 2 - 2 - 2 - 2 - 2 - xy topy fail to state 6 - 2 - 2 - 2 - 2 - 2 - xy topy fail to state 6 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - $	$R_{1} = \alpha_{1} R_{1} R_{2} R_{2} = OH$	M azedarach ¹⁷⁶
104	5-diene-3-0-(1-1-rhamphyranoside	$n_1 = u^{-1} - n_1 a_1 n_2 = 011$	171. 112.000710071
105	6-acetoxy-38-hydroxy-7-0x0-148.158-epoxymeliac-1 5-diene-3-	$R_1 = \beta_{-D}$ -glucuronic acide	M azedarach ¹⁴²
100	O-β-D-glucuronopyranoside	$R_2 = H$	

convenient and superior reagent for the reduction of epoxides to olefins, α,β -unsaturated ketones to saturated ketones, and ketols and their acetates to ketones.⁸⁹ Burke et al. presented the chemical correlation of **84** with hirtin (**94**), which differ in oxidation status at C-29.¹⁵⁶ Walsuranolide and isowalsuranolide reported by Luo et al. in 2000¹⁴⁴ were actually 23-hydroxyce-drelonelide (**86**) and 21-hydroxycedrelonelide (**89**) isolated in 1994,¹⁵⁴ respectively, whose structures were introduced incorrectly as 30-nor (C-8 Methyl) derivatives by Chemical Abstracts (*CA*, 1994). In the crystal structure which was established for 1,2-dihydrocedrelone (**90**), the rings A, B, C, and D adopted sofa, half-chair, twist and envelope conformations, respectively.¹⁵⁷ In 1 α ,11:14 β ,15 β -diepoxy-6-hydroxymeliaca-5,9,20,22-tetraene-3,7-dione (**93**), an unusual compound with a 1,11-ether and a

9,11-double bond, the enol ether group of was stable to both acid and base. This unreactivity was probably because of steric hindrance to attack on the enol system.⁶⁰

2.1.3. Havanensin-Class. The havanensin-class limonoids bear oxygenic substituent at C-1, C-3, and C-7, and the degree of oxidation at C-28 varies from methyl to carboxyl. Under mildly acid conditions, the first stage of the ring-opening of havanensin (106) gives a 15-hydroxy-14-carbonium ion, which then either undergoes Wagner—Meerwein rearrangement or loses a proton to give a 15-ketone enolate and involves participation of the oxygenated function at C-7.¹⁷⁷ Grandifolione (112) was the first natural representative of a stage regarded as intermediate in the in vivo transformation of apo-euphol (or apo-tirucallol) into the typical pentenolide system found in limonoids.¹⁷⁸

Figure 4. Structures of cedrelone-class limonoids 81-105.

14,15-Deoxyhavanensin 3,7-diacetate (114) and deoxyhavanensin triacetate (115) isolated from the unripened seeds of *Trichilia havanensin* revealed a lower degree of oxidation of the limonoid skeleton and could be viewed as the biosynthetic precursors of the limonoids isolated from the mature seeds.⁸⁶ Sendanal (122) was of biosynthetic interest from the viewpoint that it was closely related to a precursor of the 14,15-epoxy-12-hydroxy moiety, which could yield limonoids of the nimbin class through a Grob fragmentation followed by formation of an ether ring between the C-7 and C-15 hydroxyl groups via an S_N1 mechanism. The co-occurrence of 122 and ohchinal (343) in the same tree provided a piece of evidence for such pathway.¹⁷⁹ Unfortunately, limonoids 131–134 isolated by Torto et al. were named mistakenly as 28-nor-4 α -carbomethoxy derivatives of havanensin (106). However, C-28 of 131–134 was present and so numbered in the original paper, and 131 was confirmed by X-ray diffraction.¹⁸⁰

2.1.4. Trichilin-Class. The trichilin-class limonoids mostly originated from genera Melia and Trichilia (Table 4), and contained the C-19/29 lactol bridge and the 14,15-epoxide moieties except in compounds 172–185. The ¹³C NMR spectral assignments for trichilin A (135) were revised based on 2D-NMR data in 1998.¹⁹² Treatment of 135 with zinc borohydride in 2-propanol led to acyl migration in ring A and gave its 1,2diacetyl and 1,3-diacetyl isomers.¹⁹³ Trichilin D (141) from Trichilia roka, first assigned in 1981,¹⁹⁴ was subsequently obtained from Melia azedarach and mistaken for meliatoxin A1 in 1983. 195 The structure of aphanastatin (142), along with amoorastatin (165) and 12 α -hydroxyamoorastatin (166) isolated from *Aphanamixis grandifolia*, has been determined from three-dimensional X-ray diffraction data.^{196,197} The absolute configuration of sendanin (156) was proposed based on CD data, 198 and the structure was confirmed by crystallographic means. 199 As conand the cerns biosynthesis, it should be noted that all trichilins isolated from the root bark of Trichilia roka were oxidized at the C-2 positon, ^{194,200} while **156** obtained from the fruit of *T. roka* was not oxidized at C-2.¹⁹⁸ The structure of **156** could not be studied directly because it had been isolated from Melia azedarach only after acetvlation of the crude limonoid fraction. Therefore the structure of its natural -OH precursor was studied and it was determined from the chemical and spectral data obtained that

156 derived from that precursor should be an epimer mixture of the hemiacetal.²⁰¹ The structure of 28-deacetylsendanin referred to in some literature^{202–204} should in fact be 29-deacetylsendanin (157),²⁰⁵ which was isolated as a 5:3 mixture of epimer with respect to C-29.²⁰⁶ In fact, the structure of compound 29isobutylsendanin²⁰⁵ obtained from Melia azedarach in 1995 was the same as 12-O-acetylazedarachin B $(161)^{207}$ found in 1994 in the same species. Meliartenin (164) was shown to be a mixture of two interchangeable isomers.²⁰⁸ Huang et al. mistook compound 166 as 12-deacetyltoosendanin²⁰⁹ when citing its origin, in which it was in fact named as 12α -hydroxyamoorastatin.²¹⁰ The structure of toosendanin^{211,212} and 12α -acetoxyamoorastatin^{213,214} was in fact proved to be identical with that of chuanliansu (167), which was first assigned in 1975²¹⁵ and subsequently corrected in 1980.²¹⁶ Based on the observation of a significant difference in the chemical shift between 3 α -deacetylamoorastatin (168, δ C-9: 39.5) and 9 β amoorastatin (169, δ C-9: 48.2), Vardamides et al. proposed the stereochemistry of H-9 as β in 169.²¹⁷ The biosynthetic formation of 7,14-epoxyazedarachin B (183) could presumably be explained by an intramolecular nucleophilic attack of the hydroxyl group on the C-14 position of the epoxide ring, and in contrast a preferable alternative route led to neoazedarachin B(181) with a 1,2-hydrogen shift.²¹⁸ As for the structure of toosendanal (185), it contained one more lactol bridge at C-1/29 in addition to the C-19/29 ether bridge.211

2.1.5. Vilasinin-Class. The vilasinin-class limonoids characterized by a 6α ,28-ether bridge were proposed as biosynthetic precursor of ring C cleaved salannin-type limonoids,^{237,238} which were formed through a Grob type olefin-forming fragmentation of a 12-hydroxy-14,15-epoxyvilasinin-class compound and subsequent ether ring formation between C-7 and C-15 hydroxyl groups to yield nimbolidins and salannins.²³⁹ The occurrence of nimbolins A and B (202 and 366) in both *Melia azedarach* and *Azadirachta indica* further underlined the close relationship between the two species.²⁴⁰ Munronolide 21-O- β -D-glucopyranoside (213), from *Munronia henryi*, was the first limonoid with a D-glucose moiety attached to the C-21 position.²⁴¹ Malleastrones A-C (227–229) possessed a rare skeleton with an acetyl group at C-6 and the C-6/29 ether bridge. Of these, the structure of 227 was confirmed by X-ray diffraction.²⁴²

Table 3. Structures and Sources of Havanensin-Class Limonoids 106-134

no.	compounds	substitution groups and others	sources
106	havanensin	$R_1 = R_2 = R_3 = R_4 = H$	Trichilia havanensis; ¹⁸¹ Khaya anthotheca ¹⁶³
107	3,7-di-O-acetylhavanensin	$R_1 = R_4 = H; R_2 = R_3 = Ac$	K. anthotheca; ¹⁶³ Trichilia havanensis ^{74,181}
108	1,7-di-O-acetylhavanensin	$R_1 = R_3 = Ac; R_2 = R_4 = H$	T. havanensis; ^{74,181} Khaya anthotheca ¹⁶³
109	havanensin triacetate	$R_1 = R_2 = R_3 = Ac; R_4 = H$	K. anthotheca; ¹⁶³ Trichilia havanensis ^{74,86,181}
110	trifolin	$R_1 = Ac; R_2 = H; R_3 = iVal(OH); R_4 = O$	T. trifolia ¹⁸²
111	khayanthone	$R_1 = R_2 = R_3 = Ac; R_4 = O$	Khaya anthotheca; ^{163,164,183} K. nyasica ¹⁸⁴
112	grandifolione	$R_1 = R_2 = Ac; R_3 = H; R_4 = O$	K. grandifolia ^{164,178,185}
113	1lpha-methoxy-1,2-dihydroepoxyazadiradione		Azadirachta indica ⁶⁸
114	14,15-deoxyhavanensin 3,7-diacetate	$R_1 = R_4 = R_5 = H; R_2 = R_3 = Ac$	Khaya anthotheca; ¹⁶³ Chisocheton paniculatus ¹¹⁷
115	deoxyhavanensin triacetate	$R_1 = R_2 = R_3 = Ac; R_4 = R_5 = H;$	Trichilia havanensis ⁸⁶
116	14,15-deoxyhavanensin 1,7-diacetate	$R_1 = R_3 = Ac; R_2 = R_4 = R_5 = H$	T. havanensis; ⁸⁶ Melia toosendan ¹⁸⁶
117	1α , 12α -diacetoxy-7-deacetyl-1,2-dihydro-	$R_1 = Ac; R_4 = OAc; R_2 = R_3 = R_5 = H$	Turraea cornucopia ⁹⁰
	3α -hydroxyazadirone		
118	deoxykhayanthone	$R_1 = R_2 = R_3 = Ac; R_4 = H; R_5 = O$	Khaya nyasica ¹⁸⁴
119		$\mathbf{R}_1=\mathbf{R}_2=\mathbf{Ac};\ \mathbf{R}_3=\mathbf{OH};\ 20,22\text{-didehydro}$	Trichilia havanensis ⁸⁶
120	melianin C	$R_1 = Ac; R_2 = Bz; R_3 = H$	Melia volkensii ¹⁸⁷
121	toosendone		M. toosendan ¹⁸⁶
122	sendanal		M. azedarach ¹⁷⁹
123	1α , 7α , 11β -triacetoxy- 4α -carbomethoxy- 12α -	$\mathbf{R}_1=\mathbf{R}_3=\mathbf{Ac};\ \mathbf{R}_2=\mathbf{H};\ \mathbf{R}_4=\mathbf{i}\mathbf{Bu}$	Turraea floribunda ¹⁸⁸
	(2-methylpropanoyloxy)-14 β ,15 β -epoxyhavanensin		
124	1α , 7α , 11β -triacetoxy- 4α -carbomethoxy- 12α -	$R_1 = R_3 = Ac; R_2 = H; R_4 = Piv$	T. floribunda ¹⁸⁸
	(2-methylbutanoyloxy)-14 β ,15 β -epoxyhavanensin		
125		$R_1 = R_4 = Ac; R_2 = R_3 = H$	T. floribunda ¹⁸⁹
126		$\mathbf{R}_1=\mathbf{R}_4=\mathbf{A}\mathbf{c};\ \mathbf{R}_2=\mathbf{H};\ \mathbf{R}_3=\mathbf{i}\mathbf{B}\mathbf{u}$	T. floribunda ¹⁸⁹
127		$R_1 = H; R_2 = R_4 = Ac; R_3 = iBu$	T. floribunda ¹⁸⁹
128	11 eta -acetoxy-3,7-diacetyl-4 $lpha$ -carbomethoxy-	$R_1 = Tig; R_2 = R_3 = Ac; R_4 = iBu$	T. floribunda ¹⁹⁰
	12 lpha-isobutyryloxy-28-nor-1-tigloyl-havanensin		
129	nilotin	$R_1 = R_2 = R_3 = Ac; R_4 = Tig$	T. nilotica ¹⁹¹
130	1α , 11β -diacetoxy- 4α -carbomethoxy- 7α -		T. floribunda ¹⁸⁸
	hydroxy-12 α -(2-methylpropanoyloxy)-15-oxohavanensin		
131	28-nor-4 α -carbomethoxy-11 β -acetoxy-	$R_1 = R_2 = Ac$	T. floribunda ¹⁸⁰
	12α-(2-methylbutanoyloxy)-14,15- deoxyhavanensin-1,7-diacetate		
132	28-nor-4 α -carbomethoxy-11 β -hydroxy-	$R_1 = R_2 = H$	T. floribunda ¹⁸⁰
	12 $lpha$ -(2-methylbutanoyloxy)-14,15-deoxyhavanensin-1-acetate		
133	28-nor-4 α -carbomethoxy-11 β -acetoxy-	$R_1 = H; R_2 = Ac$	T. floribunda ¹⁸⁰
	12 α -(2-methylbutanoyloxy)-14,15-deoxyhavanensin-1-acetate		
134	28-nor-4 $lpha$ -carbomethoxy-7-deoxy-7-oxo-11 eta -acetoxy-		T. floribunda ¹⁸⁰
	12lpha-(2-methylbutanoyloxy)-14,15-deoxyhavanensin-1-acetate		

2.1.6. Others. The characterization of the epoxides 1α , 2α -epoxy- 17β -hydroxyazadiradione (248) and 1α , 2α -epoxynimolicinol (453) in *Azadirachta indica* oil was of biosynthetic significance, as they might be considered as intermediates between A-ring 3-oxo- $\Delta^{1,2}$ and 1,3-diols among the *A. indica* limonoids.¹¹⁵

2.2. Ring-seco Limonoids

2.2.1. Demolition of a Single Ring. *2.2.1.1. Ring A-seco Group.* The cleavage of C-3/4 and then formation of a 3,4-lactone mostly occurred in the ring A-seco group, and usually led to either the $\Delta^{1,2}$ system or 1 α -acetyl substitution (Figure 9). Dregeanas 3–5 (**256**, **261**, and **260**) were considered as intermediates between the intact limonoids such as heudelottins C, E,

and F (**66-68**) and the complex compounds of the prieurianinclass.²⁷⁴ Kihadalactone A obtained from *Aphanamixis polystacha* in 1999²⁷⁵ was in fact identical with carapolide I (**257**) obtained from *Carapa grandiflora* in 1994.²⁷⁶ In addition, **257** was of interest because the complex rohitukin limonoids could arise from compounds of this relatively simple type by oxidation of ring B and the Δ^{14} -double bond.²⁷⁵

2.2.1.2. Ring B-seco Group. Up to now, the limonoids of ring B-seco (C-7/8) from Meliaceae were found only in the *Turraea* and *Toona* genera (Table 8). The substituents at C-11 in turraflorins A–C (**266**, **267**, and **283**), first isolated from *Turraea floribunda*,²⁸⁴ were revised to be β -oriented¹⁴³ and the complete assignment of the NMR spectra of **266** and **267** were presented.²⁸⁵ The structure of 6-acetoxytoonacilin (**269**), the first B-seco

Figure 5. Structures of havanensin-class limonoids 106-134.

limonoid with an intact A ring related to cedrelone (81), was confirmed by X-ray analysis.²⁸⁶ The absolute configurations of turrapubesins D–G (275–278) were established by correlating their CD spectra to that of turrapubesin B (1153),⁵⁹ a model compound whose absolute configuration was assigned by CD analysis of its dihydrogenated derivatives.²⁶⁶ Unlike the limonoids 266–286, all of which have a $\Delta^{8,30}$ exocyclic double bond, turrapubesins A (290) and C (291) both have a $\Delta^{8,14}$ double bond, and the latter also has a 1,30-oxygen bridge. Wang et al. presented the first report on the determination of the absolute configuration of 290 by chlorine-based X-ray crystallography²⁸⁷ and proposed a plausible biosynthetic pathway to 291 starting from the precursor 11-*epi*toonacilin (271).¹²⁶

2.2.1.3. Ring C-seco Group. 2.2.1.3.1. Azadirachtin/Meliacarpin-Class. The ring C-seco limonoids originated mainly from the Azadirachta and Melia genera (Table 9). Deciphering the structure of the very potent biopesticide azadirachtin (292), first isolated from Azadirachta indica (syn. Melia azadirachta),⁵¹ also called azadirachtin A according to Rembold,35 was a long journey. Butterworth et al. presented the correct formula of 292 as $C_{35}H_{44}O_{16}^{293}$ and delineated important structural features. 294 Based on the NMR study including the NOE experiments, the structure of **292** was proposed^{295,296} and subsequently revised.^{297,298} The final and unambiguous determination did not arrive until 1986 based on the X-ray crystallographic analysis of its derivatives, 52,257 and thus reassignments of its NMR data have been proposed by several research groups.²⁹⁹⁻³⁰¹ Crystalline 292 was obtained in 1994 and its crystal parameters were measured by X-ray diffraction.^{302,303} Then its absolute configuration was finally determined by high field NMR application of the Mosher method.³⁰⁴ To determine the properties of 292, it was converted to the natural product 22,23-dihydro- 23β - methoxyazadirachtin (303) via selective bromomethoxylation of the C-22,23 enol ether double bond and tri-n-butyltin hydride reduction.³⁰⁵ A wonderful review of the chemistry of 292 was presented by Ley et al.,²¹ and a methodology of structure determination was also developed taking **292** as an example.³⁰⁶ The structure of 3-tigloylazadirachtol (**296**),³⁰⁷ once incorrectly assigned as deacetylazadirachtinol,³⁰⁸ was also called azadirachtin B.³⁰⁹ Azaidrachtin F and 11-hydroxyazadirachtin B, both reported in 1996 by two different research groups, had the same structure as 300.^{130,310} The spectral data of azadirachtin D (309), which was identical with 1-tigloyl-3-acetyl-11-hydroxy-4 β -methylmeliacarpin isolated in 1992,³¹¹ were introduced by Govindachari in the same year.³¹² Unlike most azadirachtin/meliacarpin-class limonoids, azadirachtin G (305) and 13,14-desepoxyazadirachtin A (306) had a double bond at C-13/14 instead of an epoxy moiety. 1,3-Diacetyl-11,19-deoxa-11-oxo-meliacarpin (311) from Azadirachta indica was considered to be a possible intermediate in the biosynthesis of 292.313

2.2.1.3.2. Azadirachtinin/Meliacarpinin-Class. It was thought that an intramolecular $S_N 2$ nucleophilic reaction resulted in the formation of 7α , 13β -ether bridge moiety in azadirachtin/meliacarpin-class limonoids. 1-Cinnamoyl-3-acetyl-11-methoxymeliacarpinin (**327**) reported in 1994³³⁹ was cited as meliacarpinin A by Zhou et al. in 1997.²¹⁴ It was odd that Nakatani et al. reported 1-deoxy-3-tigloyl-11-methoxymeliacarpinin (**328**)³⁴⁰ in 1993 and 1-acetyl-3-tigloyl-11-methoxymeliacarpinin (**329**)²¹⁹ in 1994, but then presented these two compounds as meliacarpins B and C in 1995,³⁴¹ respectively. The structure **330** had been variously assigned to meliacarpinin.²⁰⁵ while **331** was reported as meliacarpinin E³⁴² in 1996 and was in fact the 3-tigloyl-11-methoxymeliacarpinin reported in 1993.²⁰⁶

Table 4. Structures and Sources of Trichilin-Class Limonoids 135–185

no.	compounds	substitution groups and others	sources
135	trichilin A	$R_1 = R_4 = H; R_2 = OAc;$ $R_2 = Ac; R_c = O; R_c = \beta OH; R_7 = Piv$	Trichilia emetica; ¹⁹² T. roka ¹⁹⁴
136	7-acetyltrichilin A	$R_1 = H; R_2 = OAc; R_3 = R_4 = Ac;$ $R_5 = O; R_6 = \beta OH; R_7 = Piv$	Т. roka ²⁰⁰
137	trichilin B	$R_1 = R_4 = H; R_2 = OAc; R_3 = Ac; R_5 = O;$ $R_5 = \alpha - OH; R_7 = Piv$	T. roka; ¹⁹⁴ Melia azedarach: ^{206,207,209,219,220} M toosendan ^{85,214}
138	12-O-acetyltrichilin B	$R_{1} = R_{4} = H; R_{2} = OAc; R_{3} = Ac; R_{5} = O;$ $R_{4} = \alpha \cdot OAc; R_{7} = Piv$	M. azedarach; ^{206,207,209,219,220} M. toosendan ²¹⁴
139	1,12-diacetyltrichilin B	$R_6 = \alpha \cdot OAc; R_7 = Hv$ $R_1 = R_3 = Ac; R_2 = OAc; R_4 = H; R_5 = O;$ $R_4 = \alpha \cdot OAc; R_7 = Piv$	M. azedarach ^{206,207,209,219–221}
140	trichilin C	$R_{0} = 0$ Gra, $R_{7} = 11$ $R_{1} = R_{4} = H; R_{2} = OAc; R_{3} = Ac; R_{5} = OH;$ $R_{4} = O; R_{7} = Piv$	Trichilia roka ¹⁹⁴
141	trichilin D (meliatoxin A ₁)	$R_1 = R_4 = R_6 = H; R_2 = OAc; R_3 = Ac;$ $R_5 = O; R_7 = Piv$	T. roka; ¹⁹⁴ Melia azedarach ^{195,206,207,209,219–222}
142	aphanastatin	$R_1 = R_3 = Ac; R_2 = OH; R_4 = H; R_5 = O;$ $R_5 = \alpha - OH; R_7 = Piv$	M. azedarach; ^{209,219} Aphanamixis grandiflora; ¹⁹⁶ Trichilia roka ¹⁹⁴
143	trichilin F	$R_1 = Ac; R_2 = OAc; R_3 = R_4 = H; R_5 = O;$ $R_5 = \beta - OH; R_7 = Piv$	T. roka ^{194,223}
144	trichilin G	$R_1 = R_4 = H; R_2 = OH; R_3 = Ac; R_5 = O;$ $R_5 = \beta - OH; R_7 = Piv$	T. roka ²²³
145	trichilin H	$R_1 = R_4 = H; R_2 = OAc; R_3 = Ac; R_5 = O;$ $R_4 = \alpha \cdot OAc; R_7 = iBu$	Melia azedarach; ^{206,207,209,219–221} M. toosendan ^{85,211,224}
146	1-acetyltrichilin H	$R_1 = R_3 = Ac; R_2 = OAc; R_4 = H; R_5 = O;$ $R_5 = \alpha$ -OAc; $R_7 = iBu$	M. azedarach; ^{221,225} M. toosendan ⁸⁵
147	1-acetyl-2-deacetyltrichilin H	$R_1 = R_3 = Ac; R_2 = OH; R_4 = H; R_5 = O;$ $R_5 = \alpha$ -OAc; $R_7 = iBu$	M. azedarach ²²¹
148	3-deacetyltrichilin H	$R_1 = R_3 = R_4 = H; R_2 = OAc; R_5 = O;$ $R_6 = \alpha \cdot OAc; R_7 = iBu$	M. azedarach ²²¹
149	1-acetyl-3-deacetyltrichilin H	$R_1 = Ac; R_2 = OAc; R_3 = R_4 = H; R_5 = O;$ $R_6 = \alpha - OAc; R_7 = iBu$	M. azedarach ²²¹
150	12-O-deacetyltrichilin H	$R_1 = R_4 = H; R_2 = OAc; R_3 = Ac; R_5 = O;$ $R_5 = \alpha - OH; R_7 = iBu$	M. azedarach ²²⁶
151	trichilin I	$R_1 = R_4 = H; R_2 = OH; R_3 = Ac; R_5 = O;$ $R_5 = \alpha$ -OAc; $R_7 = Piv$	M. toosendan ^{85,209,224,227}
152	12-deaceyltrichilin I	$R_1 = R_4 = H; R_2 = OH; R_3 = Ac; R_5 = O;$ $R_6 = \alpha - OH; R_7 = Piv$	M. azedarach ²²¹
153	trichilin J	$R_1 = R_4 = R_6 = H; R_2 = OH; R_3 = Ac;$ $R_5 = O; R_7 = Piv$	M. toosendan ^{85,209,224,227}
154	trichilin K	$R_1 = R_4 = R_6 = H; R_2 = OH; R_3 = Ac; R_5 = O;$ $R_7 = iBu$	M. toosendan ^{85,224}
155	trichilin L	$\begin{split} R_1 &= R_3 = R_4 = R_6 = H; \ R_2 = OAc; \ R_5 = O; \\ R_7 &= Piv \end{split}$	M. toosendan ^{85,224}
156	sendanin	$\begin{split} R_1 &= R_2 = R_4 = H; \ R_3 = R_7 = Ac; \ R_5 = O; \\ R_6 &= \alpha\text{-OAc}; \end{split}$	M. azedarach; ¹⁹⁹ Trichilia roka ¹⁹⁸
157	29-deacetylsendanin	$\begin{split} \mathbf{R}_1 &= \mathbf{R}_2 = \mathbf{R}_4 = \mathbf{R}_7 = \mathbf{H}; \ \mathbf{R}_3 = \mathbf{Ac}; \ \mathbf{R}_5 = \mathbf{O}; \\ \mathbf{R}_6 &= \alpha\text{-}\mathbf{OAc}; \end{split}$	Melia azedarach; ²⁰⁵ M. toosendan ^{202–204}
158	azedarachin A	$R_1 = R_2 = R_4 = H$; $R_3 = Ac$; $R_5 = O$; $R_6 = \alpha$ -OH; $R_7 = Piv$	M. azedarach; ^{206,207,209,219} M. toosendan ^{85,224}
159	12-O-acetylazedarachin A	$\begin{aligned} R_1 &= R_2 = R_4 = H; \ R_3 = Ac; \ R_5 = O; \\ R_6 &= \alpha \text{-OAc}; \ R_7 = \text{Piv} \end{aligned}$	M. azedarach; ^{205,207,209,219} M. toosendan ^{85,133}
160	azedarachin B	$\begin{split} R_1 &= R_2 = R_4 = H; \ R_3 = Ac; \ R_5 = O; \\ R_6 &= \alpha\text{-}OH; \ R_7 = iBu \end{split}$	M. azedarach; ^{205,206,218} M. toosendan ^{85,214}
161	12-O-acetylazedarachin B (29-isobutylsendanin)	$\begin{split} \mathbf{R}_1 &= \mathbf{R}_2 = \mathbf{R}_4 = \mathbf{H}; \ \mathbf{R}_3 = \mathbf{A}\mathbf{c}; \\ \mathbf{R}_5 &= \mathbf{O}; \ \mathbf{R}_6 = \alpha\text{-}\mathbf{O}\mathbf{A}\mathbf{c}; \ \mathbf{R}_7 = \mathrm{i}\mathbf{B}\mathbf{u} \end{split}$	M. azedarach; ^{207,209,219} M. toosendan ²²⁴

Table 4. Continued

no.	compounds	substitution groups and others	SOUTCES
110.			3001265
162	azedarachin C	$R_1 = R_2 = R_4 = R_6 = H; R_3 = Ac;$	M. azedarach
1/2		$R_5 = O; R_7 = 1Bu$	1 195.206.207.219.220.222
163	meliatoxin A ₂	$R_1 = R_4 = R_6 = H; R_2 = OAc; R_3 = Ac;$	M. azedarach
		$R_5 = O; R_7 = 1Bu$	1 1 208
164	meliartenin	$R_1 = R_2 = R_4 = R_7 = H; R_3 = Ac; R_5 = OH;$	M. azedarach ²⁰⁰
		$R_6 = O$	217
165	amoorastatin	$R_1 = R_2 = R_4 = R_6 = R_7 = H; R_3 = Ac;$	Pterohrachis zenkeri; ²¹⁷
		$R_5 = O$	Aphanamixis grandiflora
166	12α -hydroxyamoorastatin	$R_1 = R_2 = R_4 = R_7 = H; R_3 = Ac; R_5 = O;$	A. grandiflora; ²³⁰ Melia toosendan; ^{33,133,124}
	(12-deacetyltoosendanin)	$R_6 = \alpha$ -OH	M. azedarach
167	chuanliansu (toosendanin;	$R_1 = R_2 = R_4 = R_7 = H; R_3 = Ac; R_5 = O;$	M. toosendan; ^{60,100,211,212,214}
	12α -acetoxyamoorastatin)	$R_6 = \alpha$ -OAc	M. azedarach ²⁰⁵ ,215,255
168	3α -deacetylamoorastatin	$R_1 = R_2 = R_3 = R_4 = R_6 =$	Pterohrachis zenkeri ²¹⁷
		$R_7 = H; R_5 = O$	
169	9 β -amoorastatin	$R_1 = R_2 = R_4 = R_6 = R_7 = H; R_3 = Ac;$	<i>P. zenkeri</i> ²¹⁷
		$R_5 = O; 9\beta$ -H	122
170	meliatoosenin D	$R_1 = R_2 = R_3 = R_4 = H; R_5 = O R_6 = \alpha$ -OAc;	Melia toosendan ¹³³
		$R_7 = OH$	
171	meliatoosenin C		<i>M. toosendan</i> ¹³³
172	amoorastatone	$R_1 = \alpha$ -OH; $R_2 = R_4 = R_5 = H$;	<i>Aphanamixis grandiflora;</i> ²¹⁰ <i>Melia azedarach</i> ²³⁰
		$R_3 = \alpha$ -OAc	
173	12 α -hydroxyamoorastatone	$R_1 = \alpha$ -OH; $R_2 = R_5 = H$; $R_3 = \alpha$ -OAc;	<i>M. azedarach</i> ; ^{213,230–232} <i>M. toosendan</i> ^{85,133,225}
		$R_4 = OH$	
174	29-[(2-methylbutanoyl)oxy]-2 α -	$R_1 = \alpha$ -OH; $R_2 = OH$; $R_3 = \alpha$ -OAc;	M. toosendan ²³³
	hydroxyamoorastatone	$R_4 = H; R_5 = Piv$	
175	1,3- epi -29-[(2-methylbutanoyl)oxy]-2 α -	$R_1 = \beta$ -OH; $R_2 = OH$; $R_3 = \beta$ -OAc; $R_4 = H$;	M. toosendan ²³³
	hydroxyamoorastatone	$R_5 = Piv$	
176	1,3-epi-29-[(2-methylpropanoyl)oxy]-2 α -	$R_1 = \beta$ -OH; $R_2 = OH$; $R_3 = \beta$ -OAc; $R_4 = H$;	M. toosendan ²³³
	hydroxyamoorastatone	$R_5 = iBu$	
177	meliatoxin B ₁	$R_1 = \alpha$ -OH; $R_2 = OAc$; $R_3 = \alpha$ -OAc; $R_4 = H$;	<i>M. azedarach</i> ^{195,211,221,222}
		$R_5 = Piv$	
178	meliatoxin B ₂	$R_1 = \alpha$ -OH; $R_2 = OAc$; $R_3 = \alpha$ -OAc; $R_4 = H$;	M. azedarach ^{195,222}
		$R_5 = iBu$	
179	isochuanliansu (isotoosendanin)	$R_1 = \alpha$ -OH; $R_2 = R_5 = H$; $R_3 = \alpha$ -OAc;	<i>M. azedarach;</i> ^{230,234} <i>M. toosendan</i> ^{85,225,234,235}
		$R_4 = OAc$	
180	neoazedarachin A	$R_1 = \alpha$ -OH; $R_2 = H$; $R_3 = \alpha$ -OAc; $R_4 = OH$;	M. toosendan ^{85,225}
		$R_5 = Piv$	
181	neoazedarachin B	$R_1 = \alpha$ -OH; $R_2 = H$; $R_3 = \alpha$ -OAc; $R_4 = OH$;	M. toosendan ^{85,218,225}
		$R_5 = iBu$	
182	neoazedarachin D	$R_1 = \alpha$ -OH; $R_2 = H$; $R_3 = \alpha$ -OAc; $R_4 = OH$;	M. toosendan ²²⁵
		$R_5 = CH_3$	
183	7,14-epoxyazedarachin B		M. azedarach ²¹⁸
184	azadirachtanin		Azadirachta indica ²³⁶
185	toosendanal		Melia toosendan ²¹¹

2.2.1.3.3. Salannin-Class. The structures of salannin (332) and 3-deacetylsalannin (333), in which many of the conformations were similar to those of in azadirachtins, were confirmed by X-ray diffraction analysis.³⁴⁷ Photooxidation of 332 and nimbin (391) by UV light in the presence of oxygen led to more polar unstable intermediates that rearranged on silica gel to two final products in which the furan ring had been oxidized to isomeric hydroxybutenolides.³⁴⁸ The photooxidation products of 332, salanninolide (349), and its isomer isosalanninolide (348) were also isolated as natural products from *Azadirachta indica*.^{317,318}

The molecules of 2',3'-dehydrosalannol (**338**) were linked into chains by intermolecular O–H···O hydrogen bonds.³⁴⁹ The biosynthetic pathway to nimbolide (**345**) from $[2^{-14}C,(4R)4^{-3}H_1]$ mevalonic acid lactone was confirmed by feeding experiments.^{350–354} The isomer of **345** was unexpectedly produced when it was treated with boron trifluoride etherate and tetrabutyl ammonium bromide.³⁵⁵ Salannolide³⁵⁶ and compositolide²⁵³ were both obtained in 1984 by two research groups, and had the same structure as **348**. In addition, it was mistaken for isosalanninolide by Jarvis et al. in 1999.³¹⁷

Figure 6. Structures of trichilin-class limonoids 135–185.

2.2.1.3.4. Nimbolinin-Class. It seems that melianolide (389) was situated in a position to link ring C-seco limonoids such as nimbolinin B (358) to azadirachtinin-class limonoids.³⁶¹ The biosynthetic routes from ohchinolide A (371) to salannal (396) and further to salannin (332) involving Grob type olefin formation and subsequent ether ring formation were presented.³⁶¹ Zhang et al. proposed 12-ethoxynimbolinins $A-D^{186}$ for the structure of 357, 361, 385, and 388 based on comparison of the skeleton with the virtual compound nimbonlinin, which was a presumed intermediate in the biosynthetic pathway to more highly rearranged limonoids not yet isolated as a natural product. However, 12-ethoxynimbolinins A-D were not simple ethoxyl derivatives of nimbolinin A-D (355, 358, 363, and 364), which might cause misunderstanding and confusion.²¹²

2.2.1.3.5. Nimbin-Class. The structure of nimbin (391), the major crystal bitter constituent of *Azadirachta indica*, was characterized by chemical means^{392–401} and spectroscopic analysis.⁴⁰² The assignment of the absolute configuration in **391** was determined by making certain biosynthetic assumptions⁴⁰³ and using information from the ORD study of pyronimbic acid.⁴⁰⁴ The NMR spetral data of **391**, 6-deacetylnimbin (**392**), nimbanal (**393**), and nimbolide (**345**) were subsequently partially reassigned in 1990.³⁷⁷ Ohchinolal (**396**), obtained from *Melia azedarach* early in 1983,³⁷⁰ was isolated from the same species and renamed as salannal by Nakatani et al. in 1995.³⁶⁰ 3-O-Acetylohchinolal (**399**) was considered to be one of the biosynthetic precursors to the ring C-seco limonoids with C-6/28 and C-7/15 ether linkages, such as are found in salannin (**332**) and ohchinin (**340**).⁸⁴

2.2.1.3.6. Nimbolidin-Class. Walsogyne (414), with a C-11/14 ether bridge, might be derived through keto—enol isomerization of the aldehyde at C-9 followed by formation of a tetrahydrofuran-2-ol.⁴¹² 7 α -Acetyl-15 β -methoxy-29-methylene-7,15-deoxonimbolide (415) should be named as 7 α -acetyl-15 β -methoxy-28a-methylene-7,15-deoxonimbolide based on its skeleton numbering, and the source of C-28a was not biosynthetically available.⁴¹¹

2.2.1.4. Ring D-seco Group. Limonoids in this group with a δ -lactone in ring D derived from azadirone class via ring expansion by a Baeyer–Villiger type reaction.⁴¹³ Gedunin (416), the representative compound of this class, was obtained from various species (Table 15). For **416** the MS^{135,414} and NMR spectral

data⁴¹⁵ presented were used for its characterization, and its constitution and relative stereochemistry were deduced from the dihydrogedun- 3β -yl iodoacetate⁴¹⁶ derivative and confirmed by X-ray diffraction analysis.⁴¹⁷ Moreover, reactions of **416** were described and explained by a structure similar to that proved for limonin.⁴¹⁸ The crystal structure of 6α -acetoxygedunin (418) was determined by X-ray analysis.419 The 1H NMR data of 7-deacetylgedunin (421) had not been completely assigned until 2006¹¹³ although it was isolated from Azadirachta indica in 1967.⁵⁷ Cespedes et al. presented the isolation of the epimeric mixture of photogedunin (433) and the formation and phyto-synthetic activities of its acetates.⁴²⁰ The chemical conversion of 416 and khivorin (434) to deacetoxy-7-oxoisogedunin con-firmed the structure of 434.⁴²¹ The crystal packing of 3α , 7α dideacetylkhirorin (440) was stabilized by both intra- and intermolecular hydrogen bonds, whose six-membered rings showed chair, boat and half-chair conformations while the furan ring was planar.⁴²² Biosynthetically, formation of mahmoodin (454), the first limonoid with a C-17 ethylene glycol side chain, might be considered as being from isonimolicinolide (59) through oxidation of ring D to a δ -lactone, as is observed in the case of the epoxyazadiradione-gedunin conversion, followed by transformation of the acetyl group to an ethylene glycol group.81

2.2.2. Demolition of Two Rings. 2.2.2.1. Rings A,B-seco Group. 2.2.2.1.1. Prieurianin-Class. The complex prieurianinclass limonoids were depicted as arising from cleavages of C-3/4 and C-7/8 and the formation of 3(4)-lactone or 7(4)-lactone, with the substitution of a formyloxy or acetoxy group at C-11 (Figure 18 and Table 16). Prieurianin (458), first isolated from Trichilia prieuriana, is the representative compound of this class,¹⁶⁸ but the presence of multiple conformational isomers at room temperature caused its ¹H NMR peaks to be poorly resolved so that its structure remained obscure. However, the ¹H NMR spectrum was well resolved when the sample was heated to \sim 67 °C so that at that temperature it was possible to perform a detailed analysis and make proton assignments.⁴⁸¹ Similarly, its ¹³C NMR spectrum should be measured at 50 °C to avoid broad or missing peaks which occur in measurements made at 33 °C. Finally, the structure of 458 was unambiguously confirmed

Table 5. Structures and Sources of Vilasinin-Class Limonoids 186–229

no.	compounds	substitution groups and others	sources
186	vilasinin	$R_1 = R_2 = R_3 = R_4 = H$	Azadirachta indica ²³⁸
187	1α -acetyl- 3α -propionylvilasinin	$R_1 = Ac; R_2 = propanoyl; R_3 = R_4 = H$	Turraea wakefieldii; ¹⁸⁸ T. parvifolia ²⁴³
188	1α , 3α -diacety- 7α -tigloylvilasinin	$R_1 = R_2 = Ac; R_3 = Tig; R_4 = H$	T. parvifolia ²⁴³
189	1 α ,3 α -diacetylvilasinin	$R_1 = R_2 = Ac; R_3 = R_4 = H$	T. parvifolia; ²⁴³ T. holstii; ¹⁴³ Chisocheton paniculatus; ¹¹⁷ Malleastrum antsingyense; ²⁴⁴ Melia volkensii; ¹⁸⁷ Azadirachta indica ²⁴⁵
190	1,3-diacetyl-7-tigloyl-12α- hydroxyvilasinin	$R_1 = R_2 = Ac; R_3 = Tig; R_4 = OH$	A. indica; ¹³⁰ Malleaxtrum antsingyense ²⁴⁴
191	trichilinin	$R_1 = R_3 = H; R_2 = Ac; R_4 = OAc$	Trichilia roka ²³⁷
192	1-cinnamoyltrichilinin	$R_1 = Cin; R_2 = Ac; R_3 = H; R_4 = OAc$	Melia volkensii; ²⁴⁶ M. toosendan ^{186,212}
193	1-tigloyltrichilinin	$R_1 = Tig; R_2 = Ac; R_3 = H; R_4 = OAc$	M. volkensii ²⁴⁶
194	1-acetyltrichilinin	$R_1 = R_2 = Ac; R_3 = H; R_4 = OAc$	M. volkensii; ²⁴⁶ M. toosendan ¹⁸⁶
195	trichilinin B	$R_1 = Tig; R_2 = Ac; R_3 = H; R_4 = OAc$	<i>M. toosendan</i> ^{85,186,239}
196	trichilinin C	$R_1 = Ac; R_2 = Tig; R_3 = R_4 = H$	M. toosendan ^{85,239}
197	trichilinin D	$R_1 = Cin; R_2 = R_3 = H; R_4 = OAc$	M. toosendan ^{85,212,247}
198	trichilinin E	$R_1 = Bz; R_2 = R_3 = H; R_4 = OAc$	M. toosendan ^{85,212,247}
199	meliavolkinin	$R_1 = Bz; R_2 = Ac; R_3 = R_4 = H$	M. volkensii ¹⁸⁷
200	meliavolkin	$R_1 = Cin; R_2 = Ac; R_3 = R_4 = H$	M. volkensii ²⁴⁸
201	nimbidinin	$R_1 = R_2 = R_3 = H; R_4 = O$	Azadirachta indica ^{249,250}
202	nimbolin A	$R_1 = R_2 = Ac; R_3 = Cin; R_4 = H$	A. indica; ²⁴⁰ Melia azedarach; ^{240,251} M. birmanica ²⁵²
203	compositin	$R_1 = R_3 = Tig; R_2 = R_4 = H$	M. dubia ²⁵³
204	compositin acetate	$R_1 = R_3 = Tig; R_2 = OAc; R_4 = H$	M. composita ²⁵⁴
205	dysoxylin A	$R_1 = Ac; R_2 = R_5 = H; R_3 = Tig; R_4 = OAc;$ $R_6 = O; 20,22$ -dihydro	Dysoxylum gaudichaudianum ²⁵⁵
206	dysoxylin B	$\label{eq:R1} \begin{split} &R_1=Ac;\ R_2=R_5=H;\ R_3=Bz;\ R_4=OAc;\\ &R_6=O;\ 20,22\text{-}dihydro \end{split}$	D. gaudichaudianum ²⁵⁵
207	dysoxylin C	$R_1 = Ac; R_2 = R_5 = H; R_3 = Piv; R_4 = OAc;$ $R_6 = O; 20,22$ -dihydro	D. gaudichaudianum ²⁵⁵
208	dysoxylin D	$R_1 = Ac; R_2 = R_5 = H; R_3 = 3,4$ -dimethylpent-2-enoyl; $R_4 = OAc; R_6 = O; 20,22$ -dihydro	D. gaudichaudianum ²⁵⁵
209	azadirachtolide	$R_1 = Sen; R_2 = Ac; R_3 = R_4 = R_5 = H; R_6 = O$	Azadirachta indica ²⁵⁶
210	deoxyazadirachtolide	$R_1 = Sen; R_2 = Ac; R_3 = R_4 = R_5 = R_6 = H$	A. indica ²⁵⁶
211	3-acetoxy-7-tigloylvilasinin lactone	$R_1 = R_4 = R_5 = H; R_2 = Ac; R_3 = Tig; R_6 = O$	A. indica ^{70,257}
212	munronolide	$R_1 = R_2 = Ac; R_3 = R_4 = H; R_5 = OH; R_6 = O; \Delta^{20,22}$	Munronia henryi ²⁴¹
213	munronolide 21- <i>Ο-β-</i> D- glucopyranoside	$R_1 = R_2 = Ac; R_3 = R_4 = H; R_5 = \beta$ -D-glc; $R_6 = O; \Delta^{20,22}$	M. henryi ²⁴¹
214	neem A	$R_1 = R_2 = R_3 = R_4 = R_5 = H; R_6 = O$	Azadirachta indica ²⁵⁸
215	neem B	$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = H$	A. indica ²⁵⁸
216	munronin G		Munronia delavayi ²⁵⁹
217	limbocinin	$R_1 = R_2 = H$	Azadirachta indica ²⁶⁰
218	limbocidin	$R_1 = R_2 = OH$	A. indica ²⁶⁰
219	TS1	$R_1 = OH; R_2 = H; 9\beta,11\beta$ -epoxy; 14 β ,15 β -epoxy	Trichilia rubescens ²⁶¹
220	TS2	R ₁ = OCOC(CH ₃)=CH ₂ ; R ₂ = H; 9β,11β-epoxy; 14β,15β-epoxy	T. rubescens ²⁶¹
221	TS3	$R_1 = R_2 = H$; 9 β ,11 β -epoxy; 14 β ,15 β -epoxy; $\Delta^{6,7}$	T. rubescens ²⁶¹
222	ceramicine B	$R_1 = R_2 = H; \Delta^{14,15}$	Chisocheton cermicus ²⁶²
223	ceramicine C	$R_1 = H; R_2 = methylacryl; \Delta^{14,15}$	C. cermicus ²⁶²
224	ceramicine D	$R_1 = R_2 = H$	C. cermicus ²⁶²
225	trichirubine B	$R_1 = OBz; R_2 = OH; 9\beta,11\beta$ -epoxy	Trichilia rubescens ²⁶³
226	trichirubine A		T. rubescens ²⁶³
227	malleastrone A	$R_1 = H; R_2 = CH_3; \Delta^{1,2}$	a Malleastrum sp. ²⁴²
228	malleastrone B	$R_1 = H; R_2 = CH_2CH_3; \Delta^{1,2}$	a Malleastrum sp. ²⁴²
229	malleastrone C	$R_1 = OH; R_2 = CH_3$	a Malleastrum sp. ²⁴²

Figure 7. Structures of vilasinin-class limonoids 186-229.

Table 6.	Other	Structures	and	Sources	of Rings	Intact	Limonoids	230	-248

no.	compounds	substitution groups	sources
230 231	neeflone		Azadirachta indica ²⁶⁴ Cedrela odorata ²⁶⁵
232	11β -acetoxy- 7α -acetyl- 12α -hydroxy- $1,2$ -dihydroneotrichilenone	$R_1 = Ac$, $R_2 = \beta$ -OAc; $R_3 = OH$	Turraea floribunda ¹⁴³
233	12 lpha-acetoxy-7-acetyl-1,2-dihydroneotrichilenone	$R_1 = Ac$, $R_2 = H$; $R_3 = OAc$	T. floribunda ¹⁴³
234	12 lpha-acetoxy-1,2-dihydroneotrichilenone	$R_1 = R_2 = H; R_3 = OAc$	T. floribunda ¹⁴³
235	turranolide	R = H	T. robusta ⁸⁷
236	lenticellatumin	R = OH	Dysoxylum lenticellatum ²⁶⁶
237	1,2-dihydroazadirone	$R_1 = O; R_2 = R_4 = H; R_3 = Ac$	Turraea robusta ⁸⁷
238	12lpha-acetoxy-1,2-dihydroazadirone	$R_1 = O; R_2 = H; R_3 = Ac; R_4 = OAc$	T. parvifolia ²⁴³
239	1,2-dihydro-6 α -acetoxyazadirone	$R_1 = O; R_2 = OAc; R_3 = Ac; R_4 = H$	Chisocheton paniculatus ²⁶⁷
240	mzikonone	$R_1 = O; R_2 = R_3 = H; R_4 = OAc$	Turraea robusta; ^{87,268} T. parvifolia; ²⁴³ T. cornucopia ⁹⁰
241	mzikonol	$R_1 = OH; R_2 = R_3 = H; R_4 = OAc$	T. robusta ⁸⁷
242	meldenindiol	$R_1 = O; R_2 = OH; R_3 = R_4 = H$	Azadirachta indica ²⁶⁹
243	meldenin	$R_1 = Ac; R_2 = H$	A. indica; ^{134,270,271} Melia azedarach ¹⁷⁶
244	isomeldenin	$R_1 = H; R_2 = Ac$	Azadirachta indica ^{62,92,270,271}
245	meliatetraolenone		A. indica ²⁷²
246	1 <i>β</i> ,2 <i>β</i> ;21,23-diepoxy-7α-hydroxy-24,25,26,27- tetranor-apotirucalla-14,20,22-trien-3-one		Trichilia havanensis ²⁷³
247	1 $eta, 2eta$ -diepoxyazadiradione		Azadirachta indica ⁶⁸
248	1 α ,2 α -epoxy-17 β -hydroxyazadiradione		A. indica ¹¹⁵

by X-ray analysis of prieurianin 2'-p-bromobenzenesulphonate,^{481,482} and the stereochemical ambiguities remaining for C-1, C-4 and C-14 were resolved.⁴⁸¹ Just as for **458**, spectral measurements of epoxyprieurianin (**464**),⁴⁵⁴ dysoxylumins A-C (**465**-**467**),⁴⁸³ and rohitukas 1, 2, 4, and 7–9 (**490**, **491**, **459**, **483**, **469**, and **484**)⁴⁸⁴ were performed at 60 °C to obviate the difficulties caused by restricted rotation around the C-9/10 bond at lower temperatures. The isolation of these compounds was impeded, just as was previously experienced for rohitukas and prieurianin, by difficulties such as a mild alkaline hydrolysis causing opening of the ring A-lactone, followed by a variety of further changes, which produced a complex mixture of products difficult to resolve.⁴⁸⁴

Some complicated prieurianin-class structures were revised with the development of new structure determination techniques. The 13 C NMR data of Tr-B (479) were analyzed 192 and

subsequently reassigned for the formate, acetyl, methylene groups and for two quaternary carbons.⁴⁸⁵ X-ray crystallography showed that rohituka 7 (483) bore the 15β -substituent,⁴⁸⁶ as opposed to the original assignment.⁴⁸⁴ The assigned structure of dregeanin with ring A as a seven-membered lactone⁴⁸⁷ was revised by comparison of the spectroscopy data with those of prieurianin derivatives to contain instead an eight-membered lactone ring as is shown in 488.⁴⁸⁸ Cipadessalide (489), the first prieurianin-class compound isolated from *Cipadessa* plants, was the first example of a limonoid with an oxygen bridge between C-1 and C-30. Moreover, a biosynthetic relationship between 489 and mombasol (471) was proposed.²⁸² MacLachlan et al. revised the seven membered 3(4)-lactone ring in rohitukas 1, 2 (490, 491)⁴⁸⁴ and D-5 (493)⁴⁸⁹ as five membered 7(4)-lactone rings and expressed doubt as to whether they were true natural products.⁴⁹⁰

Figure 8. Other structures of rings intact limonoids 230-248.

Figure 9. Structures of ring A-seco limonoids 249-265.

2.2.2.1.2. Others. All of 494–497 contain 3-oxo- $\Delta^{1,2}$ system and 3(4)-lactone groups, with toonaciliatin E and H (494 and 495) having an 8α ,14 α -epoxide, while toonaciliatin I (496) and surenolactone (497) have a 14 β ,15 β -epoxide bridge. The co-occurrence of 494–496 in *Toona ciliata* suggested that 494 and 495 might derive from 496 through an acid-catalyzed intramolecular rearrangement followed by an oxidation and acetylation of 495 to produce 494.²⁹⁰ Zhang et al. demonstrated that the ¹³C NMR data previously reported for rohituka 3 (507)¹⁹² agreed instead with the structure for rohituka 15 (516).⁴⁸⁵ For rohituka 14 (510) a complete reassignment of the previously reported assignment²⁷⁵ of the ester carbons (C-1', C-3) and quaternary carbons (C-10, C-14) was presented.⁴⁸⁵ Limonoids **514**–**517** are characterized by the 1 α ,14 β -ether linkage, $\Delta^{8,30}$ system and 15-oxo groups. Although previously reported differently,⁵⁰³ the C-1 substituent in polystachin (**517**) has been reassigned as α .²⁷⁵ Rubrins A-G (**518**–**524**), isolated from *Trichilia rubra* in 1994, possessed the C-3/29 cyclic hemi *ortho* ester structure, which alleviated the steric congestion of groups in the vicinity of the C-9, C-10 bond and thus eliminated the broadening of their ¹H NMR peaks.⁵⁰⁴ Among them, the structures of rubrins C and E (**520** and **522**) were identical to

Table 7. Structures and Sources of Ring A-seco Limonoids 249–265

no.	compounds	substitution groups and others	sources
249	evodulone	$R_1 = H, R_2 = OAc; R_3 = O$	Carapa procera; ²⁷⁷ C. grandiflora ²⁷⁶
250	surenin	$R_1 = R_2 = OAc, R_3 = H$	Toona sureni ²⁷⁸
251	surenone	$R_1 = OH; R_2 = O, R_3 = H$	T. sureni ²⁷⁸
252	carapolide H		Carapa grandiflora ²⁷⁶
253	amotsangin G		Amoora tsangii ²⁷⁹
254	proceranone		Carapa procera ²⁸⁰
255	rubralin C	$R_1 = H$; $R_2 = Tig$, $R_3 = OAc$	Trichilia rubra ²⁸¹
256	dregeana 3	$R_1 = H$; $R_2 = Ac$, $R_3 = O$ -(2-acetoxy-3-methylpentanoxy)	T. dregeana ²⁷⁴
257	carapolide I (kihadalactone A)	$R_1 = R_3 = H; R_2 = Ac$	Carapa grandiflora; ²⁷⁶ Aphanamixis ploystacha ²⁷⁵
258	delevoyin B	$R_1 = OAc; R_2 = Ac; R_3 = H$	Entandrophragma delevoyi ⁷⁵
259	quivisianthone	$R_1 = OH; R_2 = Ang; R_3 = H$	Quivisia papinae ⁹⁹
260	dregeana 5	$R_1 = iVal(OH); R_2 = 2$ -acetoxypivaloyl	Trichilia dregeana ²⁷⁴
261	dregeana 4	$R_1 = iBu(OH); R_2 = \beta$ -O-(2-acetoxypivaloyl); $R_3 = H$	T. dregeana; ²⁷⁴ T. emetica ¹⁹²
262	rubralin A	$R_1 = R_3 = 2$ -hydroxy-3-methylpentanoyl; $R_2 = \alpha$ -OAc	T. rubra ²⁸¹
263	rubralin B	$R_1 = iVal(OH); R_2 = \alpha$ -OAc; $R_3 = 2$ -hydroxy-3-methylpentanoyl	T. rubra ²⁸¹
264	rubralin D	$R_1 = iVal(OH); R_2 = \alpha$ -OAc; $R_3 = 2,3$ -dihydroxy-3-methylvaleroyl	Cipadessa baccifera ²⁸²
265	nymania 2		Nymania capensis ²⁸³

Table 8. Structures and Sources of Ring B-seco Limonoids 266-291

no.	compounds	substitution groups and others	sources
266	turraflorin A	R = Ac	Turraea floribunda ^{284,285}
267	turraflorin B	R = H	T. floribunda ^{284,285}
268	toonacilin	$R_1 = H; R_2 = \alpha$ -OAc; $R_3 = OAc$	Toona ciliata ^{140,161,286,288,289}
269	6-acetoxytoonacilin	$R_1 = R_3 = OAc; R_2 = \alpha - OAc$	T. ciliata ^{286,288,289}
270	12-deacetoxytoonacilin	$R_1 = R_3 = H; R_2 = \alpha$ -OAc	T. ciliata ¹⁴⁰
271	11-epi-toonacilin	$R_1 = H; R_2 = \beta$ -OAc; $R_3 = OAc$	Turraea floribunda ¹⁴³
272	turraflorin D	$R_1 = Ac; R_2 = O; R_3 = OH$	T. floribunda ²⁸⁵
273	turraflorin E	$R_1 = Ac; R_2 = OH; R_3 = O$	<i>T. floribunda</i> ; ²⁸⁵ <i>T. pubescens</i> ¹²⁶
274	turraflorin F	$R_1 = R_3 = H; R_2 = O$	T. floribunda ²⁸⁵
275	turrapubesin D	$R_1 = \beta$ -OAc; $R_2 = COCH_2Ph$; $R_3 = O$; $R_4 = OH$	T. pubescens ¹²⁶
276	turrapubesin E	$R_1 = \beta$ -OAc; $R_2 = COCH_2Ph$; $R_3 = OH$; $R_4 = O$	T. pubescens ¹²⁶
277	turrapubesin F	$R_1 = \beta$ -OAc; $R_2 = iBu$; $R_3 = OH$; $R_4 = O$	T. pubescens ¹²⁶
278	turrapubesin G	$R_1 = \beta$ -OAc; $R_2 = Piv$; $R_3 = OH$; $R_4 = O$	T. pubescens ¹²⁶
279	21-(R,S)-hydroxytoonacilide	$R_1 = \alpha$ -OAc; $R_2 = Ac$; $R_3 = OH$; $R_4 = O$	Toona ciliata ^{288,289}
280	23-(R,S)-hydroxytoonacilide	$R_1 = \alpha$ -OAc; $R_2 = Ac$; $R_3 = O$; $R_4 = OH$	<i>T. ciliata</i> ^{154,288,289}
281	11-epi-21-hydroxytoonacilide	$R_1 = \beta$ -OAc; $R_2 = Ac$; $R_3 = OH$; $R_4 = O$	Turraea parvifolia ¹²⁵
282	11-epi-23-hydroxytoonacilide	$R_1 = \beta$ -OAc; $R_2 = Ac$; $R_3 = O$; $R_4 = OH$	T. parvifolia ¹²⁵
283	turraflorin C	$R_1 = Ac; R_2 = OAc$	T. floribunda ²⁸⁴
284	turraflorin H	$R_1 = R_2 = H$	T. floribunda ²⁸⁵
285	turraflorin I		T. floribunda ²⁸⁵
286	turraflorin G		T. floribunda ²⁸⁵
287	toonaciliatin B		Toona ciliata ²⁹⁰
288	toonaciliatin C		<i>T. ciliata</i> ^{290,291}
289	toonafolin		T. ciliata ²⁹²
290	turrapubesin A		Turraea pubescens ²⁸⁷
291	turrapubesin C		T. pubescens ¹²⁶

those of hispidin A isolated from *T. hispida* in 1981⁵⁰¹ and nymania 1 isolated from *T. emetica* in 1998,¹⁹² respectively. Unlike the rohitukas 6, 3, 5, 13, 14 (**505**, **507**–**510**), **511**, dysoxylumolide A (**512**), and dysoxylumic acid (**506**), toonaciliatin D (**513**) was deduced on the basis of its NOESY spectrum to have 1 β -substituent.²⁹⁰

2.2.2.2. Rings A,D-seco Group. Rings A,D-seco limonoids found in Meliaceae, most of which belong to the obacunol-class, were found only in the *Toona*, *Cedrela*, and *Dysoxylum* genera (Table 18). Except for dysoxylumolide C (**554**) and odoralide (**555**), they were characterized by a 3(4)-lactone with an epoxidized δ -lactonic D ring.⁵¹⁰ The biosynthesis of the

Figure 10. Structures of ring B-seco limonoids 266-291.

limonoids with an epoxy-lactone ring D proceeded through a 14,15-unsaturated meliacane, which was successively oxidized to a 14(15)-en-16-one, to a 14,15-epoxy-16-one, and finally to the lactone.⁷⁷ The structures of the three limonoids 11-oxo-7 α obacunol (532), 11-oxo-7 α -obacunyl acetate (533), and 11oxocneorin G (548), all of which contain the rare 11-ketone functionality, were confirmed by X-ray analysis.⁵¹¹ Of the seven kihadanin A and B derivatives obtained from Trichilia elegans ssp. elegans, the structure of 7-deoxo-7 α -acetoxykihadanin A (539) was confirmed by X-ray crystallographic analysis.⁵¹² 7-Deoxo-7*a*hydroxykihadanin A (538) and 7-deoxo-7 β -hydroxykihadanins A and B (540 and 544) were isolated after acetylation procedures as their mono- and/or diacetate derivatives.⁵¹² Moreover, limonoids 540 and 544, together with 7-deoxo-7 β -acetoxykihadanins A and B (541 and 545), were the first reported natural occurrence of C-7 β -substituted limonoids without any oxygenated function at C-6.⁵¹² Ng et al. reported the crystal structure of 7α -acetoxydihydronomilin $(546)^{513}$ and subsequently pointed out that it originated from Xylocarpus granatum rather than Uncaria gambier.⁵

2.2.2.3. Rings B,D-seco Group. 2.2.2.3.1. Andirobin-Class. Andirobin-class limonoids are characterized as the cleavages of C-7/8 and C-16/17 and the formation of $\Delta^{8,30}$ exocyclic double bond and δ -lactonic D ring. The chemical correlations of gedunin (416) with 556 and with methyl angolensate (568) supported the structures previously proposed for 556 and 568.⁵²³ Methyl angolensate (568) was distributed widely, especially in the genus *Khaya* (Table 19). Its structure was proposed on the basis of chemical and spectroscopic evidence^{524–526} and confirmed by X-ray crystallographic analysis.⁵²⁷ The partial synthesis of 568 from 7-deacetoxy-7-oxokhivorin (441) has proved that the configuration of the etheroxygen attached to C-1 was α .^{528,529} Compound 568 might arise by a Bayer–Villiger type peroxide oxidation of a 7-oxo compound or an earlier intermediate in the biosynthesis.⁵³⁰ The unusual chemical shift of the acetate methyl group ($\delta_{\rm H}$ 1.55) in methyl 6,12 α -diacetoxyangolensate (571) was caused by the shielding effect of the furan ring.⁵³¹ Both sandoricin (573) and its 6-hydroxy derivative 574 were determined by NMR, mass spectra, and X-ray analysis.⁵³² It is worth noting that the two compounds 578⁵³ and 1038⁵⁴ were reported separately by two research groups in 2007, and both compounds were named as cipadesin D, but different skeletons were ascribed to them.

2.2.2.3.2. Others. Secomahoganin (596), in which ring C had a skew-boat conformation, was formed by oxidative cleavage of the C-6/7 bond in the normal tetranortriterpene nucleus and was an interesting compound from a biosynthetic viewpoint.⁷¹ Cedrelanolide I (599), for which the structure was established by spectroscopic methods and X-ray diffraction analysis, might be biosynthetically derived from a methyl angolensate type of precursor.⁵⁷⁰ However, Cespedes et al. cited it as cedrelanolide.⁵⁷¹ The structure of swiemahogin A (600), confirmed by single-crystal X-ray diffraction, incorporated a rare fivemembered γ -lactone fused to the C-ring at C-8 and C-14, where the six-membered δ -lactone in the D-ring was destroyed.⁵⁷²

2.2.3. Demolition of Three Rings (Rings A,B,D-seco Group). Methyl ivorensate (601), the first A,B,D-seco limonoid obtained from plants of family Meliaceae, was structurally related to methyl angolensate (568) since treatment of 568 with perbenzoic acid produced a moderate yield of the corresponding lactone 601.⁵⁷⁶ A detailed analysis of the NMR data of 601 was presented but some assignments were interchanged.⁴⁴⁶

2.3. Rearranged Limonoids

2.3.1. 1,*n*-Linkage Group. It is interesting that the carapolide-class compounds 607–613 were found only in genus

Table 9. Structures and Sources of Azadirachtin/Meliacarpin Limonoids 292-315

no.	compounds	substitution groups and others	sources
292	azadirachtin (azadirachtin A)	$R_1 = Tig; R_2 = Ac; R_3 = OH$	Melia azedarach; ³¹⁴ Azadirachta indica; ^{51,293,295,300,315–321} A. excelsa ³²²
293	3-deacetyl-11-desoxyazadirachtin	$R_1 = Tig; R_2 = R_3 = H$	A. indica ²⁵⁷
294	3-deacetyl-3-cinnamoylazadirachtin	$R_1 = Tig; R_2 = Cin; R_3 = OH$	A. indica ³⁰⁰
295	azadirachtol	$R_1 = R_2 = R_3 = H$	A. indica; ³²³ A. excelsa ³²⁴
296	3-tigloylazadirachtol (azadirachtin B, deacetylazadirachtinol)	$R_1 = R_3 = H; R_2 = Tig$	A. indica; ^{70,300,309,316,317,319,325,326} A. excelsa ³²⁴
297	1-tigloyl-3-acetylazadirachtol	$R_1 = Tig; R_2 = Ac; R_3 = H$	A. excelsa; ³²² A. siamensis ³²⁷
298	3α -acetoxy- 1α -hydroxyazadirachtol	$R_1 = R_3 = H; R_2 = Ac$	A. indica ³²⁸
299	azadirachtin E	$R_1 = H; R_2 = Ac; R_3 = OH$	A. indica ³⁵
300	azadirachtin F (11-hydroxyazadirachtin B)	$R_1 = H; R_2 = Tig; R_3 = OH$	A. indica ^{130,310}
301	azadirachtin O	$R_1 = iVal; R_2 = Ac; R_3 = H$	A. excelsa ³²⁴
302	azadirachtin Q	$R_1 = R_2 = Ac; R_3 = H$	A. excelsa ³²⁴
303	22,23-dihydro-23 β -methoxyazadirachtin (vepaol)	$R = \beta$ -OCH ₃	A. indica ^{70,298,300,325}
304	isovepaol(23-epi-vepaol)	$R = \alpha$ -OCH ₃	A. indica ^{70,325}
305	azadirachtin G		A. indica ³⁵
306	13,14-desepoxyazadirachtin A		A. indica ³²⁹
307	azadirachtin K		A. indica ¹⁰²
308	1-cinnamoylmelianolone		Melia azedarach ^{330–332}
309	azadirachtin D (1-tigloyl-3-acetyl-11-hydroxy-4 β -methylmeliacarpin)	$R_1 = OH; R_2 = COOCH_3$	Azadirachta indica ^{311,317,319,333,334}
310	11 <i>-epi</i> -azadirachtin D	$R_1 = COOCH_3; R_2 = OH$	A. indica ^{70,335}
311	1,3,-diacetyl-11,19-deoxa-11-oxomeliacarpin		A. indica ³¹³
312	1-cinnamoyl-3,11-dihydroxymeliacarpin	R = H	Melia azedarach ^{331,336,337}
313	1,3-dicinnamoyl-11-hydroxymeliacarpin	R = Cin	M. azedarach ³³⁸
314	1-cinnamoyl-3-acetyl-11-hydroxymeliacarpin	R = Ac	M. azedarach ³³⁸
315	1-cinnamoyl-3-methacrylyl-11-hydroxymeliacarpin	R = methacrylyl	M. azedarach ³³⁸

Figure 11. Structures of azadirachtin/meliacarpin-class limonoids 292-315.

carapa, the dukunolide-class limonoids 614-620 originated in genus Lansium, the neotecleanin-class compounds 621-625

came from genus *Turraea* (Table 22). A possible biosynthetic pathway leading to the carapolides from carapolide G (613) as

Tabl	e 10.	Structures and	Sources	of Azad	liracthin	nin/Me	eliacarpinin	Limonoid	s 316	6-331
------	-------	----------------	---------	---------	-----------	--------	--------------	----------	-------	-------

no.	compounds	substitution groups and others	sources
316	3-tigloylazadiracthinin	$R_1 = R_3 = H; R_2 = Tig$	Azadirachta indica ³²⁵
317	1-tigloyl-3-acetylazadirachtinin	$R_1 = Tig; R_2 = Ac; R_3 = H$	A. indica ^{130,325}
318	1-tigloyl-3-acetyl-11-methoxyazadirachtinin	$R_1 = Tig; R_2 = Ac; R_3 = CH_3$	A. indica ^{70,300}
319	azadirachtin N		A. indica ³⁴³
320	3,20-diacetyl-11-methoxymeliacarpinin	$R_1 = H; R_2 = R_3 = Ac$	Melia azedarach ³⁴⁴
321	1-tigloyl-3,20-diacetyl-11-methoxymeliacarpinin	$R_1 = OTig; R_2 = R_3 = Ac$	<i>M. azedarach</i> ; ³⁴⁵ <i>M. toosendan</i> ¹³³
322	3-tigloyl-1,20-diacetyl-11-methoxymeliacarpinin	$R_1 = OAc; R_2 = Tig; R_3 = Ac$	<i>M. azedarach</i> ; ³⁴⁵ <i>M. toosendan</i> ¹³³
323	1-cinnamoyl-3-hydroxy-11-methoxymeliacarpinin	$R_1 = OCin; R_2 = R_3 = H$	M. azedarach ³⁴⁵
324	1-deoxy-3-methacrylyl-11-methoxymeliacarpinin	$R_1 = R_3 = H$; $R_2 = methacrylyl$	M. azedarach ³⁴⁵
325	1-(2-methylpropanoyl)-3-acetyl-11-methoxymeliacarpinin	$R_1 = OiBu; R_2 = Ac; R_3 = H$	M. azedarach ³⁴⁶
326	1-methacrylyl-3-acetyl-11-methoxymeliacrpinin	R_1 = methacrylate; R_2 = Ac; R_3 = H	M. azedarach ³⁴⁶
327	1-cinnamoyl-3-acetyl-11-methoxymeliacarpinin (meliacarpinin A)	$R_1 = OCin; R_2 = Ac; R_3 = H$	<i>M. azedarach</i> ; ^{206,209,339,345} <i>M. toosendan</i> ^{85,133,214}
328	1-deoxy-3-tigloyl-11-methoxymeliacarpinin (meliacarpinin B)	$R_1 = R_3 = H; R_2 = Tig$	<i>M. azedarach</i> ^{209,219,340,341}
329	1-acetyl-3-tigloyl-11-methoxymeliacarpinin (meliacarpinin C)	$R_1 = OAc; R_2 = Tig; R_3 = H$	<i>M. azedarach</i> ; ^{205,219,341} <i>M. toosendan</i> ^{85,214}
330	1-tigloyl-3-acetyl-11-methoxymeliacarpinin (meliacarpinin D)	$R_1 = OTig; R_2 = Ac; R_3 = H$	<i>M. azedarach</i> ; ^{205,219,341,346} <i>M. toosendan</i> ^{85,214}
331	3-tigloyl-11-methoxymeliacarpinin (meliacarpinin E)	$R_1 = OH; R_2 = Tig; R_3 = H$	M. azedarach ^{206,342}
	H₃COOC	соосн ₃ н	COOC OCH₂

Figure 12. Structures of azadirachtinin/meliacarpinin-class limonoids 316-331

the progenitor was proposed.²⁷⁶ The structures of dukunolides A-C (**614**–**616**) including their absolute configurations were established by X-ray analysis and chemical correlation.⁵⁷⁷ The biosynthesis of **614** was recognized by considering the intermediary mexicanolide or its analogs.⁵⁷⁸ Neotecleanins **621**–**625**, the first natural occurrence of limonoids with a five-membered-ring A-seco structure, might serve as intermediates in the pathway to the formation of tecleanin and related compounds.⁵⁷⁹

2.3.2. 2,30-linkage Group. 2.3.2.1. Mexicanolide-Class. Mexicanolide (626), first isolated as the main constituent of Carapa procera,¹⁶⁷ was proved to be the "substance B" from Cedrela odorata by analysis of its spectral data.^{459,585} Its structure, including the absolute configuration, was assigned on the basis of its NMR spectral data,⁵⁸⁶ chemical reaction,⁵⁸⁷ and CD data,⁵⁸⁸ and was confirmed by its crystallographic analysis.⁵⁸⁹ The structure of 632 was assigned as 6-deoxyswietenolide early in 1968, ⁵³³ but Sondengam et al. named it as proceranolide when they isolated it in 1980.⁵⁹⁰ As for 2'*R*- and 2'*S*-methylbutanoylproceranolide (633 and 634), the considerable steric interaction between the 2-methylbutanoyl group and the limonoid core made one stable conformation dominant in solution. Furthermore, a general rule for the determination of the absolute configurations of 2R- and 2S-methylbutanoyl at C-3 of a limonoid in a mixture was proposed based on the ¹H NMR conformational analysis.⁵⁹¹ The structure of swietenolide (638) was elucidated on the basis of evidence from chemical properties 592-594 and spectroscopic data.⁵⁹⁴ The crystal structure analysis of diacetylswietenolide (647) was provided by Goh et al.⁵⁹⁵ One of the double bond of fissinolide (648) was first assigned as

C-8/14 in 1966⁵⁹⁶ and then was revised to be angustinolide, in which the double bond was assigned as C-8/9, 597,598 to better fit its origin, but finally the original structure based on the spectro-scopic and chemical properties was preferred. 599,600 Subsequently, the ¹³C NMR signals of fissinolide were reassigned in 1998,⁶⁰¹ and the structures of the "grandifoliolin" isolated in 1967⁶⁰² and the " 3β -acetoxymexicanolide" obtained in 1999 were shown to be 648.⁶⁰³ Gan et al. mistakenly cited khayasin (652) as 3β -isobutyryloxymexicanolide.⁵⁹¹ In terms of biosynthetic pathway, xyloccensin N (669) was a possible intermediate on the route to xyloccensin M(771), and they were once isolated from the same plant simultaneously as a pair of isomers of mexicanolides.^{604,605} The structure of swietenine (**677**) was elucidated on the basis of chemical^{606,607} and spectroscopic evidence, 608,609 and confirmed by X-ray analysis of the *p*-iodo-benzoate of detigloylswietenine 610,611 and swietenine itself. 612 The structure of the 3β -hydroxymexicanolide ($\Delta^{8,30}$ instead of $\Delta^{8,14}$) reported by Govindachari et al. in 1997⁴⁶⁸ was in fact identical with 6-deoxydestigloylsweietenine (684), which was reported in 1967.⁴⁶⁴ 2-Hydroxy-6-deoxyswietenine (**690**) was obtained early in 1988,⁶¹³ and was mistakenly reported as methyl 3β -tigloyloxy-2-hydroxy-1-oxo-meliac-8(30)-enate ten years later.^{δ_{14}} The structure of febrigugin (694), first obtained from *Soymida febrifuga*⁶¹⁵ and identical with 6-deoxyswietenine from *Swietenia mahagoni*,⁶¹⁶ was incorrectly assigned,²⁹⁰ and its spectroscopic data were revised.⁶¹⁷ The absolute configurations of 694 and cipadesin (703) were determined by spectroscopic and X-ray methods.⁶¹⁸ The mixture of methyl 2-hydroxy- 3β -isobutyroxymeliac-8(30)-enate (699) and its 3β -tiglate derivative,

Table 11. Structures and Sources of Salannin-Class Limonoids 332-352

no.	compounds	substitution groups and others	sources
332	salannin	$R_1 = Tig; R_2 = OAc; R_3 = CH_3$	Azadirachta indica; ^{102,104,106,107,295,316,317,357} Melia dubia; ³⁵⁸ M. azedarach; ^{142,176,219,342,359–361} M. volkensii; ³⁶² M. toosendan ^{84,239,363}
333	3-deacetylsalannin	$R_1 = Tig; R_2 = OH; R_3 = CH_3$	<i>M. azedarach;</i> ^{342,361,364} <i>Azadirachta indica</i> ^{103,104,245,316,317}
334	1-detigloyl-1-isobutylsalannin	$R_1 = iBu; R_2 = OAc; R_3 = CH_3$	Melia volkensii ³⁶⁵
335	2′,3′-dihydrosalannin	$R_1 = dihydrotigloyl; R_2 = OAc; R_3 = CH_3$	M. volkensii ³⁶⁵
336	salannol	$R_1 = iVal; R_2 = OH; R_3 = CH_3$	Azadirachta indica ^{245,366}
337	salannol acetate	$R_1 = iVal; R_2 = OAc; R_3 = CH_3$	A. indica ^{366,367}
338	2′,3′-dehydrosalannol	$R_1 = Sen; R_2 = OH; R_3 = CH_3$	A. indica ³⁶⁸
339	3-deoxymethylnimbidate	$R_1 = R_2 = H; R_3 = CH_3$	A. excelsa ³⁶⁹
340	ohchinin	$R_1 = Cin; R_2 = OH; R_3 = CH_3$	Melia azedarach ³⁷⁰
341	ohchinin acetate (ohchinin-3-acetate)	$R_1 = Cin; R_2 = OAc; R_3 = CH_3$	M. azedarach; ³⁶⁴ M. volkensii ²⁴⁶
342	nimbidic acid	$R_1 = R_3 = H; R_2 = OH$	Azadirachta indica ^{249,250}
343	ohchinal	R = Bz	Melia azedarach ³⁶⁴
344	1-O-tigloyl-1-O-debenzoylohchinal	R = Tig	M. toosendan ^{235,371}
345	nimbolide	$\mathbf{R} = \mathbf{O}; \ \Delta^{2,3}$	Azadirachta indica; ^{102,355,372–376} A. excelsa ³⁶⁹
346	28-deoxonimbolide	$R = H; \Delta^{2,3}$	A. indica; ^{373,374,377} A. excelsa; ³⁶⁹ Owenia cepiodora ³⁷⁸
347	2,3-dihydronimbolide	$\mathbf{R} = \mathbf{O}$	Azadirachta excelsa ³⁶⁹
348	salannolide (compositolide, isosalanninolide)	$R_1 = OTig; R_2 = OAc; R_3 = O; R_4 = OH$	A. indica; ^{317,325,356} Melia dubia ²⁵³
349	salanninolide	$R_1 = OTig; R_2 = OAc; R_3 = OH; R_4 = O$	Azadirachta indica ^{317,318}
350	isoazadirolide	$R_1 = OSen; R_2 = R_3 = OH; R_4 = O$	A. indica ³⁷⁹
351	margosinolide	$R_1 = H; R_2 = R_3 = O; R_4 = OH; \Delta^{1,2}$	A. indica ³⁸⁰
352	isomargosinolide	$R_1 = H; R_2 = R_4 = O; R_3 = OH; \Delta^{1,2}$	A. indica ³⁸⁰

Figure 13. Structures of salannin-class limonoids 332-352.

which showed a mass peak at 556 with a less intense companion at 568, was very difficult to separate.⁶¹⁹ The $\Delta^{8,9}$ double bond in angustidienolide⁵⁹⁷ was revised to be $\Delta^{8,30}$ on the basis of chemical and spectroscopic evidence,^{162,600} and then 2α -hydroxyangustidienolide was correspondingly shown as 722. Unfortunately, methyl 3β -acetoxy-6-hydroxy-1-oxomeliac-14-enoate (743) reported in 1998⁶⁰¹ was wrongly cited as 3β -acetoxy-3deoxo-6R-hydroxycarapin by Tchimene et al. in 2005.⁵⁵² The structures of utilins B (749) and C (755) from the barks of Entandrophragma utile, were assigned on the basis of extensive NMR experiments and then confirmed by single crystal X-ray measurements.^{620,621} The discovery of khayalenoids A-D (751-754) provided examples of limonoids containing the 8-oxa-tricyclo[4.3.2.0^{2,7}]undecane motif.^{622,623} The mixture having xyloccensins X (758) and Y (759) with interchangeable substitutions of isobutyl and isopropyl group between the C-3 and C-30 positions was unequivocally assigned through the HMBC spectrum.⁶²⁴ The spectroscopic properties of xyloccensin F (768) assigned by Connolly et al.⁶²⁵ were revised on the basis of extensive NMR analysis.⁶²⁶ Although the structure of

xyloccensin K (788) was elucidated by X-ray crystallography, its NMR data corroborated and later clarified its structure as featuring a tetrahydrofuran subunit with oxygen bridging from C-3 to C-8. ^{113,627,628} Unfortunately, the structure of **793** was first named as humilinolide A in 1993⁶²⁹ and was mistakenly documented as methyl 3β -isobutyryloxy-2,6-dihydroxy- 8α ,30 α -epoxy-1-oxo-meliacate by Kojima et al. in 1998,⁶¹⁴ however, methyl 3β -tigloyloxy-2-hydroxy- 8α , 30α -epoxy-1-oxo-meliacate (797) reported by him in 1998⁶¹⁴ was renamed as 2-hydroxyswietemahonolide in 2004 by another research group.⁶³⁰ In addition, the same incidents occurred to **805**, which was first named as 8,30-epoxy swietenine acetate in 1983⁵⁵ and subsequently reported mistakenly as swietemahonin F in 1990 by Kadota et al.⁵⁶ It was noteworthy to point out that two compounds, 815^{617} and 1051,⁶³¹ were isolated in 2005 by two research groups independently, and they were both named as cipadesin A though different skeletons were ascribed to them. Granaxylocarpin B and xylocarpin H, both of which were isolated from Xylocarpus granatum by two research groups in 2007, had the same structure as 822.^{632,633} Xylocarponoid A (825),

Tabl	e 12.	Structures and	18	Sources of	N	imbo	linin-	C	lass	Limonoi	ds	353-	-390)
------	-------	----------------	----	------------	---	------	--------	---	------	---------	----	------	------	---

no.	compounds	substitution groups and others	sources
353	1α-tigloyloxy-3α-acetoxyl-7α-hydroxyl-12α- ethoxyl nimbolinin	$R_1 = Tig; R_2 = H; R_3 = OCH_2CH_3$	Melia toosedan ³⁸¹
354	1α -benzoyloxy- 3α -acetoxyl- 7α -hydroxyl- 12α - ethoxyl nimbolinin	$R_1 = Bz; R_2 = H; R_3 = OCH_2CH_3$	M. toosedan ³⁸¹
355	nimbolinin A	$R_1 = Ac; R_2 = Bz; R_3 = OH$	M. toosendan ^{85,212}
356	1-deacetylnimbolinin A	$R_1 = H; R_2 = Bz; R_3 = OH$	M. azedarach; ³⁸² M. toosendan ^{85,247}
357	12-ethoxynimbolinin A	$R_1 = 2'$ -methylacryl; $R_2 = H$; $R_3 = OCH_2CH_3$	M. toosendan ¹⁸⁶
358	nimbolinin B	$R_1 = Ac; R_2 = Tig; R_3 = OH$	M. toosendan; ^{212,247} M. azedarach; ^{342,360,361,382} Turraea robusta ⁸⁷
359	1-deacetylnimbolinin B	$R_1 = H; R_2 = Tig; R_3 = OH$	Melia toosendan ^{85,247}
360	12-O-methylnimbolinin B	$R_1 = H; R_2 = Tig; R_3 = OCH_3$	M. toosendan; ¹⁸⁶ Turraea holstii ¹⁴³
361	12-ethoxynimbolinin B	$R_1 = Cin; R_2 = H; R_3 = OCH_2CH_3$	Melia toosendan ¹⁸⁶
362	12-O-ethyl-1-deacetylnimbolinin B	$R_1 = H; R_2 = Tig; R_3 = OCH_2CH_3$	M. toosendan ³⁷¹
363	nimbolinin C	$R_1 = Cin; R_2 = H; R_3 = OCH_3$	M. toosendan ²¹²
364	nimbolinin D	$R_1 = H; R_2 = Bz; R_3 = OCH_3$	M. toosendan ²¹²
365	nimbolicin	R_1 = methylacryl; R_2 = Cin; R_3 = OH	Azadirachta indica ³⁸³
366	nimbolin B	$R_1 = Ac; R_2 = Cin; R_3 = OH$	A. indica; ^{240,383} Melia azedarach; ²⁴⁰ M. volkensii ³⁸⁴
367	nimbilin	$R_1 = Ang; R_2 = Cin; R_3 = OH$	Azadirachta indica ³⁸⁵
368	heudebolin	$R_1 = R_2 = Ac; R_3 = OH$	Trichilia heudelotii ³⁸⁶
369	volkensin	$R_1 = Tig; R_2 = H; R_3 = OH$	Melia volensii ³⁶²
370	12-O-methylvolkensin	$R_1 = Tig; R_2 = H; R_3 = OCH_3$	M. toosendan ²¹¹
371	ohchinolide A	$R_1 = Ac; R_2 = Bz; R_3 = O$	M. azedarach ^{382,387–389}
372	1-O-deacetylohchinolide A	$R_1 = H; R_2 = Bz; R_3 = O$	M. azedarach ³⁸⁷
373	1-O-deacetyl-1-O-tigloylohchinolide A	$R_1 = Tig; R_2 = Bz; R_3 = O$	M. azedarach ³⁸⁷
374	ohchinolide B	$R_1 = Ac; R_2 = Tig; R_3 = O$	M. azedarach; ^{382,387,389} M. toosendan; ⁸⁵ Azadirachta indica ¹⁰²
375	1-O-deacetylohchinolide B	$R_1 = H; R_2 = Tig; R_3 = O$	Melia azedarach ³⁸⁷
376	1-O-deacetyl-1-O-tigloylohchinolide B	$R_1 = R_2 = Tig; R_3 = O$	M. azedarach ³⁸⁷
377	1-O-deacetyl-1-O-benzoylohchinolide B	$R_1 = Bz; R_2 = Tig; R_3 = O$	M. azedarach ³⁸⁷
378	chisonimbolinin A	$R_1 = R_2 = Ac; R_3 = OCH_3$	Chisocheton paniculatus ³⁹⁰
379	chisonimbolinin B	$R_1 = H; R_2 = Ac; R_3 = OCH_3$	C. paniculatus ³⁹⁰
380	chisonimbolinin C	$R_1 = H; R_2 = Tig; R_3 = OCH_3$	C. paniculatus ³⁹⁰
381	chisonimbolinin D	$R_1 = H; R_2 = Ac; R_3 = OH$	C. paniculatus ³⁹⁰
382	chisonimbolinin E	$R_1 = H; R_2 = Ac; R_3 = OCH_2CH_3$	C. paniculatus ³⁹⁰
383	chisonimbolinin F	$\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{H}; \ \mathbf{R}_2 = \mathbf{A}\mathbf{c}$	C. paniculatus ³⁹⁰
384	chisonimbolinin G	$R_1 = R_2 = Ac; R_3 = H$	C. paniculatus ³⁹⁰
385	12-ethoxynimbolinin C		Melia toosendan ¹⁸⁶
386	ohchinolide C	R = iBu	M. toosendan ^{84,85}
387	azecin 2	R = H	M. azedarach ¹⁷³
388	12-ethoxynimbolinin D		M. toosendan ¹⁸⁶
389	melianolide		M. azedarach ³⁶¹
390	17-epi-12-dehydroxyheudebolin		<i>Turreanthus africanus</i> ³⁹¹

containing a C₂₈ limonoid skeleton, may originate from xylogranatin C (**823**) by an aldol condensation followed by intramolecular hemiacetal formation.⁶³⁴ In addition, its ring cleavage isomer (xylocarponoid B) was formed gradually in CDCl₃ during the NMR experiments and finally reached equilibrium at an A: B ratio of 4:1.⁶³⁴ Compound **829**, possessing a highly oxidized heptacyclic A,B,D-seco limonoid with an 8α , 30α -epoxy ring and 1,29-oxygen bridge, was patented as xylolactone⁶³⁵ and then was named xyloccensin L⁶³⁶ in *Tetrahedron Letters* in 2004 by Wu et al. The structure of xylogranatin A (**832**), featuring a 1,9-oxygen bridge, was confimed by X-ray diffraction analysis.⁶³⁷ The hypothetical biosynthetic route and chemical correlations of **832** and xylogranatin D (**833**) were postulated in 2006,⁶³⁷ and **833**, the sole limonoid with a C-9/30 linkage, was apparently considered to be an artifact.⁶³⁸ Unfortunately, the trivial names "xylogranatin A–D" were also proposed for the compounds 737 and 762–764 isolated in 2006.⁶³⁹ Xylogranatins I-Q (**834-842**) all contained a central furan core, and they were derivated from the key biosynthetic intermediates xylogranatins C and R (**823** and **843**).⁶³⁸ The possible biosynthetic pathway of grandifotane A (**845**) was postulated, in which an intermediate was formed from a mexicanolide-type limonoid by an enzymatic Baeyer– Villiger oxidation. Then, the intermediate might undergo serials of reactions to keep the required stereochemistry for **845**.⁶⁴⁰

no.	compounds	substitution groups and others	sources
391	nimbin	$R_1 = COOCH_3; R_2 = Ac$	Azadirachta indica ^{59,70,81,102–106,115,136,317,325,357,405–407}
392	6-deacetylnimbin	$R_1 = COOCH_3; R_2 = H$	A. indica ^{70,81,102–104,106,317,325,407,408}
393	nimbanal	$R_1 = CHO; R_2 = Ac$	A. indica ³⁶⁷
394	6-deacetylnimbanal	$R_1 = CHO; R_2 = H$	A. indica ³⁷⁷
395	nimbinol	$R_1 = CH_2OH; R_2 = Ac$	A. indica ³⁷⁷
396	ohchinolal (salannal)	$R_1 = Tig; R_2 = H$	Melia azedarach ^{342,360,370,387}
397	1-O-detigloyl-1-O-benzoylohchinolal	$R_1 = Bz; R_2 = H$	M. azedarach ³⁸⁷
398	1-O-detigloyl-1-O-cinnamoylohchinolal	$R_1 = Cin; R_2 = H$	M. azedarach ³⁸⁷
399	3-O-acetylohchinolal	$R_1 = Tig; R_2 = Ac$	M. toosendan ^{84,85}
400	desacetylnimbinolide	$R_1 = H; R_2 = O; R_3 = OH$	Azadirachta indica ⁴⁰⁸
401	isonimbinolide	$R_1 = Ac; R_2 = OH; R_3 = O$	A. indica ⁴⁰⁹
402	desacetylisonimbinolide	$R_1 = H; R_2 = OH; R_3 = O$	A. indica ⁴⁰⁸
403	4- <i>epi</i> -nimbin		A. indica ⁴¹⁰
404	7α -hydroxy-15 β -hydroxy-7,15-deoxo nimbin		A. indica ⁴¹¹

2.3.2.2. Phragmalin-Class. 2.3.2.2.1. Phragmalin-ortho Esters. Phragmalin-class limonoids possessed characteristic rings of A and B tricyclo[3.3.1^{2,10}.1^{1,4}]decane or tricyclo[4.2.1^{10,30}.1^{1,4}]-

decane, and most of them also bore an ortho ester group. Up to now, four subtypes of phragmalin orthoesters have been reported, which were classified into 1,8,9- (--910), 8,9,11- (911-916),

Tuble I II beluetuites und bourtes of Timbonum cluss 105 115	Table 1	4.	Structures	and	Sources	of l	Nimbo	olidin	-class	405-	-415
--	---------	----	------------	-----	---------	------	-------	--------	--------	------	------

no.	compounds	substitution groups and others	sources
405	nimbolidin A	$R_1 = R_3 = Ac; R_2 = Bz$	Melia azedarach ³⁸²
406 407	15-O-deacetyi-15-O-methyinimbolidin A nimbolidin B	$R_1 = Ac; R_2 = Bz; R_3 = CH_3$ $R_1 = R_3 = Ac; R_2 = Tig$	M. azedarach ⁻²² M. azedarach; ^{342,361,382} M. toosendan ^{209,363}
408	15-O-deacetylnimbolidin B	$R_1 = Ac; R_2 = Tig; R_3 = H$	M. azedarach ²²⁶
409	15-O-deacetyl-15-O-methylnimbolidin B	$R_1 = Ac; R_2 = Tig; R_3 = CH_3$	<i>M. azedarach</i> ²²⁶
410	nimbolidin C	$\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{A}\mathbf{c}; \ \mathbf{R}_2 = \mathbf{i}\mathbf{B}\mathbf{u}$	M. toosendan ^{85,363}
411	nimbolidin D	$R_1 = R_2 = Tig; R_3 = Ac$	M. toosendan ^{85,363}
412	nimbolidin E	$R_1 = Tig; R_2 = iBu; R_3 = Ac$	M. toosendan ^{85,363}
413	nimbolidin F	$R_1 = Piv; R_2 = Tig; R_3 = Ac$	M. toosendan ^{84,85}
414	walsogyne A		Walsura chrysogyne ⁴¹²
415	7α -acetyl-15 β -methoxy-29- methylene-7,15-deoxonimbolide		Azadirachta indica ⁴¹¹

8,9,14- (917-930), and 8,9,30-phragmalin orthoesters (931-962) according to the position of the ortho-acetate group. The structure of phragmalin (846) was proposed on the basis of chemical and spectroscopic evidence⁶⁸⁹ and then determined by means of an X-ray study of its iodoacetate.⁶⁹⁰ The distribution of phragmalins and mexicanolides in the stem barks, fruits, and seeds of the Chinese mangrove plant Xylocarpus granatum was discussed, and the conclusion was reached that the high concentration of phragmalin orthoesters in the stem barks of Xylocarpus plants might serve as an important chemical defense aginst invasion by pests or microorganisms.⁶³³ A biosynthetic route to 846 which could explain why 1,29-cycloswietenan derivatives were hydroxylated at C-8 and C-9 was presented.⁶⁸³ The structure of 850 was assigned as xyloccensin E early in 1976,⁶²⁵ and was obtained and then reported as phragmalin 2,3,30-triacetate in 1992.¹⁶² The substance 'bussein' obtained from Entandrophraga bussei, 424,530 was shown to be a mixture of busseins A (865) and B (866), whose structures were first assigned on the basis of spectroscopic properties and chemical reactions⁶⁹¹ and then were subsequently modified.^{692,693} The ¹H NMR-based conformational analysis on the epimeric compounds swietenitins A and B (897 and 898) provided a general approach to determining the absolute configuration of the 2,3-epoxy-2-methylbutyryloxy unit borne at C-3 by a large group of the phragmalin-orthoester limnoids.⁴⁵⁶ The structure of pseudrelone B (903) from Pseudocedrela kotschyii⁶⁹⁴ was revised to have C-11/19 instead of C-11/18 ether bridge based on the X-ray analysis of its triacetate.⁶⁹⁵ It was suggested on the basis of a plausible proposed biosynthetic origin that chukvelutilides A-F (904-909), which have a C-16/30 lactone ring, also have a three- or four-carbon enolized acyl substituent at C-15.696 Chuktabrin B (910) had a polycyclic skeleton containing a 4,5,6,7tetrahvdrobenzofuran formed via a cyclization reaction between C-15 and C-21, a δ -lactone furnished between C-16 and C-30, and a biosynthetically extended C2 unit at C-15.⁶⁹⁷ The structure

of utilin (920), possessing the 1,29-cycloswietenan skeleton, was confirmed by X-ray analysis, and its absolute configuration was established by chemical methods.⁶⁹⁸ The structure of xyloccensin O (948), the first example of an 8,9,30-phragmalin orthoester limonoid, was confirmed by X-ray crystallographic analysis, and a biosynthetic pathway to it from mexicanolide was proposed.⁶⁹⁹ The structures of some xyloccensins from *Xylocarpus granatum* were not in accord with the nomenclatures used by different research groups, which led to great confusion. On one hand, the structures of xyloccensins Q (950), R (951), and V (955) obtained by Wu et al.^{639,659,700} were identical to xyloccensins R, Q, and T reported by Cui et al.⁷⁰¹ respectively. On the other hand, both 954^{659,700} and 987⁷⁰¹ were named xyloccensin U.

2.3.2.2.2. Polyoxyphragmalins. Unfortunately, in 2010, two separate groups selected the trivial names moluccensins H-J to apply to six compounds (963-968) with the same skeleton but different substitutions, which caused each trivial name to correspond to two different structures (Figure 27 and Table 25). In fact, the structures of xylocarpins A (981) and D (984) obtained from Xylocarpus granatum and elucidated in 2007,633 were the same as granaxylocarpins E and D, respectively, obtained from the same species in the same year.⁶³² The structure of xyloccensin U, isolated from *X. granatum*,⁷⁰¹ was revised to be **987** by analysis of its HMBC data and analogous comparison.^{632,633} From a biosynthetic perspective, atomasins such as atomasins A and B (974 and 975) from Entandrophragma candollei⁷¹⁹ and 8,9dihydroxy phragmalins, such as tabulalides A and B (995 and 996) from Chukrasia tabularis,⁷⁰⁶ were the precursor of the phragmalin orthoesters. The extensive spectroscopic analyses including MS, NMR, and single crystal X-ray diffraction experiments suggested that methyl 1α -acetoxy-6,8 α ,14 β ,30 β -tetrahydroxy-3-oxo-[3.3.1^{10,2}.1^{1,4}]-tricyclomeliac-7-oate (992)⁷²⁰ and methyl $|\alpha,6,8\alpha,14\beta,30\beta$ -pentahydroxy-3-oxo- $[3.3.1^{10,2}.1^{1,4}]$ -tricyclomeliac-7-oate $(991)^{721}$ were, in fact, khayanolide E (1007)

Table 15. Structures and Sources of Ring D-seco Limonoids $416{-}457$

no.	compounds	substitution groups and others	sources
416	gedunin	R ₁ = R ₃ = H; R ₂ = OAc	Entandrophragma angolense; ⁴²³ E. delevoyi; ^{424,425} Xylocarpus granatum; ^{49,424,426,427} X. obovatus; ⁴²⁸ Azadirachta indica; ^{57–59,70,80–82,103,104,107,115,240,429} Trichilia trifolia; ¹⁸² Cabralea eichleriana; ⁴³⁰ Melia azedarach; ^{240,251} Cedrela fissilis; ^{113,132} C. odorata; ^{98,431,432} C. sinensis; ⁴³³ Guarea grandiflora; ^{434,435} Khaya grandifoliola; ⁴³⁶ Chisocheton paniculatus; ¹¹⁷ Carapa guianensis ^{113,437}
417	6α-hydroxygedunin	$R_1 = \alpha$ -OH; $R_2 = OAc$; $R_3 = H$	C. guianensis ¹³⁷
418	6α-acetoxygedunin	$R_1 = \alpha$ -OAc; $R_2 = OAc; R_3 = H$	C. guianensis; ^{115,13,145,145,1458} Cedrela fissilis; ¹¹⁵ Chisocheton paniculatus; ^{94,117} Swietenia mahagoni; ¹¹² Guarea grandiflora; ⁴³⁴ Aglaia elaeagnoidea ⁴¹⁹
419	6α ,11 β -diacetoxygedunin	$R_1 = \alpha$ -OAc; $R_2 = OAc$; $R_3 = \beta$ -OAc	A. elaeagnoidea; ⁴³⁹ Carapa guianensis; ^{438,440} C. granatum ⁴⁴¹
420	6β -hydroxygedunin	$R_1 = \beta$ -OH; $R_2 = OAc$; $R_3 = H$	Azadirachta indica ⁴⁴²
421	7-deacetylgedunin	$R_1 = R_3 = H; R_2 = OH$	 A. indica;^{57,70,103,104} Cedrela fissilis;¹¹³ C. odorata;⁹⁸ C. sinensis;⁴³³ Pseudocedrela kotschyi;^{443,444} Trichilia trifolia;¹⁸² Swietenia aubrevilleana;⁴⁴⁵ Khaya ivorensis;^{446,447} K. grandifoliola;¹⁶⁴ Cabralea eichleriana;⁴³⁰ Carapa guianensis;⁴³⁷ Xylocarpus granatum⁴⁴⁸
422	7-desacetyl-7-benzoylgedunin	$\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{H}; \ \mathbf{R}_2 = \mathbf{B}\mathbf{z}$	Azadirachta indica ^{68,70}
423	7-deacetoxy-7-oxogedunin	R ₁ = R ₃ = H; R ₂ = O	Carapa guianensis; ^{113,137,437,449,450} Pseudocedrela kotschyii; ^{443,444} Khaya senagalensis; ^{164,451} K. ivorensis; ^{446,447} Melia azedarach; ^{251,452} Trichilia schomburgkii; ⁴⁵³ Guarea grandiflora; ^{434,435} G. guidona; ⁴⁵⁴ Cabralea eichleriana; ⁴³⁰ Xylocarpus granatum; ^{448,455} X. moluccensis; ¹⁶² Swietenia macrophylla; ^{445,456} S. mahagoni; ^{112,457,458} Cedrela fissilis; ^{113,132} C. odorata ^{98,167,459}
424	7-deacetoxy-7 α ,11 β -dihydroxygedunin	$R_1 = H; R_2 = OH; R_3 = \beta - OH$	C. sinensis ⁴³³
425	7-deacetoxy-7 α ,11 α -dihydroxygedunin	$R_1 = H; R_2 = OH; R_3 = \alpha$ -OH	C. sinensis ⁴³³
426	11 α -hydroxygedunin	$R_1 = H; R_2 = OAc; R_3 = \alpha - OH$	C. sinensis ⁴³³
427	11 β -hydroxygedunin	$R_1 = H; R_2 = OAc; R_3 = \beta - OH$	C. sinensis ⁴³³
428	11β -acetoxygedunin	$R_1 = H; R_2 = OAc; R_3 = \beta - OAc$	Carapa guianensis; ⁴⁴⁰ Entandrophragma delevoyi ⁴²⁵
429	11-oxogedunin	$R_1 = H; R_2 = OAc; R_3 = O$	Cedrela sinensis ⁴³³
430	7α-acetoxy-14β,15β-epoxygedunan-1- ene-3-Ο-β-D-glucopyranoside	$R = \beta - D - Glc$	Melia azedarach ⁴⁶⁰
431	azecin 4	$R = \beta$ -D-Ara	M. azedarach ^{1/3}
432	7-deacetoxy-7-hydroxyphotogedunin	R = H	Cabralea eichleriana ⁴³⁰
433	photogedunin	R = Ac	Cedrela fissilis; ¹¹³ C. salvadorensis; ^{413,420} C. dugessi; ⁴¹³ C. odorata; ⁴⁶¹ C. ciliolata; ⁴⁶² Xylocarpus granatum ⁴²⁷
434	khivorin	$R_1 = R_2 = R_3 = OAc; R_4 = H$	Khaya ivorensis; ^{446,463} K. anthotheca; ^{163,183} K. grandifolia; ^{164,167} K. senegalensis; ^{451,464–466} K. nyasica; ¹⁸⁴ Swietenia mahagon ⁴⁵⁸
435	1-deacetylkhivorin	$R_1 = OH; R_2 = R_3 = OAc R_4 = H$	S. mahagoni; ⁴⁵⁸ Khaya grandifoliola ⁴³⁶
436	3-deacetylkhivorin	$R_1 = R_3 = OAc; R_2 = OH; R_4 = H$	K. senegalensis; ^{464–468} K. anthotheca; ^{163,183} K. nyasica; ¹⁸⁴ K. madagascariensis; ^{164,469} K. ivorensis; ⁴⁴⁷ Swietenia mahagont ⁴⁵⁸
437	7-deacetylkhivorin	$R_1 = R_2 = OAc; R_3 = OH; R_4 = H$	S. mahagoni; ⁴⁵⁸ Khaya grandifoliola ⁴³⁶

Table 15. Continued

no.	compounds	substitution groups and others	sources
438	1,3,7-trideacetylkhivorin	$R_1 = R_2 = R_3 = OH; R_4 = H$	K. ivorensis; ⁴⁴⁷ K. senegalensis; ^{470,471} Swietenia mahagont ⁴⁵⁸
439	3-deacetyl-7-oxokhivorin	$R_1 = OAc; R_2 = OH; R_3 = O; R_4 = H$	Khaya senegalensis ^{465,466,468,472}
440	3α , 7α -dideacetylkhivorin	$R_1 = OAc; R_2 = R_3 = OH; R_4 = H$	K. senegalensis; ^{164,422,467,468,470,473}
			K. ivorensis; ⁴⁴⁷
			Swietenia mahagoni ⁴⁵⁸
441	7-deacetoxy-7-oxokhivorin	$R_1 = R_2 = OAc; R_3 = O; R_4 = H$	Khaya senegalensis ^{164,167,451,464,465}
442	11eta-acetoxykhivorin	$R_1 = R_2 = R_3 = R_4 = OAc$	K. madagascariensis; ^{469,474} K. nyasica ^{164,184}
443	dihydrogedunin	$R_1 = R_4 = H; R_2 = O; R_3 = OAc$	Guarea thompsonii ^{167,475}
444	7-oxodeacetoxydihydro- a -gedunol	$R_1 = R_4 = H; R_2 = OH; R_3 = O$	G. thompsonii ⁴⁷⁵
445	1lpha-hydroxy-1,2-dihydrogedunin	$R_1 = OH; R_2 = O; R_3 = OAc; R_4 = H$	Xylocarpus granatum ⁴⁹
446	1lpha-methoxy-1,2-dihydrogedunin	$R_1 = OCH_3; R_2 = O; R_3 = OAc; R_4 = H$	Cedrela odorata ⁹⁸
447	nyasin	$R_1 = R_2 = R_3 = OAc; R_4 = OH$	Khaya nyasica ^{184,476,477}
448	1,2-dihydro-3 β -hydroxy-7-deacetoxy-		Cedrela fissilis; ¹¹³ C. guianesnsis ¹¹³
	7-oxogedunin		
449	azadirinin		Azadirachta indica ⁴⁷⁸
450	3,7-dideacetyl-6 $lpha$ -hydroxykhivorin		Khaya senegalensis ⁴⁶⁶
451	nimolicinol	R = Ac; $\Delta^{1,2}$	Azadirachta indica ^{70,115,479}
452	7-deacetynimolicinol	$R = H; \Delta^{1,2}$	A. indica ¹¹⁵
453	1α , 2α -epoxynimolicinol	R = Ac; 1,2-epoxy	A. indica ¹¹⁵
454	mahmoodin		A. indica ⁸¹
455	piscidofuran		Walsura piscidia ⁸⁸
456	meliacinol		Azadirachta indica ⁹³
457			Melia azedarach ⁴⁸⁰

Figure 17. Structures of ring D-seco limonoids 416-457.

and 1-O-deacetylkhayanolide E (1008) respectively.⁷²² Swiemahogin B (993) was an example of incorporating a rare fivemembered γ -lactone fused to the C-ring at C-8 and C-14 and in which the six-membered δ -lactone in the D-ring was destroyed.⁵⁷² The biosynthesis of trichiliton A (**997**), bearing a bicyclo $[5.2.1^{4,10}]$ decane motif, involved an alternative new route from mexicanolide to phragmalin.⁶⁵¹ Khayalactone (**998**) could arise from a 1,2,3,8-tetrahydroxylated precursor by cleavage of the

Figure 18. Structures of prieurianin-class limonoids 458-493.

1,2-diol followed by formation of the hemiketal by addition of the 8-hydroxyl group to the newly formed 1-carbonyl group. ^{553,680} The absolute configuration of khayanolide A (**1002**) was established by X-ray analysis and a CD study. ^{548,549} In biosynthetic terms, a pinacol—pinacolone rearrangement of a 2,3,30-trihydroxyl-1,29-cyclomeliacate precursor is possible, resulting in a 2-oxo-tricyclo-[4,2,1^{10,30}.1^{1,4}]-decane, and subsequently reduction or addition of an hydroxyl group at C-14 to the ketone and *O*-2-methylation may then led to the limonoids **1013** and **1015**, respectively, ⁷²⁰ which gives a further enlargement of the biosynthetic mexicanolide pathways. ⁷²¹ In addition, a possible biosynthetic pathway leading to the formation of khayanolides from mexicanolide was proposed. ⁵⁴⁹ On the basis the extensive spectroscopic analyses including MS, NMR, and single crystal X-ray diffraction experiments, Zhang et al. proposed that methyl $l\alpha$, 2β , 3α , 6, 8α , 14β -hexahydroxy-[4.2.1^{10,30}.1^{1,4}]-tricyclomeliac-7-oate (**1014**) and methyl $l\alpha$ -acetoxy- 2β , 3α , 6, 8α , 14β -pentahydroxy-[4.2.1^{10,30}.1^{1,4}]-tricyclomeliac-7-oate (**1015**)⁷²¹

were, in fact, khayanolide B (1004) and 1-O-acetylkhayanolide B (1005),⁷²² respectively.

2.3.3. 8,11-Linkage Limonoids (Trijugin-Class). Trijuginclass limonoids with contracted ring C were postulated to be produced biosynthetically *via* a pinacol–pinacolone rearrangement of a methyl 9, 11-dihydroxyangolensate.^{563,565,729} Capensolactones 2 and 3 (**1034** and **1022**) were isolated as a mixture with their ester moieties interchanged at C-2 α and C-3 α .⁷³⁰ Trichilin B (**1043**), featuring a 9,17-oxygen bridge and a highly rearranged ring system, along with the biosynthetically correlated trichilin A (**1036**), was isolated from *Trichilia connaroides*.⁷³¹ Unfortunately, the two trivial names were previously assigned to intact limonoids **137** and **135**, respectively.^{194,732}

2.3.4. 10,11-Linkage Limonoids (Cipadesin-Class). The rings A and C of cipadesin-class limonoids were joined via C-10/11, and among these limonoids the structure of cipadesin C (1044) was confirmed by X-ray crystallographic analysis.⁶³¹ Two compounds found in *Cipadesa cinerascens*, 1039^{54,563} and 1045,⁵³

Table 16. Structures and Sources of Prieurianin-Class Limonoids 458-493

no.	compounds	substitution groups and others	sources
458	prieurianin	R_1 = formacyl; R_2 = 2-hydroxy-3-methylpentanoyl; R_3 = O; R_4 = OAc; R_5 = CH ₃	Trichilia prieuriana; ¹⁶⁸ Guarea guidona; ⁴⁵⁴ Nymania capensis; ²⁸³ Turraea obtusifolia; ¹⁸⁹ Entandrophragma candolei ⁴⁹¹
459	rohituka 4	$R_1 = $ formacyl; $R_2 = iVal$; $R_3 = O$; $R_4 = OAc$; $R_5 = CH_3$	Aphanamixis polystacha ⁴⁸⁴
460	dregeana 2	$R_1 = R_2 = Ac; R_3 = O; R_4 = H; R_5 = CH_3$	Trichilia dregeana ²⁷⁴
461	trichavensin	R ₁ = formacyl; R ₂ = 2-hydroxy-3-methylpentanoyl; R ₃ = OAc; R ₄ = pivalyloxy; R ₅ = CH ₃	T. havanensis ⁴⁹²
462	Tr-A	R ₁ = formacyl; R ₂ = 2-hydroxy-3-methylpentanoyl; R ₃ = OAc; R ₄ = OH; R ₅ = CH ₂ CH ₃	Т. roka ⁴⁹³
463	Tr-C	R ₁ = formacyl; R ₂ = 2-hydroxy-3-methylpentanoyl; R ₃ = OAc; R ₄ = OH; R ₅ = CH ₃	Т. roka ⁴⁹³
464	expoxyprieurianin	R_1 = formacyl; R_2 = 2-hydroxy-3-methylpentanoyl; R_3 = H; R_4 = OAc	Guarea guidona; ⁴⁵⁴ Entandrophragma candolei ⁴⁹⁴
465	dysoxylumin A	$R_1 = formacyl; R_2 = iVal(OH); R_3 = OPiv; R_4 = OAc$	Dysoxylum hainanense ⁴⁸³
466	dysoxylumin B	$R_1 = formacyl; R_2 = iVal(OH); R_3 = iVal(OAc); R_4 = OAc$	D. hainanense ⁴⁸³
467	dysoxylumin C	$R_1 = formacyl; R_2 = iVal(OH); R_3 = OiVal(OH); R_4 = OAc$	D. hainanense; ⁴⁸³ D. lenticellatum ²⁶⁶
468	nymania 4	$R_1 = R_2 = Ac; R_3 = R_4 = H$	Nymania capensis ²⁸³
469	rohituka 8	$R_1 = $ formacyl; $R_2 = iVal$; $R_3 = OH$; $R_4 = OAc$; $R_5 = OAc$	Aphanamixis polystacha ⁴⁸⁴
470	mombasone	R_1 = formacyl; R_2 = 2-oxo-3-methylpentanoyl; R_3R_4 = O; R_5 = OAc	Turraea mombasana ⁴⁹⁵
471	mombasol	R_1 = formacyl; R_2 = 2-hydroxy-3-methylpentanoyl; R_3R_4 = O; R_5 = OAc	T. mombasana; ⁴⁹⁵ Guarea guidona ⁴⁹⁶
472	amotsangin A	$R_1 = Ac; R_2 = Piv; R_3R_4 = O; R_5 = H$	Amoora tsangii ²⁷⁹
473	amotsangin B	$R_1 = Ac; R_2 = iBu; R_3R_4 = O; R_5 = H$	A. tsangii ²⁷⁹
474	amotsangin C	$R_1 = Ac; R_2 = 2$ -hydroxy-3-methylpentanoyl; $R_3R_4 = O; R_5 = H$	A. tsangii ²⁷⁹
475	amotsangin D	$R_1 = Ac; R_2 = propanoyl; R_3R_4 = O; R_5 = H$	A. tsangii ²⁷⁹
476	amotsangin E	$R_1 = Ac; R_2 = Bz; R_3R_4 = O; R_5 = H$	A. tsangii ²⁷⁹
477	amotsangin F	$R_1 = $ formacyl; $R_2 = Bz$; $R_3R_4 = O$; $R_5 = H$	A. tsangii ²⁷⁹
478	nymania 3	$R_1 = R_2 = Ac; R_3R_4 = O; R_5 = H$	Dysoxylum malabaricum; ⁴⁹⁷ Nymania capensis ²⁸³
479	Tr-B	R = 2-hydroxy-3-methylpentanoyl	Trichilia roka; ⁴⁹³ T. emetica; ¹⁹² Apanamixis ploystacha ⁴⁸⁵
480	rohitukin	R = iVal	A. ploystacha; ^{484,487} Turraea obtusifolia ⁴⁹⁸
481	2'-hydroxyrohitukin	R = iVal(OH)	Guarea cedrata ⁴⁹⁹
482	guarea B		G. multiflora; ⁵⁰⁰ G. thompsonii ⁴⁸⁹
483	rohituka 7	$R_1 = 2$ -hydroxy-3-methylpentanoyl; $R_2 = \beta$ -OAc	Aphanamixis polystacha ^{275,484,485}
484	rohituka 9	$R_1 = iVal; R_2 = \beta$ -OAc	A. polystacha ^{275,484}
485	hispidin B	$R_1 = 2$ -hydroxy-3-methylpentanoyl; $R_2 = \alpha$ -OTig	Trichilia hispida ⁵⁰¹
486	hispidin C	$R_1 = 2$ -hydroxy-3-methylpentanoyl; $R_2 = \alpha$ -OAc	T. hispida ⁵⁰¹
487	D-4		T. prieuriana ⁴⁸⁹
488	dregeanin		T. dreageana; ⁴⁸⁷ T. heudelottii ⁷⁷
489	cipadessalide		Cipadessa baccifera ²⁸²
490	rohituka 1	R = iVal	Aphanamixis polystacha ⁴⁸⁴
491	rohituka 2	R = 2-hydroxy-3-methylpentanoyl	A. polystacha ⁴⁸⁴
492	gaudichaudysolin A		Dysoxylum gaudichaudianum ⁵⁰²
493	D-5		Trichilia prieuriana ⁴⁸⁹

had both been given the trivial name cipadesin E. Fang et al. postulated that cipadonoids C–G (**1046**–**1050**) might be biosynthetically derived from the methyl angolensate-class limonoid via a pinacol rearrangement, which was confirmed by a computational study at the DFT level with a B3LYP/6-31G basis set as well as by chemical transformation. In addition, the presence of a $\Delta^{8,30}$ double bond in the methyl angolensate precursor led to trijugin-class limonoids while its absence led to cipadesin-class limonoid.⁵⁴⁴

2.3.5. Other Linkages Group. The structure of walsuronoid A (1054), featuring a 3,4-peroxide bridge A-seco skeleton and a C-3/19 linkage bridge, was confirmed by single-crystal X-ray diffraction.⁷³⁹ The hypothetical biosynthesis route from 11 β -hydroxycedrelone (82) to walsuronoids B (1058) and C (1059), which have the 18 (13 \rightarrow 14) abeo limonoid skeletons, and the chemical correlations between them were proposed.⁷³⁹ The structure of delevoyin C (1060), possessing a cyclobutanyl ring incorporating C-19 and a cycloheptanyl ring C including C-30,

Table 17. Other Structures and Sources of Rings A,B-seco Limonoids 494-524

no.	compounds	substitution groups and others	sources
494	toonaciliatin E	R = OAc	Toona ciliata ²⁹⁰
495	toonaciliatin H	R = H	T. ciliata ²⁹⁰
496	toonaciliatin I		T. ciliata ²⁹⁰
497	surenolactone		T. sureni ⁵⁰⁵
498	munronin A	$R_1 = O; R_2 = OH$	Munronia henryi ⁵⁰⁶
499	munronin B	$R_1 = OH; R_2 = O$	M. henryi ⁵⁰⁶
500	munronin C	$R_1 = O; R_2 = H$	M. henryi ⁵⁰⁶
501	dysoxylumolide B	R = 2-hydroxy-3-methylpentanoyl	Dysoxylum hainanense ⁵⁰⁷
502	dysoxylumic acid D	R = 2-hydroxy-3-methylpentanoyl	D. hainanense ⁵⁰⁷
503	dysoxylumic acid A		D. hainanense ⁵⁰⁷
504	dysoxylumic acid B		D. hainanense ⁵⁰⁷
505	rohituka 6		Aphanamixis polystacha ⁴⁸⁴
506	dysoxylumic acid C		Dysoxylum hainanense ⁵⁰⁷
507	rohituka 3	R_1 = 2-hydroxy-3-methylpentanoyl; R_2 = OH; R_3 = O; R_4 = H	Trichilia emetica; ¹⁹² Aphanamixis polystacha ^{484,485}
508	rohituka 5	R_1 = 2-hydroxy-3-methylpentanoyl; R_2 = OH; R_3 =OAc; R_4 = H	A. polystacha ^{484,485}
509	rohituka 13	$R_1 = iVal; R_2 = OH; R_3 = OAc; R_4 = H$	A. polystacha ²⁷⁵
510	rohituka 14	$R_1 = iVal; R_2 = OH; R_3 = O; R_4 = H$	A. polystacha ^{275,485}
511		$R_1 = $ formacyl; $R_2R_3 = O$; $R_4 = H$	Trichilia prieuriana ⁴⁸⁹
512	dysoxylumolide A	$R_1 = iVal(OH); R_2R_3 = O; R_4 = OiVal(OH)$	Dysoxylum hainanense ⁵⁰⁷
513	toonaciliatin D		Toona ciliata ²⁹⁰
514	dregeana 1	R_1 = formacyl; R_2 = 2-hydroxy-3-methylpentanoyl	Trichilia dregeana; ²⁷⁴ Aphanamixis polystachya ^{485,508}
515	rohituka 12	$R_1 = H; R_2 = iVal$	A. polystacha ²⁷⁵
516	rohituka 15	$R_1 = H$; $R_2 = 2$ -hydroxy-3-methylpentanoyl	A. polystacha ^{485,508}
517	polystachin	$R_1 = $ formacyl; $R_2 = iVal$	A. polystacha ^{275,503}
518	rubrin A	$R_1 = OH; R_2 = OPiv$	Trichilia rubra ⁵⁰⁴
519	rubrin B	$R_1 = OH; R_2 = OiBu$	T. rubra ⁵⁰⁴
520	hispidin A (rubrin C)	$R_1 = OH; R_2 = OTig$	T. hispida; ⁵⁰¹ T. rubra ⁵⁰⁴
521	rubrin D	$R_1 = OH; R_2 = propanoylate$	T. rubra ⁵⁰⁴
522	rubrin E (nymania 1)	$R_1 = OH; R_2 = O$	T. rubra; ⁵⁰⁴ T. emetica; ¹⁹² T. obtusifolia ⁵⁰⁹
523	rubrin F	$R_1 = O; R_2 = OAc$	T. rubra ⁵⁰⁴
524	rubrin G	$R_1 = OH; R_2 = OAc$	T. rubra ⁵⁰⁴

was suggested by the LSD (Logic for Structure Determination) program.⁴²⁵ The absolute configurations of cipadonoid A (**1061**), which featured a tetrahydropyranyl ring B and characterized by a C-30 exomethylene group inserted between C-8 and C-10,⁷⁴⁰ was revised to be 1*S*,3*R*,5*S*,8*S*,10*R*,13*S*,14*R*,17*R*.⁷⁴¹

2.4. Limonoids Derivatives

2.4.1. Pentanortriterpenoids, Hexanortriterpenoids, Heptanortriterpenoids, Octanortriterpenoids, and Enneanortriterpenoids Derivatives. A possible degradation pathway for 2-oxo-deacetyl salannin (1063), the sole C-2 degraded limonoid, was not proposed or hypothesized.⁴¹¹ Azadirachtin L, obtained by Kanokmedhakul et al. in 2005,³²⁴ was in fact reported as marrangin (1067) early in 1993.⁷⁴⁶ The structure of 1068 was assigned as 11α -hydroxy-12-norazadirachtin⁷⁴⁷ in 1994, but Ramji et al. isolated and mistook it as 11-epiazadirachtin H748 in 1996, and Kanokmedhakul et al. isolated and named it as 11α -azadirachtin H in 2005.³²⁴ 11-epiazadirachtin I (1070) was characterized by both NMR and X-ray crystallography techniques.⁷⁴⁹ Chuktabularins A-D (1074, 1096, 1078, and 1089) are four 16-norphragmalin-class limonoids with a biosynthetically extended C2 or C3 unit at C-15 forming a unique 2,7-dioxabicycl[2.2.1]heptane moiety. Moreover, a plausible biosynthetic origin of chuktabularins A-D was also

postulated.⁷⁵⁰ The structure of chuktabrin A (**1097**), featuring motifs of a 1,3-dioxolan-2-one and a 3,4-dihydro-2*H*-pyran formed *via* an ether bond between C-30 and C-1 in the bio-synthetically extended C3 unit at C-15, was confirmed by X-ray diffraction.⁶⁹⁷ The co-occurrence of limonoids and norlimonoids in *Toona ciliata* together with the possible mechanisms of conversion suggested a biosynthetic map that encompassed the pathways for all limonoids started from the common precursor 14,15-deoxyhavanensin.²⁹⁰

In biosynthetic terms, carapolide A (1115) could be derived from a spiro-precursor through pathway involving a retro-prins reaction, cleavage and protonation.⁵⁸¹ A limonoid belonging to the 1,8,9-orthoesters phragmalin-class might biosynthetically undergo insertion of an isobutyryl group from C-30 to C-15 through a Claisen reaction, cleavage of the C-16/17 δ -lactone, and then decarboxylation and de-*ortho*-acetation to form another intermediate, which, after a series of ketal formations and esterifications, gives chukvelutins A–C (1086–1088).⁷⁵¹ Similarly, chuktabularins E–T (1090–1095, 1075, 1079–1085, 1076, 1077) possessed a biosynthetically extended propionyl or acetyl group at C-15 and a characteristic ketal moiety between the limonoid skeleton and the acyl substituent at C-15.⁷⁵² Ceramicine A (1118) could be transformed from limonoids skeleton via oxidation at C-28 and C-29 followed

Figure 19. Other structures of rings A,B-seco limonoids 494-524.

by decarboxylation.⁴¹² Two degraded limonoids, assigned as 7α -acetoxy-4,4,8-trimethyl- 5α -(13α Me)-17-oxa-androsta-1,14-dien-3,16-dione (**1130**) and 7α -acetoxy-4,4,8-trimethyl- 5α -17-oxa-androsta-1,14-dien-3,16-dione (**1131**) in 1992,⁷⁵³ were isolated and reported as 13α -nimolactone and 13β -nimolactone in 1994,¹⁰⁷ respectively.

2.4.2. Simple Degraded Derivatives. Trichiconnarins A and B (1139 and 1140) are degraded limonoids with a contracted five-membered ring-C. Of these, 1139 is likely to be the degradation products of trijugin C (1111) by cleavage of the C-2 and C-8 bonds, and 1140 is then derived from reaction of 1139 with acetone through an aldol reaction followed by dehydration.⁵⁷³ X-ray analysis of 9 β -bromofraxinellone has defined the absolute stereo-chemistry of fraxinellone (1142).⁷⁶³

2.4.3. N-Containing Derivatives. Microbes, such as endophytic fungi, may contribute to the biosynthesis of turrapubesin B (1153), which contains a maleimide ring.²⁸⁷ Wu et al. proposed a new biosynthetic pathway with xylogranatin R (843) as a key intermediate to reach the limonoids xylogranatins F–H (1156–1158), which bear a novel skeleton with a pyridine ring.⁶³⁸ Cui et al. suggested that granatoine (1159) could be biosynthetically derived from the precursor 9,10-seco-mexicanolide xylogranatin C (823) via a pathway in which the pyridine ring would be formed through ring condensation and dehydroxy-

lation while the $\gamma\text{-lactone}$ would be formed by esterification between C-7 and C-10. 726

3. CHEMOTAXONOMIC SIGNIFICANCE OF MELIACEOUS LIMONOIDS

As one of many types of natural products in plants, the limonoids were significant chemotaxonomic markers of Meliaceae, Rutaceae, and Simarubaceae. A wonderful review presented in 1983 treated the chemotaxonomic significance of limonoids in Meliaeae and discussed the biosynthesis, distribution, and systematic significance of limonoids in the Meliaceae, Cneoraceae, and allied taxa.¹⁵ Up until the present, the chemotaxonomy significances of limonoids for Meliaceae focused mainly on the subfamily Swietenioideae and Melioideae.

Different research groups have proposed the chemotaxonomic significance of genera *Khaya, Soymida, Neobeguea, Swietenia, Toona,* and *Cedrela* of subfamily Swietenioideae. The western and eastern forms of *Khaya anthotheca* were different chemically in that the western variety gave no ring D-expanded meliacins, in contrast to the other species.¹⁶⁴ The timber of *Soymida febrifuga* contained no detectable level of limonoids and the bark contained ~0.1% methyl angolensate (**568**). These results showed that *Soymida* was closely related to the African genus *Khaya*.⁷⁶⁷

Table 18. Structures and Sources of Rings A,D-seco L	imonoids 525–555
--	------------------

no.	compounds	substitution groups and others	sources
525	obacunol	$R_1 = R_2 = R_3 = R_4 = H$	Lovoa trichiliodes; ⁵¹⁵ Trichilia trifolia ¹⁸²
526	6α -acetoxyobacunol acetate	$R_1 = \alpha$ -OAc; $R_2 = Ac$; $R_3 = R_4 = H$	Dysoxylum spectabile; ⁵¹⁶ D. richii; ⁵¹⁷ D. muelleri; ⁵¹⁸ Cedrela sinensis ⁵¹⁹
527	11β -acetoxyobacunyl acetate	$R_1 = R_4 = H$; $R_2 = Ac$; $R_3 = \beta$ -OAc	C. odorata ⁵¹⁰
528	11β -acetoxyobacunol	$R_1 = R_2 = R_4 = H; R_3 = \beta$ -OAc	C. odorata ⁵¹⁰
529	6β -acetoxyobacunol	$R_1 = \beta$ -OAc; $R_2 = R_3 = R_4 = H$	Trichilia trifolia ¹⁸²
530	dysoxylone	$R_1 = O; R_2 = iVal(OH); R_3 = R_4 = H$	Dysoxylum richii ⁵¹⁷
531	11 β -hydroxy-7 α -obacunyl acetate	$R_1 = R_4 = H; R_2 = Ac; R_3 = \beta$ -OH	Cedrela sinensis ⁵¹¹
532	11-oxo-7 α -obacunol	$R_1 = R_2 = R_4 = H; R_3 = O$	C. sinensis ⁵¹¹
533	11-oxo-7 α -obacunyl acetate	$R_1 = R_4 = H; R_2 = Ac; R_3 = O$	C. sinensis ⁵¹¹
534	7α -obacunyl acetate	$R_1 = R_3 = R_4 = H; R_2 = Ac$	C. sinensis ⁵¹⁹
535	perforin A	$R_1 = R_3 = \alpha$ -OAc; $R_2 = Ac$; $R_4 = \beta$ -OAc	Toona ciliata ¹⁴⁵
536	11β -acetoxyobacunone		Trichilia elegans ¹⁶⁵
537	kihadanin A	$R_1 = R_3 = O; R_2 = OH$	T. elegans ssp. elegans ⁵²⁰
538	7-deoxo-7 $lpha$ -hydroxykihadanin A	$R_1 = \alpha$ -OH; $R_2 = OH$; $R_3 = O$	T. elegans ssp. elegans ⁵¹²
539	7-deoxo-7 $lpha$ -acetoxykihadanin A	$R_1 = \alpha$ -OAc; $R_2 = OH$; $R_3 = O$	T. elegans ssp. elegans ^{512,520}
540	7-deoxo-7 β -hydroxykihadanin A	$R_1 = \beta$ -OH; $R_2 = OH$; $R_3 = O$	<i>T. elegans</i> ssp. elegans ⁵¹²
541	7-deoxo-7 β -acetoxykihadanin A	$R_1 = \beta$ -OAc; $R_2 = OH$; $R_3 = O$	<i>T. elegans</i> ssp. elegans ⁵¹²
542	kihadanin B	$R_1 = R_2 = O; R_3 = OH$	T. elegans ssp. elegans ⁵²⁰
543	7-deoxo-7 α -acetoxykihadanin B	$R_1 = \alpha$ -OAc; $R_2 = O$; $R_3 = OH$	T. elegans ssp. elegans ⁵²⁰
544	7-deoxo-7 β -hydroxykihadanin B	$R_1 = \beta$ -OH; $R_2 = O$; $R_3 = OH$	<i>T. elegans</i> ssp. elegans ⁵¹²
545	7-deoxo-7 β -acetoxykihadanin B	$R_1 = \beta$ -OAc; $R_2 = O$; $R_3 = OH$	<i>T. elegans</i> ssp. elegans ⁵¹²
546	7α -acetoxydihydronomilin	R = H	Xylocarpus granatum; ^{513,514} Cedrela sinensis; ⁵¹⁹ C. odorata ⁵¹⁰
547	11 β -hydroxyceorin G	R = OH	C. sinensis ⁵¹¹
548	11-oxocneorin G	R = O	C. sinensis ⁵¹¹
549	7α ,11 β -diacetoxydihydronomilin	R = OAc	C. mexicana; ⁵²¹ C. odorata ⁵¹⁰
550	cedrellin		C. sinensis ⁵¹⁹
551	11 β ,19-diacetoxy-1-deacetyl-1-epidihydronomilin		C. odorata ⁵¹⁰
552	dysoxylin	R = H	Dysoxylum richii ^{517,522}
553	tigloyldysoxylin	R = Tig	D. richii ⁵¹⁷
554	dysoxylumolide C		D. hainanense ⁵⁰⁷
555	odoralide		Cedrela odorata ⁵¹⁰

Zhang et al. concluded that the configuration at C-6 of mexicanolides, phragmalins, and khayanolides from Khaya senegalensis had a 6S configuration while those from Swietenia species had a 6R configuration, and then pointed out this difference implies a significant chemotaxonomy difference between the African mahogany genus *Khaya* and the genuine mahogany genus *Swietenia*.⁷²² Six phragmalin-class limonoids from *Swiete*nia macrophylla showed significant chemotaxonomic evidence in favor of linking this speices with S. mahagoni.⁷¹⁶ Furthermore, Wu et al. described the distribution of kinds of phragmalin orthoesters in Xylocarpeae and Swietenieae and pointed out that the two tribes were closely related subfamilies in Meliaceae.⁶⁵⁹ The chemotaxonomic significances of limonoids in Toona and Cedrela were hot topics for years. Agostinho et al. objected to the affiliation of Toona to Swietenioideae by the occurrence of the meliacin butenolides in both Toona and Trichilia.¹⁵⁴ In addition, Neto and da Silva et al. pointed out that Toona differed notably from other genera of Swietenioideae by the absence of the mexicanolideclass limonoids and the presence of limonoids rather typical of Melioideae, and thus showed a less pronounced relationship to the Swietenioideae.^{161,768} Neto et al. pointed out that the ring B-seco limonoids of Toona could be considered the biosynthetic

precursors of the mexicanolide-class limonoids which were common in *Cedrela*, suggesting a direct derivation of *Cedrela* from *Toona*-like ancestors.¹⁴⁰ Yet Liao et al. supported *Toona* as a separate subfamily because of the biosynthetic relationship between the limonoids from *Toona ciliata* and the occurrence of mexicanolide-class limonoids in this speices.²⁹⁰

The chemotaxonomic significance of limonoids for genera Ekebergia, Nymania, Trichilia, Turraea, Astrotrichilia, Dysoxylum, Malleastrum, and Cipadessa ascribed to subfamily Melioideae were also investigated extensively. The limonoids of Ekebergia were not far removed from the general pattern found in Trichileae, in which highly oxidized ring B fissioned limonoids appeared to be the most common terpenoid constituents.⁵⁶ Since trijugin-class limonoids were obtained both from Heynea trijuga and Ekebergia terophylla, the possible relationship between Ekebergia and Heynea was proposed.⁵⁶⁵ Because of the structural relation between astrotrichilin (566) and ekebergin (588), Mulholland et al. proposed a relationship between Astrotrichilia and Ekebergia, 543' which disagreed with Pennington's viewpoint.⁷⁶⁹ Chemically, Ekebergia itself was rather distinct and not closely related to Trichilia so that it seemed possible that both Quivisianthe and Ekebergia occupy positions on the fringes

Figure 20. Structures of rings A,D-seco limonoids 525-555.

of the main groups of the Meliaceae, perhaps without especially close relation to any other genera. 613 The limonoids from Nymania were typical of those from species of the genera Guarea, *Trichilia*, and *Aphanamixis*, which strongly supported the placing of *Nymania* in the subfamily Melioideae.²⁸³ The chemotaxonomic link between the genera Nymania and Turraea was established based on the occurrence of nymania-1 (522) in both Nymania capensis and Turraea obtusifolia.⁵⁰⁹ Three limonoids from Turraea obtusifolia are structurally similar to hirtin (94) and havanensin (106) and thus represent intermediates or byways on the route to the more characteristic prieurianin group, and they are consistent with the close taxonomic relationship of Turraea and Nymania.¹⁸⁹ In contrast to the other species of Trichilia, T. connaroides contains the andirobin, mexicanolide and trijugin class limonoids, which could be used as a chemical marker to differentiate this species from the other species in the same genus.⁵⁷³ Mzikonone (240), the principal limonoid of Turraea robusta, was much less oxidized than the havanensin-class limonoids from *T. obtusifolia* and the prieurianin-class from *T. floribunda*, 189 which suggested that caution needed to be exercised in defining the oxidation pattern of limonoids as taxonomic markers for the genus Turraea.²⁶⁸ The limonoids from Turraea parvifolia of the Turraeeae tribe were typical of those from the genera Melia and Azadirachta of the Melioideae which suggests their close chemotaxonomic relationship.²⁴³ Dysodensiols A-C (1135-1137) from Dysoxylum densiflorum, which are likely biotransformed products from a common

precursor of a B-seco-limonoid, supported the proposition that it would be preferred to include the genus *Dysoxylum* in the subfamily Melioideae.⁷⁶⁴ The distribution of methyl ivorensatelike limonoids with A,B-seco and D carbocyclic rings **601–606** indicated the chemosystematic relevance between the genera *Khaya*,^{446,576} and *Soymida*⁵³⁸ of the subfamily Swietenioideae and the genera *Dysoxylum*,⁵¹⁶ and *Trichila*⁵²⁰ of the Melioideae. The isolation of 1 α ,3 α -diacetylvilasinin (**189**) and 1,3-diacetyl-7-tigloyl-12 α -hydroxyvilasinin (**190**) from *Malleastrum antsingyense* supported the placement of *Malleastrum* in the subfamily Melioideae although no prieurianin or evodulone-class limonoids were found.²⁴⁴ The mexicanolide-class limonoids found in *Cipadessa fruticosa*⁶¹⁷ along with the andirobin- and trijugin-class limonoids from *C. cinerascens*^{563,647} provided firm support for including *Cipadessa* in Trichilieae, which is in agreement with Pennington's viewpoint.⁷⁶⁹

4. SYNTHESIS OF MELIACEOUS LIMONOIDS

Because of the important biological activities and the high structural complexity, the limonoids of Meliaceae have attracted considerable attention from the organic synthesis community, which has focused particularly on the total synthesis of the wellknown azadirachtin (292).

The potent antifeedant activity of **292** against various insect coupled with its remarkable selectivity and nontoxicicity toward mammalian organisms made it an attractive candidate as a natural pesticide. Enormous efforts directed toward the total synthesis of

Table 19. Structures and Sources of Andirobin-Class Limonoids 556-594

no.	compounds	substitution groups and others	sources
556	andirobin	R = O	Carapa guianensis; ^{137,437,449,450} Cedrela odorata; ⁵³³ Swietenia macronhvlla ⁴⁴⁵
557	amoorinin	R = OH	Amoora rohituka ^{534,535}
558	amoorinin-3- O - α -L-rhamnopyranosyl- (1 \rightarrow 6)- β -p-glucopyranoside	$R = 3-O-\alpha-L-Rha-(1\rightarrow 6)-\beta-D-Glc$	Aphanamixis polystachya ⁵³⁶
559	deoxyandirobin	$R = H; \Delta^{1,2}$	Soymida febrifuga; ⁵³⁷ Khaya grandifoliola ¹⁶⁴
560	swietmanin J	R = OH	Swietenia mahagoni ⁴⁵⁸
561	domesticulide A	R = H	Lansium domesticum ¹⁰⁰
562	domesticulide B	R = Ac	L. domesticum ¹⁰⁰
563			Soymida febrifuga ⁵³⁸
564	dihydroamoorinin	R = OH	Aphanamixis polystachya ⁵³⁹
565	aphanamixinin	R = O	A. polystachya ^{536,540–542}
566	astrotrichilin	R = cinnamate/nicotinate ester	Astrotrichilia asterotricha ⁵⁴³
567	cipadonoid B		Cipadessa cinerascens ⁵⁴⁴
568	methyl angolensate	$R_1 = O; R_2 = R_3 = R_4 = H$	Entandrophragma angolense; ^{423,545} E. macrophyllum; ⁵³⁰ Guarea thompsonii; ⁴⁷⁵ Soymida febrifuga; ^{537,546} Khaya senegalensis; ^{451,464,547–551} K. anthotheca; ⁵⁵² K. grandifoliola; ^{164,436,553} K. ivorensis; ^{446,447,554} Cedrela odorata; ^{98,168} C. fissilis; ¹³² Lansium domesticum; ¹⁰⁰ Swietenia mahagoni; ^{112,458,555} Ruagea glabra; ⁵⁵⁶ Carapa guianensis; ^{113,137,437} Cabralea eichleriana; ⁴³⁰ Neobeguea mahafalensis; ⁵⁵⁷ Melia azedarach; ⁴⁵² Trichilia catigua; ¹⁶⁵
569	methyl 6-hydroxyangolensate	$R_1 = O; R_2 = OH; R_3 = R_4 = H$	Xylocarpus granatum; ⁴⁴⁸ X. moluccensis ⁵⁵⁸ Khaya senegalensis; ^{451,467,468,472,547–550,559} K. anthotheca; ⁵⁵² K. ivorensis; ^{446,447,554} K. grandifoliola; ^{164,436,553,560} Swietenia mahagoni; ^{457,458,555} S. aubrevilleana; ⁴⁴⁵ Lansium domesticum ¹⁰⁰
570	methyl 6-acetoxyangolensate	$R_1 = O; R_2 = OAc; R_3 = R_4 = H$	L. domesticum; ¹⁰⁰ Khaya grandifoliola; ^{560,561} K. senegalensis ^{451,547,549,550,559}
571	methyl 6,12 $lpha$ -diacetoxyangolensate	$R_1 = O; R_2 = R_3 = OAc; R_4 = H$	Guarea thompsonii ⁵³¹
572	azecin 1	R_1 = OAc; R_2 = H; R_3 = OAc; R_4 = O-L-rha (1→6)-β-D-glc	Melia azedarach ¹⁷³
573	sandoricin	$R_1 = OAc; R_2 = H; R_3 = OAc; R_4 = OH$	Sandoricum koetjape ⁵³²
574	6-hydroxysandoricin	$R_1 = OAc; R_2 = R_4 = OH; R_3 = OAc$	S. koetjape ⁵³²
575	$[2\alpha$ -(2-methylbutanoyl)oxy]sandoricin	$R_1 = \alpha$ -Opiv; $R_2 = OAc$; $R_3 = OH$	S. koetjape ⁵⁶²
576	$[2\alpha$ -(2-methylpropanoyl)oxy]sandoricin	$R_1 = \alpha$ -OiBu; $R_2 = OAc$; $R_3 = OH$	S. koetjape ⁵⁶²
577	methyl 2β , 3β -diacetoxy-3-deoxoangolensate	$R_1 = \beta$ -OAc; $R_2 = R_3 = H$	Cipadessa cinerascens ³⁰³
578	cipadesin D	$R_1 = H; R_2 = OH; R_3 = \beta - OAc$	C. cinerascens ⁵⁵
579	cipadesin F	$R_1 = OAc; R_2 = OH; R_3 = H$	C. cinerascens ⁵⁴
580	cineracipadesin B	$R_1 = OAc; R_2 = OH; R_3 = \alpha - OH$	C. cinerascens
501	cineracipadesin D	$R_1 = R_1, R_2 = OR_1, R_3 = O$	C. cinerascens ⁵⁶³
582	cineracipadesin D	$R_1 = R_2 = R$; $R_3 = \alpha$ -OAC	C. cinerascens
581	E D 1	$R_1 = OAc; R_2 = OA; R_3 = \alpha - OAc$	C. cinerascens Ekabaraia interonhulla ^{565,566}
585	E.I.I E.D.2	$R_1 = OAc$, $R_2 = R_3 = H$	Exercised perophysic
586	F P 3	$R_1 = R_2 = R_2, R_3 = ORC$ $R_2 = R_2 = OAC; R_2 = H$	E perophytic
587	E.F.G	$R_1 = R_3 = ORC, R_2 = H$ $R_1 = OTig: R_2 = H: R_3 = OH$	E. perophytic
588	ekehergin	$R_1 = O(V_2)$, $R_2 = H$, $R_3 = O(A_2)$	E. canonsis ⁵⁶⁷
589	domesticulide C	$R_1 = OAc; R_2 = O; R_3 = OH$	Lansium domesticum ¹⁰⁰
590	domesticulide D	$R_1 = OAc; R_2 = OH; R_2 = O$	L. domesticum ¹⁰⁰
591	moluccensin N	$R_1 = H; R_2 = O; R_3 = OH$	Xylocarpus moluccensis ⁵⁶⁸
592	moluccensin O	$R_1 = H; R_2 = OH; R_3 = O$	X. moluccensis ⁵⁶⁸
593	sandoripin A	R = Piv	Sandoricum koetjape ⁵⁶⁹
594	sandoripin B	R = iBu	S. koetjape ⁵⁶⁹

Figure 21. Structures of andirobin-class limonoids 556-594.

Table 20. Other Structures and Sources of Rings B,D-seco Limonoids 595-600

no.	compounds	substitution groups and others	sources
595 596 597 598 599 600	methyl 8α-hydroxy-8,30-dihydroangolensate secomahoganin deacetylsecomahoganin khayanoside cedrelanolide I swiemahogin A	R = Ac R = H R = β -D-glucopyranoside	Trichilia connaroides ⁵⁷³ Entandrophragma angolense; ⁵⁴⁵ Swietenia mahagoni; ^{71,111,112} S. macrophylla ⁴⁵⁶ S. mahagoni ⁴⁵⁷ Khaya senegalensis; ^{550,574,575} K. ivorensis ⁵⁵⁴ Cedrela salvadorensis ^{570,571} Swietenia mahagoni; ⁵⁷² Khaya ivorensis ⁵⁵⁴

292 have been continuing for more than twenty years in several research groups. This was undoubtedly due to its complex molecular architecture, which comprised sixteen contiguous

stereogenic centers, seven of which were tetrasubstituted carbon atoms, and a diverse array of oxygenated functionalities in addition to a rigid conformation imposed by intramolecular

Table 21.	Structures and	Sources of	f Rings	A,B,D-seco	Limonoids 601-	606
-----------	----------------	------------	---------	------------	----------------	-----

no.	compounds	substitution groups and others	sources
601	methyl ivorensate		Khaya ivorensis; ^{446,576} Dysoxylum spectabile ⁵¹⁶
602			Soymida febrifuga ⁵³⁸
603	elegantin A	$R_1 = O; R_2 = OH$	Trichilia elegans ssp. elegans ⁵²⁰
604	elegantin B	$R_1 = OH; R_2 = O$	T. elegans ssp. elegans ⁵²⁰
605	1,2-dihydro-l $lpha$ -acetoxyelegantin A	$R_1 = O; R_2 = OH$	T. elegans ssp. elegans ⁵²⁰
606	1,2-dihydro-l $lpha$ -acetoxyelegantin B	$R_1 = OH; R_2 = O$	<i>T. elegans</i> ssp. <i>elegans</i> ⁵²⁰

Figure 23. Structures of rings A,B,D-seco limonoids 601-606.

Table 22. Structures and Sources of 1,*n*-Linkage Rearranged Limonoids 607–625

no.	compounds	substitution groups and others	sources
607 608 609 610 611 612	carapolide B carapolide C carapolide D carapolide E carapolide F	$R_1R_2 = CH_2$ $R_1 = CH_3$; $R_2 = OH$ R = OH	Carapa procera ⁵⁸⁰ C. procera ⁵⁸¹ C. procera; ⁵⁸¹ C. grandiflora ²⁷⁶ C. grandiflora ^{276,582} C. grandiflora ^{276,582} C. grandiflora ^{276,582}
613 614	carapolide G dulunolide A	R = H $R_{-} = R_{-} = \alpha OH_{-}R_{-} = H_{-} 5.6 epoyr. A^{8,9}$	C. grandiflora ²⁷⁶ Lansium domesticum ^{577,578}
615	dukunolide B	$R_1 = R_2 = \alpha$ -OH; $R_3 = H$; 5,6; 8,9-diepoxy	L. domesticum ^{100,577}
616 617	dukunolide C dukunolide D	$R_1 = R_2 = \alpha$ -OH; $R_3 =$ OAc; 5,6-epoxy; Δ ^{8,9} $R_1 = R_2 = \alpha$ -OH; $R_3 =$ H; Δ ^{8,9}	L. domesticum ^{100,577} L. domesticum ^{100,583}
618	dukunolide E	$R_1 = R_2 = \alpha$ -OH; $R_3 = H$; 8,9-epoxy	L. domesticum ⁵⁸³
619 620	dukunolide F	$R_1 = R_2 = \beta$ -OH; $R_3 =$ H; 8,9-epoxy	L. domesticum ⁵⁸³
620	7α , 12 α -diacetoxy-11 β -hydroxyneotecleanin	$R_1 = OAc; R_2 = H$	L. aomesticum Turraea wakefieldii ⁵⁷⁹
622	11 β , 12 α -diacetoxyneotecleanin	$R_1 = O; R_2 = Ac$	T. wakefieldii ⁵⁷⁹
623	11 β , 12 α -diacetoxy-14 β ,15 β -epoxyneotecleanin	$R_1 = O; R_2 = Ac$	T. wakefieldii ⁵⁷⁹
624 625	7α ,12 α -diacetoxy-14 β ,15 β -epoxy-11 β -hydroxyneotecleanin	$R_1 = OAc; R_2 = H$	T. wakefieldii ⁵⁷⁹ T. wakefieldii ⁵⁷⁹
	hydroxy-2-oxo-neotecleanin		1. <i></i>

hydrogen bonding. Furthermore its sensitivity to acid and base together with its photoinstability made it particularly prone to rearrangement, thereby frustrating many synthesis plans.⁷⁷⁰ The strategy applied to the total synthesis of **292**, called "relay route" or "relay synthesis", consisted of attempting to degrade **292** to a specific potential synthetic intermediate and then transform this back into the natural product. For example, one application of this strategy involved the degradation of the enol double bond to give an advanced intermediate and development of methods to convert this intermediate back into the natural product by reintroduction of the enol double bond using an acetal exchange process. In addition, the strategy focused on a convergent approach, which would bring together a decalin fragment with a hydroxydihydrofuran acetal portion (Scheme 1).⁷⁷¹

The strategy in the formation of the decalin unit of **292** included two different ways. One is the employment of a silyl group to control the stereoselectivity of several key steps and to introduce C-3 hydroxyl functionality in decalin motif,^{772–774} and another is the cleavage of C8–C14 bond via a base-mediated retro-Aldol reaction of natural product **292**, in which macrocyclic carbonate is a key intermediate.^{774–776} The degradation of **292** to the demethylated decalin and the subsequent remethylation to the protected fragment has been presented. This not only connected the total synthesis and the degradation route of **292**,

Figure 24. Structures of 1,*n*-linkage rearranged limonoids 607–625.

Table 23.	Structures and	Sources	of Mexicanolid	le-Class	Limonoids	626 - 845
1 4010 201	our accur co una	0041000	or memorie	ie Ciabo	Linnondo	010

no.	compounds	substitution groups and others	sources
626	mexicanolide	$R_1 = R_3 = H; R_2 = O$	Carapa procera; ¹⁶⁷ Cedrela mexicana; ⁵⁸⁷ C. odorata; ^{533,641} C. fissilis; ⁶⁴² Khaya senagalensis; ^{451,467,603} K. ivorensis; ⁴⁴⁶ K. grandifoliola; ¹⁶⁴ Neobeguea mahafalensis; ⁵⁵⁷ Cipadessa fruticosa; ^{617,643} Swietenia mahagoni; ⁴⁵⁸ Xylocarpus granatum ⁴⁴⁸
627	2α -hydroxymexicanolide	$R_1 = OH; R_2 = O; R_3 = H$	Khaya senegalensis ^{467,603}
628	2 $lpha$,3 eta -dihydroxy-3-deoxymexicanolide	$R_1 = R_2 = OH; R_3 = H$	K. senegalensis ^{467,468,603} Swietenia mahagoni ⁴⁵⁸
629	3β -hydroxy-3-deoxymexicanolide	$R_1 = R_3 = H; R_2 = OH$	Khaya senegalensis; ^{467,603} Cabralea eichleriana ⁶⁴⁴
630	6-hydroxymexicanolide	$R_1 = H; R_2 = O; R_3 = OH$	Cedrela odorata; ⁵³³ Khaya senegalensis; ¹⁶⁴ Lansium domesticum ^{100,645}
631	6-acetoxymexicanolide	$R_1 = H; R_2 = O; R_3 = OAc$	L. domesticum ¹⁰⁰
632	6-deoxyswietenolide (proceranolide)	$R_1 = R_3 = H; R_2 = OH$	Carapa procera; ⁵⁹⁰ Swietenia macrophylla; ⁴⁴⁵ S. mahagoni; ¹¹² Cedrela odorata; ⁵³³ Quivisia papinae; ⁶⁴⁶ Xylocarpus granatum ^{448,633}
633	2'R-methylbutanoylproceranolide	$R_1 = R_3 = H$; $R_2 = 2'R$ -OPiv	Cipadessa baccifera; ⁵⁹¹ C. cinerascens ⁶⁴⁷
634	2'S-methylbutanoylproceranolide	$R_1 = R_3 = H; R_2 = 2'S-OPiv$	C. baccifera; ⁵⁹¹ C. cinerascens; ⁶⁴⁷ Xylocarpus moluccensis ⁵⁵⁸
635	proceranolide butanoate	$R_1 = R_3 = H; R_2 = OBu$	Khaya ivorensis ⁶⁴⁸
636	2-hydroxy-3-O-isobutyrylproceranolide	$R_1 = OH; R_2 = OiBu; R_3 = H$	Swietenia mahagoni ⁴⁵⁸
637	2-hydroxy-3-O-benzoylproceranolide	$R_1 = OH; R_2 = OBz; R_3 = H$	S. mahagoni ⁴⁵⁸
638	swietenolide	$R_1 = H; R_2 = R_3 = OH$	S. mahagoni; ^{112,603,649} S. macrophylla; ^{55,445} Khaya grandifoliola; ⁴³⁶ Cedrela odorata; ⁵¹⁰ Quivisia papinae ⁶⁴⁶
639	2a-hydroxyswietenolide	$R_1 = R_2 = R_3 = OH$	Q. papinae ⁶⁴⁶
640	2-hydroxy-3-O-tigloyl-6-O-acetylswietenolide	$R_1 = OH; R_2 = OTig; R_3 = OAc$	Trichilia connaroides ⁶⁵⁰
no.	compounds	substitution groups and others	sources
------------	--	---	---
641	2-hydroxy-3-tigloyl-6-deoxyswietenolide	$R_1 = OH; R_2 = OTig; R_3 = H$	Capuronianthus mahafalensis; ⁶¹³ Trichilia connaroides; ⁶⁵¹ Swietenia mahagoni ⁴⁵⁸
642	2-hydroxy-3-O-tigloylswietenolide	$R_1 = R_3 = OH; R_2 = OTig$	S. mahagoni ^{457,649}
643	3-acetylswietenolide	$R_1 = H; R_2 = OAc; R_3 = OH$	S. mahagoni; ^{112,652} Khaya ivorensis; ⁴⁴⁷ K. senegalensis ⁶²³
644	3-tigloylswietenolide	$R_1 = H; R_2 = OTig; R_3 = OH$	Swietenia mahagoni; ^{112,603} S. macrophylla ^{55,653}
645	6-acetylswietenolide	$R_1 = H; R_2 = OH; R_2 = OAc$	<i>S. mahagoni</i> : ¹¹² <i>S. macrophylla</i> : ⁴⁴⁵ <i>Khava grandifoliola</i> ⁴³⁶
646	6-acetyl-3-tigloylswietenolide	$R_1 = H; R_2 = OTig; R_2 = OAc$	Swietenia mahagoni: ^{112,603} S. macrophylla ⁶⁵³
647	diacetylswietenolide	$R_1 = H; R_2 = R_3 = OAc$	S. macrophylla; ^{55,445,653,654} S. mahagoni; ^{112,603} Khaya ivorensis; ⁴⁴⁶ K. senegalensis ⁶²³
648	fissinolide (grandifoliolin, angustinolide, 3β -acetoxymexicanolide)	$R_1 = R_3 = H; R_2 = OAc$	K. nyasica; ^{164,184} K. senegalensis; ^{601,603,623} K. grandifoliola; ⁶⁰² K. madagascariensis; ⁴⁶⁹ Cedrela fissilis; ⁵⁹⁶ Cabralea eichleriana; ^{430,644} Swietenia mahagon ⁴⁵⁸
649	2-hydroxyfissinolide	$R_1 = OH; R_2 = OAc; R_3 = H$	S. mahagoni; ⁴⁵⁸ Khaya ivorensis; ^{164,446} K. senegalensis ⁶²³
650	2,6-dihydroxyfissinolide	$R_1 = R_3 = OH; R_2 = OAc$	K. senegalensis ^{601,623}
651	3β -deacetylfissinolide	$R_1 = R_3 = H; R_2 = OH$	Cabralea eichleriana; ⁴³⁰ Cedrela odorata ⁹⁸
652	khayasin (3 eta -isobutyryloxymexicanolide)	$R_1 = R_3 = H; R_2 = OiBu$	C. odorata; ⁶⁴¹ Neobeguea mahafalensis; ⁵⁵⁷ Cipadessa baccifera; ⁵⁹¹ Xylocarpus moluccensis; ⁵⁵⁸ Khaya senegalensis; ^{451,655} K. grandifoliola ¹⁶⁴
653	2-hydroxykhayasin	$R_1 = OH; R_2 = OiBu; R_3 = H$	K. madagascariensis ¹⁶⁴
654	khayasin B	$R_1 = R_3 = H; R_2 = OBz$	K. senegalensis ⁴⁵¹
655	khayasin T	$R_1 = R_3 = H; R_2 = OTig$	K. senegalensis; ⁴⁵¹ Cipadessa fruticosa; ^{617,656} C. baccifera; ^{591,657} C. cinerascens; ⁶⁴⁷ Xylocarpus granatum; ^{426,633} X. moluccensis; ⁵⁵⁸ Toona ciliata; ²⁹⁰ Swietenia macrophylla; ^{445,653} S. mahagoni ^{112,458}
656	augustineolide	$\mathbf{R}_1=\mathrm{Tig};\mathbf{R}_2=\mathrm{OH};\mathbf{R}_3=\mathrm{OAc};\mathbf{R}_4=\mathrm{OiBu}$	S. macrophylla ⁴⁴⁵
657	swietmanin E	$R_1 = Tig; R_2 = R_4 = H; R_3 = OH$	S. mahagoni ⁴⁵⁸
658	swietmanin F	$R_1 = Ac; R_2 = R_4 = H; R_3 = OH$	S. mahagoni; ⁴⁵⁸ Khaya senegalensis ⁶²³
659	khayalenoid G	\mathbf{R}_1 = Ac; \mathbf{R}_2 = OAc; \mathbf{R}_3 = OH; \mathbf{R}_4 = H	K. senegalensis ⁶²³
660	khayalenoid H	$R_1 = Ac; R_2 = OAc; R_3 = R_4 = H$	K. senegalensis ⁶²³
661	khayalenoid I	$R_1 = Ac; R_2 = R_3 = R_4 = H; 11\alpha$ -OAc	K. senegalensis ⁶²³
662	cabralin	$R_1 = OAc; R_2 = H; R_3 = O; R_4 = OH$	Cabralea eichleriana ⁴³⁰
663	isocabralin	$R_1 = OAc; R_2 = H; R_3 = OH; R_4 = O$	C. eichleriana ⁴³⁰
664	domesticulide E	$R_1 = R_3 = O; R_2 = R_4 = OH$	Lansium domesticum ¹⁰⁰
665	2-hydroxy-8(14)-dihydrofissinolide	$R_1 = R_2 = OH; R_3 = R_4 = H$	Khaya madagascariensis ¹⁰⁴
666	methyl 3β -acetoxy-2-hydroxy-1-oxomeliacate	$R_1 = OH; R_2 = OAc; R_3 = R_4 = H$	K. madagascariensis
667	dihydrokhayasin	$R_1 = R_3 = R_4 = H; R_2 = O_1Bu$	K. anthotheca; ³⁶ K. madagascariensis ²⁷
008 660	knayanone	$R_1 = H; R_2 = O; R_3 = OH; R_4 = p - OH$	K. senegatensis
670	3-deacetylyyloccensin N	$R_1 = R_3 = H; R_2 = ORC; R_4 = OH$ $R_4 = R_5 = H; R_5 = R_4 = OH$	X granatum ⁶⁰⁵
671	sylocarpin B	$R_1 = R_3 = H$, $R_2 = R_4 = OH$ $R_3 = R_2 = H$, $R_2 = OTig$, $R_4 = OH$	X granatum ⁶⁶⁰
672	angolensin A	$R_1 = R_2 = R_4 = H; R_2 = OTig; A_4 = OTi$ $R_1 = R_2 = R_4 = H; R_2 = OTig; A^{14,15}$	Entandronhraoma angolense ⁵⁴⁵
673	angolensin C	$R_1 = H; R_2 = O; R_3 = \alpha - OAc; R_4 = OH$	E. angolense ⁵⁴⁵
674	8β ,14 α -dihydroxyswietenolide	$R_1 = R_4 = H; R_2 = OH; R_3 = \beta - OH$	Cedrela odorata ⁵¹⁰
675	granatumin D	$R_1 = R_3 = R_4 = H; R_2 = OTig$	<i>Xylocarpus granatum</i> ⁴²⁶
676	3β -hydroxyisomexicanolide	-	Cedrela fissilis ⁶⁴²
677	swietenine	$R_1 = H; R_2 = OTig; R_3 = OH$	Swietenia macrophylla; ^{55,445,612,653,661,662} S. mahagoni; ^{112,603,663} Khaya ivorensis ⁴⁴⁷
678	swietenine B	$R_1 = H$; $R_2 = propanate$; $R_3 = OH$	Swietenia mahagoni ¹¹²
679	swietenine C	$R_1 = H$; $R_2 = OiBu$; $R_3 = OH$	S. mahagoni; ¹¹² S. macrophylla; ⁶¹⁴ S. humilis ⁴³⁴
680	swietenine D	$R_1 = H$; $R_2 = methacrylyl$; $R_3 = OH$	S. mahagoni ¹¹²
681	swietenine E	$R_1 = H$; $R_2 = OPiv$; $R_3 = OH$	S. mahagoni ¹¹²

no.	compounds	substitution groups and others	sources
682	swietenine F	$R_1 = H; R_2 = OBz; R_3 = OH$	S. mahagoni ¹¹²
683	sweitenine acetate	$R_1 = H; R_2 = OTig; R_3 = OAc$	S. mahagoni; ¹¹² S. macrophylla ^{55,653}
684	6-deoxydestigloylswietenine (3 β -hydroxymexicanolide, $\Delta^{8,30}$)	$R_1 = R_3 = H; R_2 = OH$	Khaya senegalensis ^{451,464,467,468}
685	6-deoxydestigloylswietenine acetate	$R_1 = R_3 = H; R_2 = OAc$	K. senegalensis; ^{451,464,466} Xylocarpus granatum ¹⁶²
686	3-O-detigloyl-3-O-acetylswietenine	$R_1 = H; R_2 = OAc; R_3 = OH$	Khaya ivorensis ⁴⁴⁷
687	6-acetylswietenine	$R_1 = H; R_2 = OTig; R_3 = OAc$	Swietenia mahagoni ⁶⁰³
688	6-O-acetyl-2-hydroxyswietenine	$R_1 = OH; R_2 = OTig; R_3 = OAc$	S. mahagoni ⁶³⁰
689	2-hydroxyswietenine	$R_1 = R_3 = OH; R_2 = OTig$	S. mahagoni; ^{559,630,663,664} S. macrophylla ⁴⁴⁵
690	2-hvdroxy-6-deoxyswietenine (methyl 3β -	$R_1 = OH; R_2 = OTig; R_3 = H$	<i>S.</i> macrophylla: ⁶¹⁴ Capuronianthus mahafalensis ⁶¹³
	tigloyloxy-2-hydroxy-1-oxo- meliac-8(30)-enate)		· · · · · · · · · · · · · · · · · · ·
691	6-dexoxyswietenine isobutyrate	$\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{H}; \mathbf{R}_2 = \mathbf{O}\mathbf{i}\mathbf{B}\mathbf{u}$	Khaya nyasica ¹⁶⁴
692	2-hydroxydestigloyl-6- deoxyswientenine acetate	$R_1 = OH; R_2 = OAc; R_3 = H$	Xylocarpus molluccensis ¹⁶²
693	12β-hydroxy-6-deoxy- destigloylswientenine diacetate	$R_1 = R_3 = H; R_2 = OAc; 12\beta$ - OAc	Khaya senegalensis ⁴⁵¹
694	febrifugin (6-desoxyswietenine)	$R_1 = R_3 = H; R_2 = OTig$	Soymida febrifuga; ⁶¹⁵ Cedrela odorata; ⁹⁸ Cipadessa baccifera; ^{591,618,657} C. fruticosa; ^{617,643,656} C. cinerascens; ⁶⁴⁷ Toona ciliata; ²⁹⁰ Xylocarpus granatum; ⁴²⁶ Swietenia mahagoni; ^{603,616} S. macrophylla ^{445,653}
695	humilinolide C	$R_1 = OAc; R_2 = OTig; R_3 = H$	S. humilis ^{434,629,665}
696	6-acetoxyhumilinolide C	$R_1 = R_3 = OAc; R_2 = OTig$	S. aubrevilleana ⁴⁴⁵
697	humilinolide D	$R_1 = OH; R_2 = OAc; R_3 = OAc$	S. humilis ^{434,629,665}
698	humilinolide E	$R_1 = OH; R_2 = OTig; R_3 = OAc$	S. humilis ⁴⁵⁴
699	methyl-2-hydroxy-3β-isobutyroxy-1- oxomeliac-8(30)-enate	$R_1 = OH; R_2 = OiBu; R_3 = H$	S. humilis ^{454,019}
700	methyl-2-hydroxy-3β-tigloyloxy-1- oxomeliac-8(30)-enate	$R_1 = OH; R_2 = OTig; R_3 = H$	S. humilis ⁴³⁴
701	methyl 3β-tigloyloxy-2,6-dihydroxy-1- oxo-meliac-8(30)-enate	$R_1 = OH; R_2 = OTig; R_3 = \beta - OH$	S. macrophylla ⁶¹⁴
702	methyl 3β-isobutyryloxy-1-oxomeliac- 8(30)-enate	$\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{H}; \ \mathbf{R}_2 = \mathbf{O}\mathbf{i}\mathbf{B}\mathbf{u}$	Carapa procera; ⁶⁶⁶ Khaya nyasica; ¹⁸⁴ Cipadessa baccifera ⁵⁹¹
703	cipadesin	$R_1 = R_3 = H; R_2 = OPiv$	C. baccifera; ^{618,657} C. fruticosa ^{617,643,656}
704	2'R-cipadesin	$R_1 = R_3 = H$; $R_2 = 2'R$ -OPiv	C. baccifera ⁵⁹¹
705	2'S-cipadesin	$R_1 = R_3 = H$; $R_2 = 2'S$ -=OPiv	C. baccifera ⁵⁹¹
706	ruageanin D	$R_1 = OH; R_2 = OAc; R_3 = H$	Ruagea glabra ⁵⁵⁶
707	6-epidestigloylswietenine diacetate	$R_1 = H; R_2 = OAc; R_3 = OAc$	Khaya senegalensis ⁴⁶⁴
708	khayalenoid E	$R_1 = H; R_2 = O; R_3 = OAc$	K. senegalensis ⁰²⁵
709	swietmanin A	$R_1 = R_3 = H; R_2 = OiBu; 11\alpha - OAc$	Swietenia mahagoni ⁴³⁸
710	swietmanin B	$R_1 = R_3 = H; R_2 = OAc; 11\alpha - OAc$	S. mahagoni ³⁵
711	swietmanin C	$R_1 = R_3 = H; R_2 = OH; \Pi \alpha - OAc$	S. mahagoni ¹⁵⁰
712	swietmanin D	$R_1 = R_2 = OAc; R_3 = H; \Pi \alpha - OAc$	S. mahagoni ⁶⁵
/13	destination destination and the second	$K_1 = OH; K_2 = OAC; K_3 = H; Ha-OAC$	Knaya ivorensis
714	arythrocarpine B	$\mathbf{p} = \mathbf{B}_{\mathbf{z}}$	Chicachetan emitheracarnus 667
714	erythrocarpine C	R = DL R = Cin	C erythrocarnus ⁶⁶⁷
716	febrifilioin A	$R_1 = O; R_2 = OH$	Cinadessa fruticosa: ^{617,656} Xvlocarnus aranatum ^{426,633}
717	granatumin E	$R_1 = OH; R_2 = H$	X. granatum ⁴²⁶
718	dehvdrocarapin	R = O	Cedrela odorata ⁵⁰⁰
719	xylomexicanolide B	R = OiBu	<i>Xylocarpus moluccensis</i> ⁵⁵⁸
720	, mahagonin		Swietenia mahagoni ⁶⁶⁸
721	angustidienolide	$R_1 = R_3 = H; R_2 = Ac$	Cedrela augustifolia ⁵⁹⁷

no.	compounds	substitution groups and others	sources
722	2α -hydroxyangustidienolide	$R_1 = OH; R_2 = Ac; R_3 = H$	C. augustifolia ⁵⁹⁷
723	seneganolide A	$R_1 = R_2 = R_3 = H$	Swietenia mahagoni; ⁴⁵⁸ Khaya senegalensis ⁴⁷²
724	2-hydroxyseneganolide A	$R_1 = OH; R_2 = R_3 = H$	K. senegalensis ⁴⁷²
725	2-acetoxyseneganolide A	$R_1 = OAc; R_2 = R_3 = H$	K. senegalensis ⁴⁷²
726	tigloylseneganolide A	$R_1 = R_3 = H; R_2 = Tig$	Cipadessa baccifera; ⁵⁹¹ Xylocarpus granatum ⁴²⁶
727	erythrocarpine A	$R_1 = R_3 = H; R_2 = Bz$	Chisocheton erythrocarpus ⁶⁶⁷
728	granatumin A	$R_1 = R_3 = H; R_2 = methylacryl$	<i>Xylocarpus granatum</i> ⁴²⁶
729	granatumin B	$R_1 = R_3 = H; R_2 = Piv$	X. granatum ⁴²⁶
730	swietmanin G	$R_1 = OH; R_2 = iBu; R_3 = H$	Swietenia mahagoni ⁴⁵⁸
731	swietmanin H	$R_1 = OH; R_2 = Ac; R_3 = H$	S. mahagoni ⁴⁵⁸
732	swietmanin I	$R_1 = OH; R_2 = Tig; R_3 = H$	S. mahagoni ⁴⁵⁸
733	xylomexicanolide A	$\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{H}; \ \mathbf{R}_2 = \mathbf{i}\mathbf{B}\mathbf{u}$	Xylocarpus moluccensis ⁵⁵⁸
734	khayalenoid F	$R_1 = OH; R_2 = Ac; R_3 = S-OAc$	Khaya senegalensis ⁶²³
735	quivisianolide B	$R_1 = OH; R_2 = Ang; \Delta^{9,11}$	Quivisia papinae ⁶⁴⁶
736	granatumin C	$R_1 = H; R_2 = Tig; \Delta^{14,15}$	Xylocarpus granatum ⁴²⁶
737	xylogranatin A	$R_1 = R_3 = R_5 = H$; $R_2 = OTig$; $R_4 = \alpha$ -OH	X. granatum ^{633,639}
738	30lpha-hydroxylxylogranatin A	$R_1 = R_3 = H$; $R_2 = OTig$; $R_4 = R_5 = \alpha$ -OH	X. granatum ⁶⁶⁹
739	carapin	$R_1 = R_3 = R_5 = H; R_2 = O; R_4 = \beta - H$	Carapa procera ⁶⁷⁰
740	3β -hydroxy-3-deoxycarapin	$R_1 = R_3 = R_5 = H; R_2 = OH; R_4 = \beta - H$	Khaya senegalensis; ⁴⁶⁷ Entandrophragma angolense ⁵⁴⁵
741	methyl-3β-acetoxy-1-oxomeliac-14(15)-enate (3β-acetoxycarapin)	$R_1 = R_3 = R_5 = H; R_2 = OAc; R_4 = \beta-H$	Khaya nyasica; ¹⁸⁴ Toona ciliata; ¹⁴⁵ Cedrela fissilis ^{132,671}
742	6-hydroxycarapin	$\mathbf{R}_1 = \mathbf{R}_5 = \mathbf{H}; \mathbf{R}_2 = \mathbf{O}; \mathbf{R}_3 = \mathbf{O}\mathbf{H}; \mathbf{R}_4 = \beta \cdot \mathbf{H}$	C. glaziovii ⁶⁷²
743	methyl 3β-acetoxy-6-hydroxy-1-oxomeliac-14- enoate (3β-acetoxy-3-deoxo-6R- hydroxycarapin)	$R_1 = R_5 = H; R_2 = OAc; R_3 = OH; R_4 = \beta - H$	Khaya anthotheca; ⁵⁵² K. senegalensis ⁶⁰¹
744	8α-hydroxycarapin	$R_1 = R_3 = R_5 = H; R_2 = O; R_4 = \alpha - OH$	Swietenia mahagoni ⁴⁵⁸
745	6 <i>R</i> ,8 <i>α</i> -dihydroxycarapin	$R_1 = R_5 = H; R_2 = O; R_3 = R_4 = \alpha$ -OH	Khaya anthotheca ⁵⁵²
746	3β ,6-dihydroxydihydrocarapin	$R_1 = R_5 = H; R_2 = OH; R_3 = \beta - OH; R_4 = \beta - H$	Swietenia macrophylla; ⁴⁴⁵ Cedrela odorata ⁵¹⁰
747	xyloccensin X ₁	$R_1 = R_5 = H; R_2 = OH; R_3 = \beta \text{-OAc};$ $R_4 = \alpha \text{-OH}$	Xylocarpus granatum ⁶⁷³
748	xyloccensin X ₂	$R_1 = R_3 = R_5 = H; R_2 = OH; R_4 = \alpha - OH$	X. granatum ⁶⁷³
749	utilin B	$\begin{split} \mathbf{R}_1 &= \mathbf{OH}; \ \mathbf{R}_2 = \mathbf{R}_5 = \mathbf{OAc}; \ \mathbf{R}_3 = \mathbf{H}; \\ \mathbf{R}_4 &= \alpha\text{-}\mathbf{OiBu} \end{split}$	Entandrophragma utile ^{491,620,674}
750	xylomexicanin B	$R_1 = R_3 = R_5 = H$; $R_2 = OPiv$; $R_4 = \alpha$ -OH	Xylocarpus granatum ⁶⁷⁵
751	khayalenoid A	R = H; $\Delta^{8,9}$; $\Delta^{14,15}$	Khaya senegalensis ⁶²²
752	khayalenoid B	$R = H; \Delta^{8,14}$	K. senegalensis ⁶²²
753	khayalenoid C	$R = OH; \Delta^{8,14}$	K. senegalensis ⁶²³
754	khayalenoid D	$R = H; \Delta^{8,30}$	K. senegalensis ⁶²³
755	utilin C	$R_1 = \alpha$ -OH; $R_2 = OAc$; $R_3 = H$; $R_4 = OiBu$	Entandrophragma utile ^{491,621,674}
756	xyloccensin A	$R_1 = R_3 = H; R_2 = R_4 = OiVal$	<i>Xylocarpus moluccensis</i> ⁶²⁵
757	xyloccensin D	$R_1 = \alpha$ -OH; $R_2 = R_4 = OiBu; R_3 = H$	X. moluccensis ⁶²⁴
758	xyloccensin X	$R_1 = \alpha$ -OH; $R_2 = OPiv$; $R_3 = H$; $R_4 = OiBu$	X. molluccensis ⁰²⁴
759	xyloccensin Y	$R_1 = \alpha$ -OH; $R_2 = OiBu; R_3 = H; R_4 = OPiv$	X. molluccensis ⁰⁴
760	xylocarpin F	$R_1 = \beta - H; R_2 = R_4 = OAc; R_3 = H$	X. granatum ⁶⁰⁰
761	xylocarpin G	$R_1 = \beta - H; R_2 = OAc; R_3 = H; R_4 = OIig$	X. granatum ⁴⁰⁰
762	xylogranatin G	$R_1 = \beta - H; R_2 = O I I g; R_3 = H; R_4 = O A c$	A. granatum V. granatum ^{633,639}
764	xylogranatin D	$R_1 = \beta - R; R_2 = OPW; R_3 = R; R_4 = OAC$ $R_1 = \beta - R; R_2 = OiBu; R_3 = R; R_4 = OAC$	A. granatum ⁶³⁹
765	xylogranatin S	$R_1 = \beta - H; R_2 = OAc; R_3 = H; R_4 = OAc$ $R_4 = \beta - H; R_2 = OAc; R_3 = H; R_4 = OPin$	X oranatum ⁶⁷⁶
766	angolensin B	$R_1 = \alpha - OH; R_2 = OTig; R_3 = OAc;$ $R_4 = OHi$	Entandrophragma angolense ⁵⁴⁵
767	xyloccensin B	$R_1 = R_3 = H; R_2 = R_4 = OiBu$	<i>Xylocarpus moluccensis</i> ⁶²⁵
768	xyloccensin F	$R_1 = OH; R_2 = R_4 = OiBu; R_3 = H$	X. moluccensis ⁶²⁵
769	xyloccensin I	$R_1 = OH; R_2 = OAc; R_3 = H; R_4 = OPiv$	X. granatum; ⁶²⁶ X. moluccensis ⁶²⁶

no.	compounds	substitution groups and others	sources
770	xyloccensin J	$R_1 = OH; R_2 = OAc; R_3 = H; R_4 = OiBu$	X. granatum; ⁶²⁶ X. moluccensis ⁶²⁶
771	xyloccensin M	$R_1 = R_3 = R_4 = H; R_2 = OAc$	X. granatum ^{604,659,677}
772	3-deacetylxyloccensin M	$R_1 = R_3 = R_4 = H; R_2 = OH$	X. granatum ⁶⁰⁵
773	xylocarpin A	$R_1 = R_3 = R_4 = H; R_2 = OTig$	X. granatum ⁶⁶⁰
774	khayalactol	$R_1 = R_3 = OH; R_2 = O; R_4 = H$	Khaya ivorensis; ⁵⁵⁴ K. senegalensis ^{547,550,559,575,678}
775	grandifolide A	$R_1 = R_3 = OH; R_2 = OAc; R_4 = H$	K. grandifoliola ⁶⁷⁹
776	xylocarpin J		Xylocarpus granatum
777	seneganolide	$R_1 = R_3 = H; R_2 = O$	Khaya ivorensis; K. senegalensis
778	2-hydroxyseneganolide	$R_1 = OH; R_2 = O; R_3 = H$	K. senegatensis V_{a} = $16 \cdot 11 \cdot 12^{-679} \cdot V_{a}$ = $16 \cdot 11 \cdot 12^{-552}$
79	antnotnecanolide	$R_1 = R_2 = R_3 = OH$ $P_1 = P_2 = OH$ $P_2 = OA_2$	K. grandifoliola; K. anthotneca V. grandifoliola, ⁶⁷⁹ V. anthotneca ⁵⁵²
781	2 3-di-O-acetylanthothecanolide	$R_1 = R_2 = OAC$; $R_2 = OH$	K anthothera ⁵⁵²
782	$1\alpha, 8\alpha$ -oxido- 3β -acetoxy- 2α - acylperoxy- $1\alpha, 14\alpha$ -dihydroxy[3,3,1 ^{10,2}]-	$R_1 = OOAc; R_2 = OAc; R_3 = OH$	K. anthotheca ⁶⁸⁰
702	bicyclomeliac-7,19-olide		C
783	3,8-nemiketaicarapin	$\mathbf{P} = \mathbf{O}\mathbf{H}, \mathbf{P} = \mathbf{P} = \mathbf{H}$	Swietenia managoni Cadrala adarata ^{510,681}
785	6-acetovycedrodorin	$R_1 = OH; R_2 = R_3 = H$ $R_1 = OAc; R_2 = R_2 = H$	C adarata; ⁶⁸¹ Xylocarnus granatum ^{627,628,659}
786	6-deoxy-9α-hydroxycedrodorin	$R_1 = R_2 = H; R_2 = OH$	Cedrela odorata ⁶⁸¹
787	9α -hydroxycedrodorin	$R_1 = R_2 = OH; R_3 = H$	C. odorata ⁶⁸¹
788	xyloccensin K	$R_1 = R_2 = R_3 = H$	C. guianensis; ¹¹³ C. odorata; ⁵¹⁰ Entandrophragma angolense; ⁵⁴⁵ Xylocarpus granatum ^{448,627,628,633,659,682}
789	xyloccensin W	$R_1 = R_2 = H; R_3 = OAc$	X. granatum ^{628,659}
790	xyloccensin G	R = OPiv	X. moluccensis ⁶⁸³
791	xyloccensin H	$R_1 = H$	X. moluccensis ⁶⁸³
792	swietemahonolide	$R_1 = R_3 = H; R_2 = Tig$	X. granatum; ⁴²⁶ Cipadessa fruticosa; ⁶⁷¹ C. baccifera; ⁵⁹¹ C. cinerascens; ⁶⁴⁷ Switenia mahagoni ^{56,112}
793	humilinolide A (methyl 3β- isobutyryloxy-2,6-dihydroxy-8α, 30α-epoxy-1-oxo-meliacate)	$\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{OH}; \ \mathbf{R}_2 = \mathbf{i}\mathbf{B}\mathbf{u}$	S. humilis; ^{434,629,665,684} S. macrophylla ⁶¹⁴
794	humilinolide B	$R_1 = OH; R_2 = iBu; R_3 = OAc$	S. humilis ^{434,629,665}
795	humilinolide F	$R_1 = R_3 = OAc; R_2 = Tig$	S. humilis ⁴³⁴
796	methyl 3 β -acetoxy-2,6-dihydroxy-8 α ,30 α - epoxy-1-oxo- meliacate	$R_1 = R_3 = OH; R_2 = Ac$	S. macrophylla ⁶¹⁴
7 9 7	methyl 3β-tigloyloxy-2-hydroxy-8α, 30α-epoxy-1-oxo- meliacate (2-hydroxyswietemahonolide)	$R_1 = OH; R_2 = Tig; R_3 = H$	S. macrophylla; ^{614,653} S. mahagoni; ⁶³⁰ Khaya senegalensis ⁵⁵⁹
7 9 8	methyl 2-hydroxy- 3β -isobutyoyl- 8α , 30α -	$\mathbf{R}_1=\mathbf{OH};\ \mathbf{R}_2=\mathbf{i}\mathbf{B}\mathbf{u};\ \mathbf{R}_3=\mathbf{H}$	Swietenia humilis ⁶¹⁹
799	xylocarpin	$R_1 = R_3 = H; R_2 = Ac$	Xylocarpus granatum; ^{162,685} Ruagea glabra ⁵⁵⁶
800	swietemahonin A	$R_1 = H; R_2 = propanoyl; R_3 = OH$	Switenia mahagoni ^{56,112,652}
801	swietemahonin B	$R_1 = H; R_2 = propanoyl; R_3 = OAc$	S. mahagoni ^{56,112}
802	swietemahonin C	$R_1 = H; R_2 = iBu; R_3 = OAc$	S. mahagoni; ^{56,112} S. humilis ⁴³⁴
803	swietemahonin D	$R_1 = H; R_2 = Ac; R_3 = OH$	S. mahagoni ^{56,112}
804	swietemahonin E	$R_1 = H; R_2 = Tig; R_3 = OH$	S. mahagoni; ^{56,112,652} S. macrophylla ^{445,653}
805	8,30-epoxy swietenine acetate (swietemahonin F)	$R_1 = H; R_2 = Tig; R_3 = OAc$	S. mahagoni; ^{56,112} S. macrophylla ^{55,445}
806	swietemahonin G	$R_1 = R_3 = OH; R_2 = Tig$	<i>S. mahagoni</i> ; ^{56,112,457,559,630} <i>S. macrophylla</i> ⁴⁴⁵
807	6-O-acetylswietemahonin G	$R_1 = OH; R_2 = Tig; R_3 = OAc$	S. mahagoni; ^{559,030} S. macrophylla ⁰⁵³
808	ruageanin A	$R_1 = R_3 = H; R_2 = iBu$	Cipadessa baccifera; ³⁷⁴ C. fruticosa; ^{617,647,630} Ruagea glabra ⁵⁵⁶
809	ruageanin B	$R_1 = OH; R_2 = Tig; R_3 = H$	R. glabra ⁵⁵⁶
810	3-angeloyl-3-detigloylruageanin B	$R_1 = OH; R_2 = Ang; R_3 = H$	Quivisia papinae ⁰⁴⁰

Table 23. Continued

no.	compounds	substitution groups and others	sources
811	ruageanin C	$R_1 = OH; R_2 = Ac; R_3 = H$	Ruagea glabra ⁵⁵⁶
812	humilin B	$R_1 = H; R_2 = iBu; R_3 = OH$	Swietenia humilis; ⁴³⁴ Xylocarpus moluccensis ¹⁶²
813	2'R-cipadesin A	$R_1 = R_3 = H$; $R_2 = 2'R$ -pivalyoyl	Cipadessa baccifera; ⁵⁹¹ C. cinerascens ⁶⁴⁷
814	2'S-cipadesin A	$R_1 = R_3 = H$; $R_2 = 2'S$ -pivalyoyl	C. baccifera ⁵⁹¹
815	cipadesin A	$R_1 = R_3 = H; R_2 = Piv$	C. fruticosa; ^{617,643,656} C. cinerascens ⁶⁴⁷
816	cineracipadesin A	$R_1 = H; R_2 = Piv$	C. cinerascens ⁵⁶³
817	quivisianolide A	$R_1 = OH; R_2 = Ang$	Quivisia papinae ⁶⁴⁶
818	quivisianone		Q. papinae ⁶⁴⁶
819	granaxylocarpin A	$R_1 = OPiv; R_2 = Ac$	<i>Xylocarpus granatum</i> ⁶³²
820	xylogranatin B	$R_1 = OTig; R_2 = Ac$	X. granatum ⁶³⁷
821	xylomexicanin A	$\mathbf{R}_1 = \mathbf{H}; \ \mathbf{R}_2 = i\mathbf{B}\mathbf{u}; \ \Delta^{2,3}$	X. granatum ⁶⁷⁵
822	granaxylocarpin B (xylocarpin H)	$R_1 = H; R_2 = Tig; \Delta^{2,3}$	X. granatum ^{632,633}
823	xylogranatin C	$R_1 = H; R_2 = Ac; \Delta^{2,3}$	X. granatum ^{448,637,638}
824	ecuadorin		Guarea kunthiana ⁶⁸⁶
825	xylocarpanoid A		Xylocarpus granatum ⁶³⁴
826	xylogranatin E		X. granatum ⁶⁸⁷
827	erythrocarpine D	$R_1 = Cin; R_2 = H; \Delta^{8,30}, \Delta^{14,15}$	Chisocheton erythrocarpus ⁶⁶⁷
828	erythrocarpine E	$R_1 = Cin; R_2 = OH; \Delta^{8,30}$	C. erythrocarpus ⁶⁶⁷
829	xylolactone (xyloccensin L)	$R_1 = Tig; R_2 = H; 8,30$ -epoxy	<i>Xylocarpus granatum</i> ^{635,636,659}
830	granaxylocarpin C	$R_1 = Tig; R_2 = OH; 8,30$ -epoxy	X. granatum ⁶³²
831	grandifolin		Khaya grandifoliola ⁵⁶¹
832	xylogranatin A		Xylocarpus granatum ⁶³⁷
833	xylogranatin D		X. granatum ^{637,638}
834	xylogranatin I	$R_1 = R_2 = H$	X. granatum ⁶³⁸
835	xylogranatin J	$R_1 = R_2 = CH_3$	X. granatum ⁶³⁸
836	xylogranatin K	$R_1 = H; R_2 = CH_3$	X. granatum ⁶³⁸
837	xylogranatin L	$R_1 = H; R_2 = CH_2CH_3$	X. granatum ⁶³⁸
838	xylogranatin M	$R_1 = CH_3; R_2 = Ac$	X. granatum ⁶³⁸
839	xylogranatin N	$R_1 = H$; $R_2 = 2'S$ -methylbutyroyl	X. granatum ⁶³⁸
840	xylogranatin O	$R_1 = H; R_2 = Tig$	X. granatum ⁶³⁸
841	xylogranatin P	$R_1 = H; R_2 = iBu$	X. granatum ⁶³⁸
842	xylogranatin Q		X. granatum ⁶³⁸
843	xylogranatin R		X. granatum ⁶³⁸
844			Khaya ivorensis ⁶⁸⁸
845	grandifotane A		K. grandifoliola ⁶⁴⁰

but also gave ready access to the demethylated decalin with the hydroxydihydrofuran acetal unit (right-hand side of the molecule as drawn) and the synthesis of important model compounds.⁷⁷⁷ Several research groups have proposed the construction of a highly functionalized tricyclic *trans*-decalin system by IMDA (intramolecular Diels—Alder) cycloaddition.^{778—784} In addition, the tetracyclic decalin portion was synthesized in an optically pure form *via* reduction of a silyloxyfuran derivative, and the key reactions involved the CBS (Corey-Bakshi-Shibata) asymmetric reduction of a ketone and an IMDA reaction.^{785,786} The development of a strategy for the functionalization of the decalin portion based on the thermal Claisen rearrangement represented significant progress toward the total synthesis of **292**.⁷⁸⁷ For a more advanced decalin system, both the total synthesis and semisynthesis with efficient and stereoselective construction of the ABCD rings,⁷⁸⁸ ABC rings,⁷⁸⁹ AB rings,⁷⁹⁰ and B-ring,⁷⁹¹ all with full functionality, were reported.

For biological evaluation and a total synthesis study directed toward azadirachtin (**292**), the hydroxyfuran acetal functional group related to **292** have been prepared^{792–796} using some reactions which involved an enantioselective route.^{797,798} An extensive body

of work has been completed on the preparation of models for the decalin portion of 292 and has led to the design of an effective route to the fragment methyl (3SR*,3aR*,6aR*,10aR*)-3-hydroxy-5-oxoperhydronaphtho[1,8*a*-*c*]furan-3-carboxylate, containing some of the functionality required for antifeedant activity.⁷⁹⁹ A model substance for 292, 9-hydroxy-dihydrofuro-2,3-tetrahydropyran, was synthesized by a route in which the key step involved cyclization of hydroxyl-dialdehyde precursors, acetylation and pyrolysis.⁸⁰⁰ A tricyclic lactone derived from D-galactal via tin hydride mediated transannular radical cyclization was easily converted into an advanced precursor of the tricyclic dihydrofuran portion of **292**.⁸⁰¹ The Diels–Alder adduct formed using Evans' chiral Cu-bisoxazoline complex catalyst was easily converted to the tricyclic dihydrofuran moiety via SmI2 reductive cleavage and selective functionalization.⁸⁰² Furthermore, a synthesis route to mimics of 292 containing the hydrotetrahydrofurancarboxylate hemiketal functional moiety was developed.^{803,804} A key tricyclic acetal intermediate has been prepared in optically pure form in 12 steps from the known (-)-3-endobromotricyclo-[3.2.0.0^{2,7}]heptan-6-one.⁸⁰⁵

The extreme steric congestion at the C8–C14 bond has resulted in the failure of many attempted coupling strategies. The convergent synthetic approach toward **292** and functionalized analogs was based on the construction of the C8–C14 bond through a diastereoselective Claisen rearrangement, ^{806–809} or through a transition metal chemistry strategy, ⁸¹⁰ or through an

intramolecular radical reaction followed by a cation-induced rupture of an initially formed bridge.^{811,812} Finally, Ley placed particular emphasis on the key coupling of a left-hand decalin fragment with a right-hand hydroxydihydrofuran acetal unit via a Claisen rearrangement reaction of an intermediate propargylic enol ether.²³

Figure 25. Continued

Figure 25. Structures of mexicanolide-class limonoids 626-845.

After a long journey of 22 years, the total synthesis of **292** was finally completed. It could be produced from the key intermediate through a series of selective transformations.^{770,813} Jauch summarized the retrosynthetic analysis, the key Ireland-Claisen rearrangement, radical cyclization, epoxidation, and completion of the total synthesis of **292** through relay synthesis, which contained 71 steps with a total yield of 0.00015%, and commented this work was a real highlight of organic chemistry.⁸¹⁴ In addition, Devakumar et al. summarized the decalin scaffold synthesis, pyran fragment construction, and the 'last summit' of the total synthesis of **292**, and called it a chemical odyssey.²⁴

Azadirachtin (292), along with another four limonoids vepaol (303), isovepaol (304), 3-desacetylazadirachtin, and 1-tigloyl-3-acetyl-11-methoxyazadirachtinin (318), was synthesized from a

common intermediate, and the judicious choice of transacetalization conditions allowed efficient access to both the azadirachtin and the azadirachtinin skeleton (Scheme 2).⁸¹⁵

The conversion of **292** derivatives to the corresponding azadirachtinin skeletons could be achieved in high yield under mild conditions (Scheme 3).⁸¹⁶ Dinitrophenylamino, dansyl, and biotin groups were covalently attached to several derivatives of **292** via a linker group to give fluorescent or immunogenic compounds that generally retain the biological properties of **292**, which were potential tools for the determination of the mechanisms of **292** in living systems.⁸¹⁷

Some derivatives related to naturally occurring limonoids were prepared for the purpose of either biological activity evaluation or reaction mechanistic investigation. On the basis

Table 24. Structures and Sources of Phragmalin-ortho Ester Limonoids 846-962

no.	compounds	substitution groups and others	sources
846	phragmalin	$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = H$	Entandrophragma caudatum; ⁶⁸⁹ Khava senegalensis ⁵⁵⁹
847	12-acetoxyphragmalin	$R_1 = R_2 = R_3 = R_5 = R_6 = H; R_4 = OAc$	Chukrasia tabularis ⁷⁰²
848	phragmalin 3,30-di-isobutyrate	$R_1 = R_3 = R_4 = R_5 = H; R_2 = R_6 = iBu$	C. tabularis; ⁷⁰² Entandrophragma caudatum ⁷⁰³
849	phragmalin 3,30-diacetate	$R_1 = R_3 = R_4 = R_5 = H; R_2 = R_6 = Ac$	Xylocarpus moluccensis ¹⁶²
850	xyloccensin E (phragmalin 2,3,30-triacetate)	$R_1 = R_2 = R_6 = Ac; R_3 = R_4 = R_5 = H$	X. moluccensis ^{162,625}
851	12-acetoxyphragmalin 3,30-di-isobutyrate	$R_1 = R_3 = R_5 = H; R_2 = R_6 = iBu; R_4 = OAc$	Chukrasia tabularis ⁷⁰²
852	phragmalin 3-isobutyrate 30-propionate	$R_1 = R_3 = R_4 = R_5 = H; R_2 = iBu; R_6 = propanoyl$	C. tabularis; ⁷⁰² Entandrophragma caudatum ⁷⁰³
853	12-acetoxyphragmalin 3-	$R_1 = R_3 = R_5 = H; R_2 = iBu; R_4 = OAc;$	<i>E. caudatum</i> ; ⁷⁰³ <i>Chukrasia tabularis</i> ⁷⁰²
	isobutyrate 30-propionate	R ₆ = propanoyl	704
854	leandreanin C	$R_1 = R_2 = R_6 = Ac; R_3 = R_4 = H; R_5 = OAc$	Neobeguea leandreana ⁷⁰⁴
855	14,15-dihydroepoxyfebrinin B	$R_1 = R_6 = Ac; R_2 = epoxytigloyl; R_3 = R_4 = R_5 = H$	Soymida febrifuga ⁷⁰⁵
856	tabulalide C	$R_1 = R_2 = R_6 = H; R_3 = OH; R_4 = R_5 = OAc$	Chukrasia tabularis ⁷⁰⁸
857	tabulalide D	$R_1 = R_6 = H; R_2 = Ac; R_3 = OH; R_4 = R_5 = OAc$	C. tabularis ^{359,706}
858	2-O-acetyltabulalide D	$R_1 = R_2 = Ac; R_3 = OH; R_4 = R_5 = OAc R_6 = H$	C. tabularis ³³⁹
859	tabularisin N	$R_1 = H; R_2 = R_6 = Ac; R_3 = OH; R_4 = R_5 = OAc$	C. tabularis ⁷⁰⁷
860	febrinin A	$\begin{split} \mathbf{R}_1 &= \mathbf{A}\mathbf{c}; \ \mathbf{R}_2 = \mathrm{Tig}; \ \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{R}_5 = \mathbf{H}; \\ \mathbf{R}_6 &= \mathrm{propanoyl}; \ \Delta^{14,15} \end{split}$	Soymida febrifuga ⁷⁰⁸
861	febrinin B	$R_1 = R_6 = Ac; R_2 = Tig; R_3 = R_4 = R_5 = H; \Delta^{14,15}$	S. febrifuga ⁷⁰⁸
862	epoxyfebrinin B	$\begin{split} R_1 &= R_6 = Ac; \ R_2 = epoxytigloyl; \\ R_3 &= R_4 = R_5 = H; \ \Delta^{14,15} \end{split}$	S. febrifuga ⁷⁰⁵
863	xylocarpin I		<i>Xylocarpus granatum</i> ⁶³³
864	neobeguin	$R_1 = R_3 = R_4 = R_5 = H; R_2 = R_6 = Ac; R_7 = CH_3$	Neobeguea mahafalensis ⁷⁰⁹
865	bussein A	$R_1 = R_3 = H$; $R_2 = Piv$; $R_4 = R_5 = OAc$; $R_6 = Ac$; $R_7 = CH_3$	Entandrophragma bussei ^{424,691,693}
866	bussein B	$R_1 = R_3 = H; R_2 = iBu; R_4 = R_5 = OAc;$ $R_6 = Ac; R_7 = CH_3$	E. busset ^{424,691,693}
867	bussein C	$\mathbf{R}_1=\mathbf{R}_3=\mathbf{R}_7=\mathbf{H};\mathbf{R}_2=\mathbf{Piv};\mathbf{R}_4=\mathbf{R}_5=\mathbf{OAc};\mathbf{R}_6=\mathbf{Ac}$	E. bussei ⁶⁹³
868	bussein D	$R_1 = R_3 = H$; $R_2 = epoxytigloyl$; $R_4 = R_5 = OAc$; $R_6 = Ac$; $R_7 = CH_3$	E. bussei ⁶⁹³
869	bussein E	$R_1 = R_3 = H$; $R_2 = Tig$; $R_4 = R_5 = OAc$; $R_6 = Ac$; $R_7 = CH_3$	E. bussei ⁶⁹³
870	bussein F	$\mathbf{R}_1=\mathbf{R}_3=\mathbf{R}_7=\mathbf{H};\mathbf{R}_2=\mathbf{i}B\mathbf{u};\mathbf{R}_4=\mathbf{R}_5=\mathbf{OAc};\mathbf{R}_6=\mathbf{Ac}$	E. bussei ⁶⁹³
871	bussein G	$R_1 = R_3 = H; R_2 = 2'$ -hydroxypivalyloyl;	E. bussei ⁶⁹³
050	1	$R_4 = R_5 = OAc; R_6 = Ac; R_7 = CH_3$	F 1 -693
8/2	bussein H	$R_1 = R_3 = H; R_2 = R_6 = Ac; R_4 = R_5 = OAc; R_7 = CH_3$	E. bussel
073	bussenij	$R_1 = R_3 = H; R_2 = PW; R_4 = OH; R_5 = OAC;$ $R_6 = Ac; R_7 = CH_3$	E. bussel
874	bussein K	$R_1 = R_3 = H; R_2 = 1Bu; R_4 = OH; R_5 = OAc;$ $R_6 = Ac; R_7 = CH_3$	E. busset
875	bussein L	$\begin{aligned} R_1 &= R_3 = H; \ R_2 = iBu(OH); \ R_4 = R_5 = OAc; \\ R_6 &= Ac; \ R_7 = CH_3 \end{aligned}$	E. bussei ⁶⁹⁵
876	bussein M	$\begin{split} R_1 &= R_3 = H; \ R_2 = 2', 3' \text{-dihydroxypivalyloyl}; \\ R_4 &= R_5 = \text{OAc}; \ R_6 = \text{Ac}; \ R_7 = \text{CH}_3 \end{split}$	E. bussei ⁶⁹³
877	spicata 2	$R_1 = R_3 = H$; $R_2 = Piv$; $R_4 = OiBu$; $R_5 = OAc$; $R_6 = Ac$; $R_7 = CH_3$	E. spicatum ⁷¹⁰
878	tabularisin P	$R_1 = R_4 = R_6 = R_7 = H; R_2 = iBu;$ $R_3 = R_5 = OAc$	Chukrasia tabularis ⁷⁰⁷
879	chukrasin A	$R_1 = H; R_2 = Ac; R_3 = OH; R_4 = OAc/OiBu;$ $R_5 = OiBu; R_6 = Ac/iBu; R_7 = CH_3$	C. tabularis ⁷¹¹
880	chukrasin B	$R_1 = R_3 = H$; $R_2 = Ac$; $R_4 = R_5 = OiBu$; $R_6 = iBu$; $R_7 = CH_3$	C. tabularis ⁷¹¹

no.	compounds	substitution groups and others	sources
881	chukrasin C	$R_1 = R_3 = H$; $R_2 = Ac$; $R_4 = OAc/OiBu$;	C. tabularis ⁷¹¹
		$R_5 = OiBu; R_6 = Ac/iBu; R_7 = CH_3$	
882	chukrasin D	$R_1 = R_2 = Ac; R_3 = H; R_4 = OAc/OiBu;$	C. tabularis ⁷¹¹
		$R_5 = OiBu; R_6 = Ac/iBu; R_7 = CH_3$	711
883	chukrasin E	$R_1 = R_2 = Ac; R_3 = H; R_4 = R_5 = OiBu;$	C. tabularis ^{/11}
004	tabulation O	$R_6 = iBu; R_7 = CH_3$	C taludari ⁷⁰⁷
885	leandreanin A	$\mathbf{R} = \mathbf{H} \cdot \mathbf{R} = \mathbf{O} \mathbf{A} \mathbf{c} \cdot \mathbf{R} = \mathbf{O} \cdot \mathbf{R} = \mathbf{A} \mathbf{c}$	C. tabularis Neohemiea leandreana ⁷⁰⁴
886	leandreanin B	$R_1 = R_1 = A_{C}, R_2 = OA_{C}, R_3 = O, R_4 = A_{C}$	N leandreana ⁷⁰⁴
887	kotschvin B	$R_1 = R_2 = R_1, R_2 = ORC, R_3 = O$ $R_4 = A_5, R_5 = H; R_5 = OAc; R_4 = iBu$	Pseudocedrela kotschvij ⁴⁴³
888	kotschvin C	$R_1 = Ac; R_2 = OAc; R_3 = O.R_4 = iBu$	P kotschvii ⁴⁴³
889	swietenialide D	$R_1 = H; R_2 = 2'\beta_2 \beta'\beta_2$ epoxytigloyl; $R_2 = OH;$	Swietenia mahagoni: ⁶⁶⁴ S. macrophylla ⁴⁵⁶
		$R_4 = propanoyl$	8,
890	2-acetoxyswietenialide D	$R_1 = Ac; R_2 = 2'\beta_3 \beta_2$ -epoxytigloyl; $R_3 = OH;$	S. macrophylla ⁴⁵⁶
		$R_4 = propanoyl$	
891	2,11-diacetoxyswietenialide D	$R_1 = Ac; R_2 = 2'\beta_3 \beta_{-epoxytigloyl}; R_3 = OAc;$	S. macrophylla ⁴⁵⁶
		$R_4 = propanoyl$	
892	11-deoxyswietenialide D	$R_1 = R_3 = H; R_2 = 2'\beta_3 \beta$ -epoxytigloyl;	S. macrophylla ⁴⁵⁶
		$R_4 = propanoyl$	
893	swietenitin G	R_1 = R_4 = Ac; R_2 = 2' $\beta,3'\beta$ -epoxytigloyl; R_3 = OH	S. macrophylla ⁴⁵⁶
894	swietenitin H	$R_1 = Ac; R_2 = Tig; R_3 = OAc; R_4 = propanoyl$	S. macrophylla ⁴⁵⁶
895	swietenialide E		S. mahagoni ⁶⁶⁴
896	kotschyin A	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{A}\mathbf{c}; \ \mathbf{R}_3 = \mathbf{i}\mathbf{B}\mathbf{u}$	Pseudocedrela kotschyii ⁴⁴³
897	swietenitin A	$R_1 = R_3 = Ac; R_2 = 2'\beta_3 \beta' - epoxytigloyl$	S. macrophylla ⁴³⁰
898	swietenitin B	$R_1 = R_3 = Ac; R_2 = 2'\alpha, 3'\alpha$ -epoxytigloyl	S. macrophylla ⁴⁵⁶
899	swietenitin C	$R_1 = Ac; R_2 = 2^{c}\beta_3 \beta$ -epoxytigloyi;	S. macrophylla ¹⁰⁰
900	swiatanitin D	$R_3 = \text{propanoy}$ $R_2 = H_1 R_2 = 2^2 \beta 3^2 \beta \text{ apovitialay}$	S macronhalla ⁴⁵⁶
900	swietenitin D	$R_1 = 11, R_2 = 2\beta, \beta \beta$ epoxydgioyi, $R_2 = propapoyl$	3. <i>mucropnym</i>
901	swietenitin E	$R_1 = A_2$: $R_2 = Tig: R_2 = propanovl$	S macronhylla ⁴⁵⁶
902	swietenitin F	$R_1 = H; R_2 = Tig; R_3 = iBu$	S. macrophylla ⁴⁵⁶
903	pseudrelone B	. , 2 0, 0	Pseudocedrela kotschyii ⁶⁹⁴
904	chukvelutilide A	$R_1 = R_2 = H$	Chukrasia tabularis ⁶⁹⁶
905	chukvelutilide B	$R_1 = Ac; R_2 = H$	C. tabularis ⁶⁹⁶
906	chukvelutilide C	$R_1 = H; R_2 = CH_3$	C. tabularis ⁶⁹⁶
90 7	chukvelutilide D	$R_1 = Ac; R_2 = CH_3$	C. tabularis ⁶⁹⁶
908	chukvelutilide E	$R_1 = R_2 = Ac; R_3 = H$	C. tabularis ⁶⁹⁶
909	chukvelutilide F	$R_1 = H; R_2 = iBu; R_3 = CH_3$	C. tabularis ⁶⁹⁶
910	chuktabrin B		C. tabularis ⁶⁹⁷
911	tabularisin A	$R_1 = OAc; R_2 = Ac$	C. tabularis ^{707,712,713}
912	tabularisin B	$R_1 = OAc; R_2 = H$	C. tabularis ^{707,712}
913	tabularisin E	$R_1 = H; R_2 = Ac$	C. tabularis 707.712
914	tabularisin F	$R_1 = R_2 = H$	C. tabularis 707
915	tabularisin J	$R_1 = OH; R_2 = Ac$	C. tabularis
916	tabularisin K	$K_1 = OH; K_2 = H$ $P_1 = H, P_2 = iBy$	C. tabularis
917	β dibydroentandronbragmin	$\mathbf{R}_1 = \mathbf{H}; \ \mathbf{R}_2 = \mathbf{ID}\mathbf{u}$ $\mathbf{R}_1 = \mathbf{O}\mathbf{H}; \ \mathbf{R}_2 = \mathbf{ID}\mathbf{u}$	Entanarophragma canaoliei; E. cylinaricum E. cylindricum ⁷¹⁴
910 919	entandrophragmin	$R_1 = O(1) R_2 = 1Du$ R = iBu	E. cylinaricum ^{168,423,530,714} F. hussei ^{, 424,530}
/1/			<i>E. spicatum</i> ; ^{530,710} <i>E. caudatum</i> ⁵³⁰
920	utilin	R = Ac	E. utile ^{168,423,530}
921	swietenialide A	$R_1 = H; R_2 = Tig; R_3 = CH_3$	Swietenia mahagoni ⁶⁶⁴
922	swietenialide B	$R_1 = H; R_2 = Tig; R_3 = CH_2CH_3$	S. mahagoni ⁶⁶⁴
923	swietenialide C	$R_1 = H; R_2 = 2'\beta_3 \beta$ -epoxytigloyl; $R_3 = CH_3$	S. mahagoni ⁶⁶⁴
924	swietenitin I	$R_1 = H; R_2 = 2'\beta, 3'\beta$ -epoxytigloyl;	S. macrophylla ⁴⁵⁶
		$R_3 = CH_2CH_3$	

Table 24. Continued

no. compounds substitution groups and others	sources
925 swietenitin J $R_1 = Ac; R_2 = 2'\beta, 3'\beta$ -epoxytigloyl; S. macrophylla ⁴⁵	56
$R_3 = CH_2CH_3$	
926 swietenitin K $R_1 = Ac; R_2 = Tig; R_3 = CH_2CH_3$ S. macrophylla ⁴⁵	56
927 procerin R_1 = propanoyl; R_2 = H; R_3 = OAc; R_4 = Ac Carapa procera ⁵	\$80,715
928 swietenitin L $R_1 = 2'\beta$, $3'\beta$ -epoxytigloyl; $R_2 = OH$; Swietenia macro	phylla ⁴⁵⁶
$R_3 = H; R_4 = proanoyl$	
929 swietenitin M $R_1 = 2'\beta, 3'\beta$ -epoxytigloyl; $R_2 = OAc;$ S. macrophylla ⁴⁵ $R_3 = H; R_4 = propposl$;6
930 febrinolide Sovmida febrifus	705
931 swietephragmin A $R_1 = Ac; R_2 = Tig; R_3 = R_4 = H; R_5 = CH(CH_3)_2$ Swietenia maha	çoni ⁴⁵⁷
932 swietephragmin B $R_1 = Ac; R_2 = Tig; R_3 = R_4 = H;$ S. mahagoni ⁴⁵⁷	,
$R_5 = CH(CH_3)CH_2CH_3$	
933 swietephragmin C $R_1 = R_3 = R_4 = H; R_2 = Tig; R_5 = S. mahagoni457$	
CH(CH ₃)CH ₂ CH ₃	
934 12α -acetoxyswietephragmin C $R_1 = R_3 = H; R_2 = Tig; R_4 = OAc;$ S. macrophylla ⁷¹ $R_5 = CH(CH_3)CH_2CH_3$	16
935 3β -O-destigloyl- 3β -O-benzoyl- 12α - $R_1 = R_3 = H; R_2 = Bz; R_4 = OAc;$ S. macrophylla ⁷	16
acetoxyswietephragmin C $R_5 = CH(CH_3)CH_2CH_3$	
936 swietephragmin D $R_1 = R_3 = R_4 = H; R_2 = Tig; R_5 = CH(CH_3)_2$ S. mahagoni ⁴⁵⁷	
937 12 α -acetoxyswietephragmin D R ₁ = R ₃ = H; R ₂ = Tig; R ₄ = OAc; S. macrophylla ⁷¹	16
$R_5 = CH(CH_3)_2$	
938 3β -O-destigloyl- 3β -O-benzoyl- 12α - $R_1 = R_3 = H; R_2 = Bz; R_4 = OAc; R_5 = CH(CH_3)_2$ S. macrophylla ⁷¹	16
acetoxyswietephragmin D	
939 swietephragmin E $R_1 = R_4 = H; R_2 = Tig; R_3 = OH;$ S. mahagon ⁴⁵⁷	
$R_5 = CH(CH_3)CH_2CH_3$	
940 6-O-acetylswietephragmin E $R_1 = R_4 = H; R_2 = Tig; R_3 = OAc;$ S. macrophylla ⁷¹ $R_5 = CH(CH_3)CH_2CH_3$.6
941 3β -O-destigloyl- 3β -O-benzoyl- 6 -O- R ₁ = R ₄ = H; R ₂ = Bz; R ₃ = OAc; S. macrophylla ⁷¹	16
acetylswietephragmin E $R_5 = CH(CH_3)CH_2CH_3$	
942 6- <i>O</i> -acetyl-3'-demethylswietenphragmin E $R_1 = R_4 = H; R_2 = Tig; R_3 = OAc;$ S. macrophylla ⁶⁵ $R_5 = CH(CH_3)_2$;3
943 swietephragmin F $R_1 = R_3 = R_4 = H; R_2 = Tig; R_5 = CH_2CH_3$ S. mahagoni ⁴⁵⁷	
944 swietephragmin G $R_1 = R_3 = R_4 = H; R_2 = Tig; R_5 = CH_3$ S. mahagon ⁴⁵⁷	
945 swietephragmin H $R_1 = Ac; R_2 = Tig; R_3 = R_4 = H; R_5 = CH_2CH_3$ S. macrophylla ⁷¹	17
946swietephragmin I $R_1 = Ac; R_2 = Tig; R_3 = R_4 = H; R_5 = CH_3$ S. macrophylla	17
947 swietephragmin J $R_1 = Ac; R_2 = Tig; R_3 = H; R_4 = OH; R_5 = CH_2CH_3$ S. macrophylla ⁷¹	.7
948 xyloccensin O $R_1 = H; R_2 = OAc$ Xylocarpus gran	atum ^{448,659,699,718}
949 xyloccensin P $R_1 = R_2 = OAc$ X. granatum ^{448,0}	533,639,659,699,718
950 xyloccensin Q (xyloccensin R) $R_1 = OH; R_2 = OAc$ X. granatum ^{639,0}	559,700,701,718
951 xyloccensin R (xyloccensin Q) $R_1 = R_2 = OH$ X. granatum ⁶⁵⁹ ,	700,701
952 xyloccensin S $R_1 = OAc; R_2 = OH$ X. granatum ^{057,1}	700
953 xyloccensin T $R_1 = H; R_2 = OH$ X. granatum ^{60,7}	700
954 xyloccensin U $R_1 = OH; R_2 = H$ X. granatum ⁶⁷⁷	700.701
955 xyloccensin V (xyloccensin 1) $K_1 = OAc; K_2 = H$ X. granatum ⁽²⁾	
955xyloccensin V (xyloccensin 1) $K_1 = OAc; K_2 = H$ X. granatum956tabularisin C $R_1 = OAc; R_2 = H; R_3 = R_4 = Ac$ Chukrasia tabul957tabulacidin D $R_1 = R_1 = R_2$ Chukrasia tabul	aris ^{707,712,713}
955xyloccensin V (xyloccensin 1) $R_1 = OAc; R_2 = H$ X. granatum956tabularisin C $R_1 = OAc; R_2 = H; R_3 = R_4 = Ac$ Chukrasia tabul957tabularisin D $R_1 = R_2 = R_4 = H; R_3 = Ac$ C. tabularis ⁷¹³ 958tabularisin C $P_2 = P_2 = H; P_3 = Ac$ C. tabularis ⁷²⁷⁷	aris ^{707,712,713}
955xytoccensin V (xytoccensin 1) $R_1 = OAc; R_2 = H$ X. granatum956tabularisin C $R_1 = OAc; R_2 = H; R_3 = R_4 = Ac$ Chukrasia tabul957tabularisin D $R_1 = R_2 = R_4 = H; R_3 = Ac$ C. tabularis ⁷¹³ 958tabularisin G $R_1 = R_2 = H; R_3 = R_4 = Ac$ C. tabularis ^{707,77} 959tabularisin H $R_1 = OAc; R_2 = H; R_3 = R_4 = Ac$ C. tabularis ^{707,777}	aris ^{707,712,713} 12
955xytoccensin V (xytoccensin 1) $R_1 = OAc; R_2 = H$ X. granatum956tabularisin C $R_1 = OAc; R_2 = H; R_3 = R_4 = Ac$ Chukrasia tabul957tabularisin D $R_1 = R_2 = R_4 = H; R_3 = Ac$ C. tabularis ⁷¹³ 958tabularisin G $R_1 = R_2 = H; R_3 = R_4 = Ac$ C. tabularis ^{707,77} 959tabularisin H $R_1 = OAc; R_2 = H; R_3 = Ac; R_4 = iBu$ C. tabularis ^{707,77} 960tabularisin I $R_1 = OAc; R_2 = H; R_3 = Ac; R_4 = iBu$ C. tabularis ^{707,77}	aris ^{707,712,713} 12 12 12
955xyloccensin V (xyloccensin 1) $R_1 = OAc; R_2 = H$ X. granatum956tabularisin C $R_1 = OAc; R_2 = H; R_3 = R_4 = Ac$ Chukrasia tabul957tabularisin D $R_1 = R_2 = R_4 = H; R_3 = Ac$ C. tabularis ⁷¹³ 958tabularisin G $R_1 = R_2 = H; R_3 = R_4 = Ac$ C. tabularis ^{707,77} 959tabularisin H $R_1 = OAc; R_2 = H; R_3 = Ac; R_4 = iBu$ C. tabularis ^{707,77} 960tabularisin I $R_1 = OAc; R_2 = R_3 = H; R_4 = iBu$ C. tabularis ^{707,77} 961tabularisin L $R_1 = OAc; R_2 = R_3 = H; R_4 = iBu$ C. tabularis ^{707,77}	aris ^{707,712,713} 12 12 12

of an intramolecular cyclopropanation of a diazo ketone and subsequent selective cleavage of a cyclopropyl ketone, a stereoselective synthesis of a model compound for azadiradione (12) was accomplished starting from α -cyclocitral in 12 steps with 15% overall

yield.⁸¹⁸ Early in 1989, Corey reported the synthesis of **12** from *trans,trans*-farnesol stereoselectively.⁸¹⁹ Sastry et al. prepared a series of nimbolide (**345**) derivatives modified on the lactone ring under catalyst-free conditions, and pointed out that the position

and nature of the substituent seemed to be crucial for the cytotoxic activity.⁸²⁰ The brief and stereoselective synthesis of havanensinclass limonoid models was based on a radical domino reaction converting an epoxyketone to a bicyclic hydroxyketone, and was

Figure 26. Continued

Figure 26. Structures of phragmalin-ortho ester limonoids 846-962.

achieved in six steps overall from simple cyclohexenones (Scheme 4). $^{\rm 821}$

A possible key intermediate in the biosynthesis of the ring D-seco limonoids was synthesized by the conversion of the sidechain of turraeanthin, a protolimonoid in *Turraeanthus africanus*, into a β -substituted furan in two steps with considerable yield.^{822,823} The tactics of the synthesis of fraxinellone (1142) included reaction of 6-formyl-2,6-dimethyl-cyclohex-2-enecarboxylates with furyllithium followed by double-bond isomerization with base,^{824,825} and conversion from fraxinellonone (1141) in short steps.⁸²⁶ After formation of the five-membered lactone, an aldol reaction and olefin metathesis established the bicyclic ring system, in which the catalytic diastereoselective Oshima—Utimoto reaction was employed as key step (Scheme 5).⁸²⁷ The short and stereocontrolled simple synthetic approach to the limonoids system was presented in 1987 by Corey et al., which introduced a high susceptibility for α -oxygenated, α -stannylated allylic systems to undergo free radical attack at the γ -carbon.⁸²⁸

Chemical transformation was considered to be an efficient method in structure elucidation and revision. A direct relationship between the melianes and meliacins (limonoids) was established through opening the 7α , 8α -epoxide ring of a melia-none derivative.⁸²⁹ Swietenine (677) was converted into diacetylswietenolide (647), two compouds which differed mainly in the position of the double bond, in seven steps via 14α -hydroxy-swietenine and the $\Delta^{8,30}$, $\Delta^{14,15}$ diene intermediates.⁸³⁰ Khayanthone (111) was converted into khivorin (434) by oxidation with alkaline hydrogen peroxide followed by reacetylation.⁸³¹ The preparations of methyl angolensate (568) and andirobin (556) from 7-deacetoxy-7-oxokhivorin $(441)^{529}$ substantiated the suggestion that the characteristic bicycle[3.3.1]nonane ring system of the swietenine group was formed from the normal tetracyclic triterpene nucleus by oxidative cleavage of ring B followed by intramolecular Michael addition of a C-2 carbanion to the diene lactone system.⁶⁰⁹ Mexicanolide (626) was prepared from 7-deacetoxy-7-oxokhivorin (441) via a diene-lactone intermediate, which subsequently underwent intramolecular Michael addition by alkaline hydrolysis.^{832–834} E.P.1 (584) has been partially synthesized from gedunin (416), by a synthesis in which the key stage involved the Baeyer–Villiger oxidation of the 7-oxo group to a lactone.⁸³⁵ 416 was transformed along an unambiguous route into 6β -hydroxygedunin (420) and the chemical and spectroscopy properties of the acetate of this product were different from the natural 6α -acetoxygedunin (418).⁸³⁶ An investigation was made of the oxidation of 626 and related compounds with a view to the partial preparation of the 1,8hemiacetal bridge characteristic of the limonoids such as xyloccensin A (756) which originated from Xylocarpus molccensis.⁸³⁷

Besides chemical conversion, structural modification using biocatalysts was also documented. *Nocardia* sp. quantitatively converted salannin (332) and 3-deacetylsalannin (333) into 3-deacetoxy-1-de[(E)-2-methylbut-2-enoloxy]salannin-1-en-3-one, a potentially bioactive compound with an α,β -unsaturated ketone moiety in ring A.⁸³⁸

5. BIOLOGICAL ACTIVITIES OF MELIACEOUS LIMONOIDS

Meliaceous limonoids have been gaining global acceptance in agricultural applications and in contemporary medicine for their myriad but discrete properties. The need to protect our food supply from phytophagous insect attack using ecologically acceptable methods has led to a growing interest in behavior modifying chemicals from natural sources. For example, considering azadirachtin (292), we see that its potent activity against a broad range of insect species combined with its remarkable nontoxicity toward mammalian organism made **292** an attractive candidate as a natural pesticide.⁸³⁹ Miscellaneous activities of meliaceous limonoids have been investigated and some wonder-ful general reviews,^{840–842} and specific reviews on insect growth regulating activity,⁸⁴³ insecticidal activity,^{34,844} and the cytotoxic activity against the P388 cell line⁸⁴⁵ have been presented in the past decades. In addition, the biological activities of limonoids from *Melia azedarach*,^{37,44–47} *M. toosendan*,^{47,85} and *Azadir-achta indica*,^{3,29,35–37,39,41–43,846} including especially the acti-vities^{19,26–28,30,847} and commercial application of **292**,⁸⁴⁸ have been reviewed. Furthermore, the modes and toxicity characteristics of the biological action of 292 were presented.^{32,33} For example, Mordue et al. proved that the mode of 292 involved (i) effects on deterrent and other chemoreceptors resulting in antifeedancy (ii) effects on ecdysteroid and juvenile hormone titers through a blockage of morphogenetic peptide hormone release, and (iii) direct effects on most other tissues studied resulting in an overall loss of fitness of the insect.²⁵ The biological activity of ring D and rings B,Dseco limonoids of Meliaceae, 50 and of gedunin (416) have also been summarized recently.⁴⁹ Furthermore, the activities of natural limonoids from plants have been presented including the meliaceous limonoids as one of their discussion topics. $^{10,16-18}$

In addition, the toxicity evaluation of meliaceous limonoids has been reported occasionally. Among the six limonoids from *Melia azedarach*, azedarachin B (160) showed remarkable BST (brine shrimp lethality test) activity with an LC₅₀ value of 0.0098 μ M.²¹⁸ 1-Methacrylyl-3-acetyl-11-methoxymeliacarpinin (326) exhibited significant lethal activity with an IC₅₀ value of 19 μ g/mL in the BST test.³⁴⁶ The highest dose of azadirachtin (292), 1500 mg/kg, was well tolerated by rats of both sexes thus could be used as a basal dose for the determination of the

Figure 27. Structures of polyoxyphragmalin limonoids 963-1015.

NOEL (no-observed-effect level) of **292** to calculate its safety margin.⁸⁴⁹ Nimbolide (**345**) was proved to be toxic to mice only when given i.p. and i.v., and less toxic to rats and hamsters, and it was supposed that when given i.v., the possible cause of death induced by it was a sudden hypotensive shock.⁸⁵⁰ Azedaralide (**1138**), fraxinellonone (**1141**) and 12α -acetoxyfraxinellone (**1147**) showed

ichthyotoxic activity at a concentration of 50 ppm, while fraxinellone (1142) required only 10 ppm.²³⁰

5.1. Biological Activities in Agricultural Use

5.1.1. Insects Antifeeding Activity. Insect antifeedant activity, the most potent activity of limonoids, has been extensively

Tab	le 25.	Structures and	l Sources	of Pol	lyoxyp	hragmaliı	n Limonoid	s 96	3 - 3	101	.5
-----	--------	----------------	-----------	--------	--------	-----------	------------	------	-------	-----	----

no.	compounds	substitution groups and others	sources
963	moluccensin H	$R_1 = R_2 = H; R_3 = Ac$	<i>Xylocarpus moluccensis</i> ⁷²³
964	moluccensin H	$R_1 = Piv; R_2 = H; R_3 = iBu$	X. moluccensis ⁵⁶⁸
965	moluccensin I	$R_1 = iBu; R_2 = H; R_3 = Piv$	X. moluccensis ⁵⁶⁸
966	moluccensin J	$R_1 = Piv; R_2 = iBu; R_3 = H$	X. moluccensis ⁵⁶⁸
96 7	moluccensin I	$R_1 = H; R_2 = OCH_3; R_3 = Ac$	X. moluccensis ⁷²³
968	moluccensin J	$R_1 = R_2 = H; R_3 = Ac$	X. moluccensis ⁷²³
969	moluccensin K	$R_1 = H$; $R_2 = Piv$; $R_3 = iBu$	X. moluccensis ⁵⁶⁸
970	moluccensin L	$R_1 = R_3 = Piv; R_2 = H$	X. moluccensis ⁵⁶⁸
971	tabularin		Chukrasia tabularis ⁷²⁴
972	xylogranatin E ₂		Xylocarpus granatum ⁶⁶⁹
973	tabulalin	$R_1 = R_3 = OH; R_2 = Ac; R_4 = H; \Delta^{14,15}$	Chukrasia tabularis ⁷⁰⁶
974	atomasin A	$\mathbf{R}_1=\mathbf{OAc};\mathbf{R}_2=\mathbf{Ac};\mathbf{R}_3=\mathbf{H};\mathbf{R}_4{=}\mathrm{iBu}$	Entandrophragma candollei ^{719,725}
975	atomasin B	$R_1 = OAc; R_2 = Ac; R_3 = H; R_4 = propanoyl$	E. candollei ^{719,725}
976	swietemacrophine	$R_1 = OH$; $R_2 = R_4 = Tig$; $R_3 = OAc$	Swietenia macrophylla ⁷¹⁷
9 77	xylocarpin K		Xylocarpus granatum ⁶⁷⁷
978	tabulalide E		Chukrasia tabularis ⁷⁰⁶
979	granatumin F	R = H	<i>Xylocarpus granatum</i> ⁴²⁶
980	granatumin G	R = OH	X. granatum ⁴²⁶
981	xylocarpin A (granaxylocarpin E)	$R_1 = Ac; R_2 = OAc; R_3 = R_4 = R_5 = H$	X. granatum ^{632,633}
982	xylocarpin B	$R_1 = Ac; R_2 = R_3 = R_4 = R_5 = H$	<i>X. granatum</i> ⁶³³
983	xylocarpin C	$R_1 = R_2 = R_3 = R_5 = H; R_4 = OAc$	<i>X. granatum</i> ⁶³³
984	xylocarpin D (granaxylocarpin D)	$R_1 = Ac; R_2 = OH; R_3 = R_5 = H; R_4 = OAc$	X. granatum ^{632,633}
985	xylocarpin E	$R_1 = Ac; R_2 = OAc; R_3 = R_5 = H; R_4 = OH$	<i>X. granatum</i> ⁶³³

investigated with respect to many kinds of insects. For example, a number of evaluations of the well-known azadirachtin (292) were carried out, and some nice reviews described its antifeedancy against miscellaneous insects in detail. $^{25-27}$ In addition, some antifeeding data of 292 are summarized in Table 32. With as 1 ittle as 0.2 ppm of 292 incorporated into the diet of Spodoptera frugiperda, it showed antifeedant effects on first instar larvae and inhibited the molting of the nymphs to the adult stage when it was applied topically with 0.01 μ g to newly molted fifth instar nymphs of Oncopeltus fasciatus.⁸⁵¹ 292 also elicited dose-dependent neural and antifeedant behavioral responses in S. littoralis, Schistocerca gregaria, and Locusta migratoria when it was used to investigate the mechanism of its effects on the feeding behavior of these three species.²⁶ The pathological effects of 292 on S. gregaria and L. migratoria were closely linked to a loss of feeding, with injections of 5, 10, and 15 μ g/g causing an increasingly rapid onset of the effects associated with an increasingly reduced food intake.⁸⁵² In greenhouse and seedbed tests, the feeding deterrence provided by 292 against the striped Acalymma vittatum was not as great as by carbaryl.⁸⁵³ Exposure of **292** to sunlight caused a rapid decrease in antifeedant potency against newly emerged first-instar (0.046 mg) of Spodoptera frugiperda, and acetone solutions of 292 exposed for seven days gave more than a 50% reduction in activity.⁸⁵⁴ Interestingly, Crocidolomia binotalis was capable of detoxifying the antifeedancy of 292 to a limited extent at the cost of poor weight gain and disruption in larval and pupal development.⁸⁵⁵ Feeding behavior of four slug species of Deroceras reticulatum, Arion distinctus, Agriolimax caruanae, and Maximus sp., as detected by the amount of leaf eaten compared to the controls, was not affected by the presence of 292 at those concentrations (<500 ppm) which deterred from feeding in Rhopalosiphum padi and Sitobion avenae.856

Using Pericallia ricini in dual choice bioassay, nymania 3 (478) was an effective antifeedant at concentrations of $1-10 \ \mu g/cm^2$ leaf, which is half as active as 292.497 Salannin (332) was less active than **292** in feeding suppression against the larvae of *Spodoptera littoralis* and *Earias insulana*.⁸⁵⁷ **292** was more potent as an antifeedant and growth inhibitor than any of five limonoids 17β -hydroxyazadiradione (18), salannin (332), 6-deacetylnimbin (392), gedunin (416), and 7-deacetylgedunin (421) against Helicoverpa armigera,⁸⁵⁸ and produced almost 100% larval mortality at 1 ppm concentration.⁸⁵⁹ At $4 \mu g/cm^2$ and $1 \mu g/cm^2$, the isomeric mixture of meliartenin (164) was active as 292 in strongly inhibiting the larval feeding of *Epilachna paenulata* and *S. eridania*.²⁰⁸ 1-Tigloyl-3-acetylazadirachtol (**297**) and marrangin (1067) were reported as being more potent than 292 in the 24 h dual choice antifeedant test against E. varivestis (Table 33).³²² Similarly, the crop protection against Schistocerca gregaria afforded by 292 resulted from both antifeedancy and toxicity, whereas 3-tigloylazadirachtol (296) was more effective by direct toxicity after significant ingestion.⁸⁶⁰ Cnaphalocrocis medinalis larvae which were chronically exposed to any of 17β hydroxyazadiradione (18), 292, salannin (332), deacetylnimbin (392), gedunin (416), or 7-deacetylgedunin (421), showed a reduction in weight of 59-89% and exhibited a significant reduction in activities of acid phosphatases (ACP), alkaline phosphatases (ALP), and adenosine triphosphatases (ATPase). These results indicate that neem limonoids affected gut enzyme activities.861,862 The five limonoids 17β -hydroxyazadiradione (18), salannin

The five limonoids 17β -hydroxyazadiradione (18), salannin (332), 6-deacetylnimbin (392), gedunin (416), and 7-deacetylgedunin (421) affected feeding, development and reproduction in *Helicoverpa armigera*, and the reduced nutritional efficiency and fecundity were recorded as the consequence of postingested

Table 26. Structures and Sources of 8,11-Linkage Limonoids (Trijugin-Class) 1016–1043

no.	compounds	substitution groups and others	sources
1016	trijugin A	$R_1 = H; R_2 = O; R_3 = \beta$ -OH; $R_4 = OAc$	Heynea trijuga ⁷²⁹
1017	trijugin G	$R_1 = O; R_2 = OPiv; R_3 = \beta - OH; R_4 = H$	Trichilia connaroides ⁵⁷³
1018	voamatin A	$R_1 = OH; R_2 = OCin; R_3 = \alpha - OH; R_4 = H$	Astrotrichilia voamatata ⁷³³
1019	voamatin B	$R_1 = OH; R_2 = OCin; R_3 = \beta - OH; R_4 = H$	A. voamatata ⁷³³
1020	trijugin B	R = H	Heynea trijuga ⁷²⁹
1021	trijugin B acetate	R = Ac	H. trijuga ⁷³⁴
1022	capensolactone 3	$R_1/R_2 = ONic/OiBu; R_3 = H; R_4 = R_5 = OAc$	Ekebergia capensis ⁷³⁰
1023	cipatrijugin A	$R_1 = R_3 = R_4 = R_5 = H; R_2 = OAc$	Cipadessa cinerascens ^{544,735}
1024	cipatrijugin B	$R_1 = R_4 = R_5 = H; R_2 = OAc; R_3 = OH$	C. cinerascens ^{563,735}
1025	cipatrijugin C	$R_1 = R_4 = R_5 = H; R_2 = R_3 = OAc$	C. cinerascens ^{563,735}
1026	cipatrijugin D	$R_1 = R_3 = R_5 = H; R_2 = R_4 = OAc$	C. cinerascens ^{563,735}
1027	sandrapin A	$R_1 = R_2 = R_5 = OAc; R_3 = H; R_4 = OH$	Sandoricum koetjape ^{736,737}
1028	sandrapin B	$R_1 = OPiv; R_2 = R_5 = OAc; R_3 = H; R_4 = OH$	S. koetjape ^{736,737}
1029	sandrapin C	$R_1 = OiBu; R_2 = R_5 = OAc; R_3 = H; R_4 = OH$	S. koetjape ^{736,737}
1030	sandrapin D	$R_1 = OTig; R_2 = R_5 = OAc; R_3 = H; R_4 = OH$	S. koetjape ^{737,738}
1031	sandrapin E	R_1 = methacrylate; $R_2 = R_5$ = OAc; $R_3 = H$; $R_4 = OH$	S. koetjape ^{737,738}
1032	E.P.4	$R_1 = R_4 = OAc; R_2 = OAng; R_3 = R_5 = H$	Ekebergia pterophylla ⁵⁶⁵
1033	capensolactone 1	$R_1 = iBu; R_2 = R_4 = H; R_3 = OH$	E. capensis ⁷³⁰
1034	capensolactone 2	$R_1/R_2 = Nic/Piv; R_3 = OH; R_4 = Ac$	E. capensis ⁷³⁰
1035	E.P.5	$R_1 = R_2 = R_4 = Ac; R_3 = H$	E. pterophylla ⁵⁶⁵
1036	trichilin A		Trichilia connaroides ⁷³¹
1037	trijugin H		T. connaroides ⁵⁷³
1038	cipadesin D	$R_1 = R_3 = H; R_2 = OAc$	Cipadessa cinerascens ^{54,544,564}
1039	cipadesin E	$R_1 = OH; R_2 = R_3 = H$	C. cinerascens ^{54,563}
1040	cineracipadesin F	$R_1 = OAc; R_2 = R_3 = H$	C. cinerascens ⁵⁶³
1041	cipadesin H	$R_1 = R_2 = R_3 = H$	C. cinerascens ⁵⁶⁴
1042	cipadesin I	$R_1 = H; R_2 = R_3 = OAc$	C. cinerascens ⁵⁶⁴
1043	trichilin B		Trichilia connaroides ⁷³¹

Figure 28. Structures of 8,11-linkage limonoids (trijugin-class) 1016-1043.

no.	compounds	substitution groups and others	sources
1044	cipadesin C	$R_1 = OAc; R_2 = H; R_3 = OH$	Cipadessa cinerascens ^{564,631}
1045	cipadesin E	$R_1 = R_2 = H; R_3 = OH$	C. cinerascens ⁵³
1046	cipadonoid C	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{H}$	C. cinerascens ⁵⁴⁴
1047	cipadonoid D	$R_1 = R_2 = H; R_3 = OAc$	C. cinerascens ⁵⁴⁴
1048	cipadonoid E	$R_1 = H; R_2 = R_3 = OAc$	C. cinerascens ⁵⁴⁴
1049	cipadonoid F	$R_1 = H; R_2 = OAc; R_3 = \alpha - CH_3$	C. cinerascens ⁵⁴⁴
1050	cipadonoid G	$R_1 = H; R_2 = OAc; R_3 = \alpha - CH_3; 11\alpha - OH$	C. cinerascens ⁵⁴⁴
1051	cipadesin A	$R_1 = R_2 = OAc; R_3 = \beta - CH_3$	C. cinerascens ^{563,631,735}
1052	cipadesin B	$R_1 = OAc; R_2 = H; R_3 = \beta - CH_3$	<i>C. cinerascens</i> ; ⁶³¹ <i>C. fruticosa</i> ^{563,564,671}
1053	cipadesin G	$R_1 = R_2 = H; R_3 = \beta - CH_3$	C. cinerascens ⁵⁶⁴

Table 27. Structures and Sources of 10,11-Linkage Limonoids (Cipadesin-Class) 1044-1053

Figure 29. Structures of 10,11-linkage limonoids (cipadesin-class) 1044–1053.

toxic effects of these compounds.⁸⁶³ Both azecins 1 and 3 (572 and 101) were effective antifeedants when incorporated into the fourth-instar larvae of Spodoptera litura and third-instar larvae of Henosepilachna vigintioctopunctata, as was evidenced by the reduced growth rate, increased time of pupation, and even significant mortality. 173 Of the five limonoids $94{-}98$ from Trichilia pallida, methyl $6,11\beta$ -dihydroxy- 12α -(2-methylpropanoyloxy)-3,7-dioxo-14 β ,15 β -epoxy-1,5-meliacadien-29-oate (97) showed the greatest activity in tests against the larvae of S. littoralis, S. exigua, Heliothis virescens, and Helicoverpa armigera with feeding index (FI) values varing from 40 to 49.171 In the antifeeding percentage test against S. littoralis, khayalactol (774) showed the highest potential with 83.8% at 1000 μ g/mL, followed by 1-O-acetylkhayanolide A (1003) with 58.3% at 500 μ g/mL, khayanolide D (1006) with 55.8 at 200 μ g/mL and finally 1003 with 31.4% at 100 μ g/mL.⁵⁵⁰ The growth inhibitory activities after 7 days and antifeedant activities of 774, khayanolide A (1002), khayanolide B (1004), and 1-O-acetylkhayanolide B (1005) were evaluated against S. littoralis. Among these, 1004 was the most active antifeedant with an EC_{50} value of 6.96 mg/kg for growth inhibitory activity and 2.19 mg/kg for antifeedancy.⁶⁷⁸ Xylogranatins F, G, and R (1156, 1157, and 843) exhibited marked antifeedant activity against the third-instar larvae of Mythimnaseparate at a concentration of 1 mg/mL. Among these, 1157 was the most potent with AFC50 (concentration for 50% antifeedant activity) values of 0.31 and 0.30 mg/mL at exposure times of 24 and 48 h, respectively.⁶³⁸

Modes of action other than their useful antifeedant activity were also investigated for limonoids. Chuanliansu (167) stimulated a deterrent receptor cell located in the medical maxillary sensillum styloconicum, and inhibited responses of both the sugar and glucosinolate receptor cell which are localized in the

Table 28. Sources of Rearranged Limonoids with OtherLinkage 1054–1062

no.	compounds	sources
1054	walsuronoid A	Walsura robusta ⁷³⁹
1055	4 α ,6 α -dihydroxy-A-homoazadirone	Azadirachta indica ⁷⁴²
1056	spirosendan	Melia toosendan ^{85,247,743}
1057	volkensinin	M. volkensii ⁷⁴⁴
1058	walsuronoid B	Walsura robusta ⁷³⁹
1059	walsuronoid C	W. robusta ⁷³⁹
1060	delevoyin C	Entandrophragma delevoyi ⁴²⁵
1061	cipadonoid A	Cipadessa cinerascens ^{740,741}
1062	cumindysoside B	Dysoxylum cumingianum ⁷⁴⁵

lateral sensillum styloconicum.^{864,865} In other experiments, when Pieris brassicae fed on its natural foodplant, the deterrent effect of 167 and salannin (332) were mediated solely via the medial deterrent receptor, whereas inhibitory effects on the sugar and glucosinolate receptors did not play a significant role.⁸⁶⁸ Investigation of the bioefficacy and mode of action of some salanninclass limonoids and their role in a multicomponent system against lepidopteran larvae led to the conclusion that nonazadirachtin limonoids having structural similarities and explicitly similar modes of action have no potentiating effect in any combination.³⁶⁶ Ortego et al. concluded that the effects of azadirone (1) and the mixture of 3,7-di-O-acetylhavanensin (107) and 1,7-di-O-acetylhavanensin (108) on digestive proteases and detoxication enzymes in the larval midgut of Leptinotarsa decemlineata larvae reflected their postulated mode of action.⁸⁶⁷ Salannin (332) and nimbinene (1099) showed no toxicity-mediated effects on Spodoptera litura larvae, and the antifeedant activity was a result of the effects on other chemoreceptors.⁸⁶⁸ Potentiation among nonazadirachtin limonoids having two explicitly different modes of action, such as feeding deterrence and physiological toxicity, might be playing a significant role in the potentiation effect.⁴

From studies in which the *Spodoptera* species insects were frequently used, the EC₅₀ (50% effective concentration), ED₅₀ (50% effective dosage), MAC (minimum antifeedant concentration), PC₅₀ (50% protective concentration), PC₉₅ (95% protective concentration), AR (antifeedant rate), FI₅₀ (50% feeding inhibition), and AI (antifeedant index, mean \pm SEM) values of antifeedant activity of meliaceous limonoids were summarized in detail (Tables 33 and 34). Unfortunately, some limonoids were declared to show antifeedant activity against

Figure 30. Structures of rearranged limonoids with other linkages 1054-1062.

different insects, but no data had been presented in the original paper. These limonoids were 7-acetyltrichilin A (136),²⁰⁰ 1 α ,3 α -diacetylvilasinin (189),²⁴⁵ toonacilin (268) and 6-acetoxytoonacilin (269),^{286,289} 21-(*R*,*S*)-hydroxytoonacilide (279) and 23-(*R*,*S*)-hydroxytoonacilide (280),²⁸⁸ salannin (332),⁸⁵³ 3-deacetylsalannin (333) and salannol (336),²⁴⁵ 2',3'-dehydrosalannol (338),³⁴⁹ munronins A–E (498–500, 1151, 1116),⁵⁰⁶ methyl 3 β -isobutyrloxy-1-oxomeliac-8(30)-enate (702),⁶⁶⁶ salannolactam-(23) (1154), and salannolactam-(21) (1155).⁷⁶⁶ In addition, azadirachtol (295) was reported to exhibit higher antifeedant activity than azadirachtin (292), but supporting data was lacking for this claim.³²³ Negatively, nimbinin (60), 17-*epi*azadiradione (77), and nimbin (391) were inactive against *Reticulitermes speratus* and the PC₉₅ values were beyond the bioassay limits.¹⁰³

As for structure—activity relationship of the insect antifeedant activity, Govindachari et al. pointed out that the C-seco limonoids were the most effective compounds while the intact limonoids were the least effective.⁸⁶⁹ Similarly, antifeedant activity tests showed that azadirachtin-class C-seco limonoids were the most potent ones, followed by the 12 α -OH compounds of the trichilin-class and azedarachins containing a 14,15-epoxide combined with either a C-19/29 acetal bridge or a C-11/19 acetal bridge.^{85,209,341} Suresh et al. concluded that the most active among the fifty-six limonoids were the C-ring modified limonoids of the azadirachtin-class followed by the intact apo-euphol types having a 14,15-epoxide and either a C-19/28 lactol bridge or a cyclohexenone A ring.⁸⁷⁰ Another supporting example is provided by azedarachins and trichilins showing the most antifeedant activity against the larvae of *Spodoptera eridania* at a concentration of 200–400 ppm, followed by nimbolidins at 500 ppm and trichilinins at 1000 ppm.²³⁹

Ley et al. pointed out that the potent antifeedant activity of the derivatives of azadirachtin (292) with C-7 β -OH were significantly less active than its α -epimer.⁸⁷¹ Mordue et al. proposed that the C-7, C-11, C-22, and C-23 positions of the carbon ring were key positions for bioactivity where substitution significantly influences the potency of **292**.⁸⁷² Furthermore, it was possible to draw some general conclusions that hydrogenation of the C-22/ 23 enol ether double bond did not significantly diminish activity of either the azadirachtin or 11-deoxy series, and that both the bulky substituents at C-22 and increasingly larger groups at C-23 caused a considerable drop in antifeedancy.^{873,874} For example, both **292** and 22,23-dihyro-23 β -methoxyazadirachtin (303) were potent antifeedant against S. littoralis and Heliothis virescens, whereas the latter, which had greater steric bulk at C-23, had weaker activity.³⁰⁵ The nature of the substituents at C-1 and C-3 of the decalin ring of azadirachtins affected the antifeedancy of the compounds, as did the additional substituents to C-22/23.⁸ In addition, Yamasaki et al. suggested that the hydroxyl groups on 292 were essential for maximum activity and that the molecule must also have a lipophilic region.⁸⁷⁶ Methylation of the hydroxyl substitutions on the azadirachtins molecule resulted in a decrease in antifeedant activity, as did the addition of bulky groups to the dihydrofuran ring.⁸⁷⁷ On the basis of the antifeedant potency of several limonoids from Azadirachta indica, it could be suggested that the furan ring, the α_{β} -unsaturated ketone, and the hydroxyl group each played an important role in determining the activity.103

Table 29. Sturctures and Sources of Pentanortriterpenoids 1063–1114, Hexanortriterpenoids 1115–1118, Hepanortriterpenoids 1119–1126, Octanortriterpenoids 1127–1129, and Enneanortriterpenoids 1130–1131

no.	compounds	substitution groups and others	sources
1063	2-oxo-deacetyl salannin		Azadirachta indica ⁴¹¹
1064	voamatin C	B = palmityl	Astrotrichilia voamatata ⁷⁵⁴
1065	voamatin D	R = Cin	A. $voamatata^{754}$
1066	11 β -azadirachtin H	$R_1 = \text{Tig; } R_2 = \text{OH; } R_3 = \text{H;}$ $R_4 = \text{COOCH}_3$	Azadirachta indica; ^{312,319,755} A. excelsa ³²⁴
1067	marrangin (azadirachtin L)	$R_1 = \text{Tig}; R_2 = \text{H}; R_3 = \text{OAc};$ $R_4 = \text{COOCH}_3$	A. excelsa ^{322,324,746}
1068	11α-hydroxy-12-norazadirachtin (11-epi-azadirachtin H, 11α- azadirachtin H)	$R_1 = Tig; R_2 = H; R_3 = OH;$ $R_4 = COOCH_3$	A. indica; ^{343,747,748,756} A. excelsa ³²⁴
1069	azadirachtin I	$R_1 = Tig; R_2 = OH; R_3 = H; R_4 = CH_3$	A. indica ^{312,317,319}
1070	11 <i>-epi</i> -azadirachtin I	$R_1 = Tig; R_2 = H; R_3 = OH; R_4 = CH_3$	A. indica ⁷⁴⁹
1071	azadirachtin M	$R_1 = Tig; R_2 = H; R_3 = OH; R_4 = CH_2OH$	A. indica; ³⁴³ A. excelsa ³²⁴
1072	azadirachtin P	$R_1 = iVal; R_2 = H; R_3 = OH; R_4 = COOCH_3$	A. excelsa ³²⁴
1073	moluccensin M		Xylocarpus moluccensis ⁵⁶⁸
1074	chuktabularin A	$R_1 = R_3 = Ac; R_2 = H$	Chukrasia tabularis ^{750,752}
1075	chuktabularin K	$R_1 = R_3 = Ac; R_2 = OAc$	C. tabularis ⁷⁵²
1076	chuktabularin S	$R_1 = R_2 = H; R_3 = Ac$	C. tabularis ⁷⁵²
1077	chuktabularin T	$R_1 = Ac; R_2 = R_3 = H$	C. tabularis ⁷⁵²
1078	chuktabularin C	$R_1 = R_3 = Ac; R_2 = R_4 = R_5 = H$	C. tabularis ^{750,752}
1079	chuktabularin L	$R_1 = R_2 = R_5 = H$; $R_3 = Ac$; $R_4 = OAc$	C. tabularis ⁷⁵²
1080	chuktabularin M	$R_1 = R_3 = Ac; R_2 = R_5 = H; R_4 = OAc$	C. tabularis ⁷⁵²
1081	chuktabularin N	$R_1 = Ac; R_2 = R_5 = H; R_3 = propanoyl; R_4 = OAc$	C. tabularis ⁷⁵²
1082	chuktabularin O	$\mathbf{R}_1=\mathbf{A}\mathbf{c};\mathbf{R}_2=\mathbf{R}_5=\mathbf{H};\mathbf{R}_3=\mathbf{i}\mathbf{B}\mathbf{u};\mathbf{R}_4=\mathbf{O}\mathbf{A}\mathbf{c}$	C. tabularis ⁷⁵²
1083	chuktabularin P	$R_1 = R_3 = Ac; R_2 = OH; R_4 = R_5 = H$	C. tabularis ⁷⁵²
1084	chuktabularin Q	$R_1 = R_3 = Ac; R_2 = OAc; R_4 = R_5 = H$	C. tabularis ⁷⁵²
1085	chuktabularin R	$R_1 = R_2 = R_4 = R_5 = H; R_3 = Ac$	C. tabularis ⁷⁵²
1086	chukvelutin A	$R_1 = R_4 = H$; $R_2 = OAc$; $R_3 = Ac$; $R_5 = CH_3$	C. tabularis ⁷⁵¹
1087	chukvelutin B	$R_1 = R_3 = Ac; R_2 = OAc; R_4 = H; R_5 = CH_3$	C. tabularis ⁷⁵¹
1088	chukvelutin C	$R_1 = R_2 = R_3 = R_4 = Ac; R_5 = CH_3$	C. tabularis ⁷⁵¹
1089	chuktabularin D	$R_1 = R_2 = R_3 = R_4 = Ac; R_5 = H$	C. tabularis ^{750,752}
1090	chuktabularin E	$R_1 = R_5 = H; R_2 = R_3 = R_4 = Ac$	C. tabularis ⁷⁵²
1091	chuktabularin F	$R_1 = R_2 = R_3 = Ac; R_4 = propanoyl; R_5 = H$	C. tabularis ⁷⁵²
1092	chuktabularin G	$R_1 = R_2 = R_3 = Ac; R_4 = iBu; R_5 = H$	C. tabularis ⁷⁵²
1093	chuktabularin H	$R_1 = R_2 = R_5 = H; R_3 = R_4 = Ac$	C. tabularis ⁷⁵²
1094	chuktabularin l	$R_1 = R_2 = Ac; R_3 = R_4 = R_5 = H$	C. tabularis' 32
1095	chuktabularin J	$R_1 = R_3 = R_4 = R_5 = H; R_2 = Ac$	C. tabularis' 2
1096			C. tabularis 697
1097	chuktabrin A		C. tabularis
1098	dihydroxy-apotirucalla(eupha)-1-en-3-one		
1099	nimbinene	R = Ac	Azadirachta indica ⁷⁵⁸
1100	6-deacetylnimbinene	R = H	A. indica ⁷³⁸
1101	nimbandiol	R = H	A. indica 316.758
1102	6-acetylnimbandiol	R = Ac	A. indica 161 290 291
1103	$5\alpha, 6\beta, 8\alpha$ -trihydroxy-28-norisotoonafolin	$R_1 = O; R_2 = H$	Toona ciliata
1104	$S\alpha, 6\beta, 8\alpha, 12\alpha$ -tetrahdroxy-28-norisotoonafolin	$R_1 = O; R_2 = OH$	T. ciliata ²⁰¹
1105	toonaciliatin A	$R_1 = O; R_2 = OH, \Delta^{-1/2}$	$1. ciliata^{-5}$
1106		$R_1 = R_2 = OH$	$1. ciliata^{-5}$
1107	toonaciiiatin G	$K_1 = OH; K_2 = H$	$1. \operatorname{clitata}^{-7}$
1108	toonaciliatin H	$K_1 = Ac; K_2 = OH$	1. $cinata^{-7}$
1109	toonaciiatin I	$\kappa_1 = Ac; \kappa_2 = 0$	1. cutata T z^{291}
1110	toonaciiatin J	$\kappa_1 = \kappa_2 = OH$	1. cuiata
1111	trijugin C	$\kappa_1 = \kappa_2 = \mu$	1 richilla connaroides

Table 29. Continued

no.	compounds	substitution groups and others	sources
1112	trijugin D	$R_1 = Ac; R_2 = H$	T.connaroides ⁵⁷³
1113	trijugin E	$R_1 = Ac; R_2 = OH$	T. connaroides ⁵⁷³
1114	trijugin F		T. connaroides ⁵⁷³
1115	carapolide A		Carapa procera ⁵⁸¹
1116	munronin E		Munronia henryi ⁵⁰⁶
1117	nimolicinoic acid		Azadirachta indica ⁷²
1118	ceramicine A		Chisocheton ceramicus ^{262,412}
1119	entilin A	$R_1 = R_2 = H$	Entandrophragma utile ^{491,760}
1120	entilin B	$R_1 = H; R_2 = Ac$	<i>E. utile</i> ^{491,760}
1121	entilin C	$R_1 = CH_3; R_2 = H$	E. utile ⁷⁶¹
1122	entilin D		E. utile ^{491,762}
1123	munronin F		Munronia henryi ⁵⁰⁶
1124	turrapubesic acid A	R = Ac	Turraea pubescens ¹²⁶
1125	turrapubesic acid B	R = iBu	T. pubescens ¹²⁶
1126	turrapubesic acid C	R = Piv	T.pubescens ¹²⁶
1127	azadironol		Azadirachta indica ¹²⁸
1128	desfurano-6 α -hydroxyazadiradione	R = OH	A. indica ¹²⁰
1129	desfurano-azadiradione	R = H	A. indica ^{70,753}
1130	7α -acetoxy-4,4,8-trimethyl-5 α -(13 α Me)-17-oxa-androsta-1,	$R = \alpha$ -CH ₃	A. indica ^{70,107,753}
	14-dien-3,16-dione (13 α -nimolactone)		
1131	7α -acetoxy-4,4,8-trimethyl- 5α -17-oxa-androsta-1,14-dien-3,	$R = \beta$ -CH ₃	A. indica ^{70,107,753}
	16-dione (13 β -nimolactone)		

When trichilin-class limonoids are tested against Spodoptera eridania, there is a remarkably clear-cut structure activity relationship in which the 12 α -OH function was the most potent, followed by 12 β -OH, 12-desoxy, and 12 α -acetoxy groups, in oder of decreasing potency.^{194,224} Similar results indicated that the 12-OH functionality could be necessary for maximum activity in trichilin-class limonoids, and it appeared from the variable activities of meliatoxins A_1 and A_2 that even the epoxide function on ring D had an important role to play.⁸⁷⁸ Zhou et al. also concluded that isomerization of the D-ring epoxide to a 15-keto and acetylation of the 12- and 29-OH groups of trichilin-class limonoids reduced the antifeedant activity, but the side-chain change at C-29 did not influence their activity.²²⁵ The highly oxygenated 1-O-acetylkhayanolide A (1003) was the most active antifeedant among the six limonoids from Khaya senegalensis. This finding was in agreement with the observation that the role played by increasing oxygenation in limonoids is to increase their biological activity.⁵⁵⁰ The introduction of the O-acetyl group of xylogranatin F (1156) at C-3 enhanced the antifeedant rate significantly (16 to 25%).⁶³⁸ Hydrogenation of the furan ring, replacement of the acetoxyl group with methoxyl group, and saponification of the methyl ester at C-11 all increased the antifeedant activity of salannin (332) against Leptinotarsa decemlineata. Modification of the tigloyl group also changed this activity.879

5.1.2. Insects Growth Regulatory Activity. Besides the well-known antifeedant activity, azadirachtin (292) also showed strong insect growth regulating activity against many insects. Since 292 did not reduce feeding in *Pieris brassicae* pupae, the growth retardation and deformities were the direct effect of 292 and not due to lack of food.⁸⁸⁹ Nutritional analyses revealed that the insect growth inhibitory and antifeedant effects were independent of each other and relative to the level of treatment with 292.⁸⁸⁴ Furthermore, 48 h feeding of 292 on foliage treated at

5–10 ppm appeared to be sufficient for growth disruption of *Spodoptera litura* at early instars age, and no juvenilizing effect was observed.⁸⁹⁰ Injection of **292** at higher concentration caused metabolic defects including weight reduction and metamorphosis inhibition in last larval instars of *Epilachna varivestis*.⁸⁹¹ In addition, prolonged development, wing deformities, unplasticization of wing lobes, development of wingless adults, and larval mortality were the characteristic features of **292** on various stages of *Dysdercus koenigii*.⁸⁹²

The insect growth regulating activity of azadirachtin (292) focused its effects mainly on the molt of insects. Feeding on azadirachtin-sprayed creeping bentgrass caused molting disorders and death of early instar Agrotis ipsilon and slowed feeding and stunted the growth of late instars.⁸⁹³ 292 caused significant reduction in feeding activity at 2.5 g/L, prolonged the period for molting to nymphal stage, and caused 60% reduction in moltability.⁸⁹⁴ Gaaboub et al. investigated the molting inhibition of 292 against Musca autumnalis, which involved delayed lethal action, adult emergence, and pupae or adults size.⁸⁹⁵ The ED₅₀ values for molting inhibition by injected 292 were in the range of 10-25 ng/larvae for fourth-instar larvae of ten insect species of Triatoma, Rhodnius and Panstrongylus.⁸⁹⁶ In addition, 292 inhibited cold-induced supernumerary molt of last-instar Galleria mellonella and induced disturbances in larval and pupal ecdysis as well as in the metamorphic process, thus resulting in the formation of various intermediates.⁸⁹⁷ Feeding inhibition is an indirect effect on *Rhodnius prolixus* due to an interference of 292 with the endocrine system rather than through the inhibition of chemoreceptors.⁸⁸⁷ Although injection 292 elicited feeding inhibition, molt inhibition against Locusta migratoria was due to interference with the endocrine system rather than to the altered feeding behavior.898

Azadirachtin (292) inhibited the release of ecdysone from blowfly larval and pupal brain-ring gland complexes (BRGC)

Figure 31. Structures of pentanortriterpenoids 1063–1114, hexanortriterpenoids 1115–1118, and hepanortriterpenoids 1119–1126, octanortriterpenoids 1127–1129, and enneanortriterpenoids 1130–1131.

Table 30. Structures and Sources of Simple Degraded Limonoids 1132-1149

no.	compounds	substitution groups and others	sources
1132	melazolide A	$R_1 = OH; R_2 = H$	Melia azedarach ⁴⁵²
1133	3-teracrylmelazolide A	$R_1 = OH; R_2 = teracryl$	M. azedarach ⁴⁵²
1134	3-teracrylmelazolide B	$R_1 = H; R_2 = teracryl$	M. azedarach ⁴⁵²
1135	dysodensiol A	$R = \beta$ -OH	Dysoxylum densiforum ⁷⁶⁴
1136	dysodensiol B	$R = \alpha$ -OH	D. densiforum ⁷⁶⁴
1137	dysodensiol C	R = O	D. densiforum ⁷⁶⁴
1138	azedaralide		Melia azedarach ²³⁰
1139	trichiconnarin A		Trichilia connaroides ⁵⁷³
1140	trichiconnarin B		T. connaroides ⁵⁷³
1141	fraxinellonone	$R_1 = O; R_2 = H$	Melia azedarach ^{206,230}
1142	fraxinellone	$R_1 = R_2 = H$	M. azedarach ^{230,240,251,452}
1143	9 $lpha$ -acetoxyfraxinellone	$R_1 = \alpha$ -OAc; $R_2 = H$	M. azedarach ²⁰⁶
1144	9 α -hydroxy-12 α -acetoxyfraxinellone	$R_1 = \alpha$ -OH; $R_2 = OAc$	M. azedarach ²¹⁸
1145	9 $lpha$ -hydroxyfraxinellone	$R_1 = \alpha$ -OH; $R_2 = H$	M. azedarach ^{218,452}
1146	9 eta -hydroxyfraxinellone	$R_1 = \beta$ -OH; $R_2 = H$	M. azedarach ⁴⁵²
1147	12a-acetoxyfraxinellone	$R_1 = H; R_2 = OAc$	M. azedarach ²³⁰
1148	12 α -hydroxyfraxinellone	$R_1 = H; R_2 = OH$	M. azedarach ²¹⁸
1149	30-hydroxyfraxinellone		M. azedarach ⁴⁵²

ΟН

Figure 32. Structures of simple degraded limonoids 1132-1149.

Table 31.	Structures and	l Sources	of N-C	Containing	Limonoids	5 1150-	-1159
-----------	----------------	-----------	--------	------------	-----------	---------	-------

no.	compounds	substitution groups and others	sources
1150	turraparvin D		Turraea parvifolia ¹²⁵
1151	munronin D	R = H	Munronia henryi ⁵⁰⁶
1152	munroniamide	$R = CO(CH_2)_2NHNH_2$	M. henryi ⁷⁶⁵
1153	turrapubesin B		Turraea pubescens ²⁸⁷
1154	salannolactam-(23)	$R_1 = H; R_2 = O$	Azadirachta indica ⁷⁶⁶
1155	salannolactam-(21)	$R_1 = O; R_2 = H$	A. indica ⁷⁶⁶
1156	xylogranatin F	$R = H; \Delta^{14,15}$	Xylocarpus granatum ⁶³⁸
1157	xylogranatin G	R = Ac; $\Delta^{14,15}$	X. granatum ⁶³⁸
1158	xylogranatin H	R = H	X. granatum ⁶³⁸
1159	granatoine		X. granatum ⁷²⁶

without affecting its biosynthesis.⁸⁹⁹ The induction of a super-numerary larval molt with moderate doses of the ecdysteroid agonist (RH-2485) and the synergistic potentiation of this effect by **292** were observed.⁹⁰⁰ Depending on the timing of injection

with 292, the ecdysteroid levels of Locusta migratoria could be drastically reduced, or delayed, or extended, or unaffected.901 Josephrajkumar et al. found that when applied at ED_{50} doses, 292 significantly depleted the content and altered the profile of

Figure 33. Structures of N-containing limonoids 1150–1159.

ecdysteroids at crucial stages. This involved modification of the ecdysteroid titer and then in turn led to changes in lysosomal enzyme activity causing overt morphological abnormalities during the metamorphic molt.⁹⁰² It seemed likely that pupation in azadirachtin-treated Manduca sexta was inhibited by a disturbed ecdysteroid regulation shortly before pupal ecdysis, and 292 was able to inhibit development even when individuals performed a complete molt after the treatment.⁹⁰³ In addition, low doses of 292 injected into newly molted last-instar larvae of Oncopeltus fasciatus prolonged the intermolt stage, apparently due to a delayed ecdysteroid peak.⁹⁰⁴ In preventing normal development of final-instar larvae of Heliothis virescens, 292 apparently reduced molting hormone titers by reducing prothoracicotropic hormone (PTTH) titers and the receptivity of prothoracic glands to produce ecdysone via stimulation by PTTH.⁹⁰⁵ Remold et al. suggested that 292 might influence the release of trophic hormones from the corpus cardiacum leading to alterations in timing and titer of morphogenetic hormone pools.⁹⁰⁶ The strong effect of

292 on larval-pupal and pupal-adult of Epilachna varivestis was interpreted as an interference with molting hormone pools.⁹⁰⁷ It was reported that 292 induced disturbances in larval and pupal ecdysis, decreased cold-induced elevation of juvenile hormone titers in the larval body, and might have an effect on the prothoracicotropic function of the brain.⁸⁹⁷ A brain factor, possibly the prothoracicotropic hormone that stimulates ecdysteroid production on the prothoracic glands, might act directly or indirectly on both the midgut cell organization and the intestinal microenvironment, interfering in the trypanosome survival and infection of the vector Rhodnius prolixus.⁹⁰⁸ Remold established a precise correlation between administered dose, resulting effects, and retention of 292, and concluded that azadirachtin shifted and decreased the ecdysterone, juvenile hormone, and vitellogenin peaks concomitantly.⁹⁰⁹ The LC₅₀ values of 292 against ecdysone 20-monooxygenase activity ranged from 10^{-4} M for Drosophila melanogaster to 4×10^{-4} for Manduca sexta.⁹¹⁰

Scheme 2. Synthesis of Azadirachtin and Azadirachtinin Skeleton from a Common Intermediate

Scheme 4. Strategy of Synthesis of 12-Oxo-14,15-epoxy Havanensin Derivatives

Exposure to **292** reduced the fertility and fecundity of adult *Myzus persicae*, *Nasonovia ribisnigri*, *Chaetosiphon fragaefolii* in a linear, concentration-dependent manner.⁹¹¹ Injection of **292** into newly hatched adults of *Oncopeltus fasciatus* affected the longevity, fecundity, and hatchability of eggs from treated parents, and there were marked differences between males and

females.⁹¹² Most of the *Locusta migratoryia* treated with **292** had no oviposition, and radioimmunoassay showed quantatively that only traces of ecdysteroids were present in their ovaries.⁹¹³ In addition, feeding adult *Epilachna varivestis* with **292** for first five days after molting decreased its reproduction, increased mortality, and delayed the onset of the oviposition.⁹¹⁴ Moreover, **292**

Scheme 5. Synthesis of Fraxinellone (1142) Using Stereoselective Oshima-Utimoto Reaction

Table 32. Antifeedancy of Azadirachtin (292) against Insects

insects	antifeedancy
Epilachna varivesti	$EC_{50} = 13 \text{ ppm};^{322} EC_{100} = 120 \text{ ppm}^{322}$
E. paenulata	$ED_{50} = 0.72 \mu g/cm^2$, $LD_{50} = 1.24 \mu g/cm^2 (96 \text{ h})^{880}$
Helicoverpa armigera	$EC_{50} = 0.26$ ppm (for neonates), 0.4 ppm (for 3rd instar larvae) ⁴⁹⁴
Locusta migratoria	$MIC = 25 \text{ ppm}^{881}$
L. migratoria	$ED_{50} = 3 \text{ ppm}^{882}$
Ostrinia nubilalis	$PC_{50} = 3.5 \text{ ppm}$ (for neonate larvae), 24 ppm (for 3rd-instar larvae) ⁸⁸³
Peridroma saucia	$EC_{50} = 0.26 \text{ ppm}^{884}$
Pieris rapae	$AR = 100 (1000 \text{ ppm})^{507}$
Phyllotreta striolata	$MIC = 10 \text{ ppm}^{885}$
Reticulitermes speratus	$PC_{95} = 65.293^{886}$
Rhodnius prolixus	$ED_{50} = 25.0 \ \mu g/mL^{887,888}$
Schistocerca gregaria	$ED_{50} = 0.001 \text{ ppm}^{882}$
Spodoptera littoralis	AI = 98.8 \pm 1.11 (1 ppm), 100.0 \pm 0.00 (10 ppm); ⁷⁹² 99 \pm 1.1(1 ppm) ³⁰⁵

delayed the release of one or more factors from the head that regulate oogenesis in Aedes aegypti.⁹¹⁵ Ovarian development was severely reduced in azadirachtin-injected females, and the vitellogenesis was rescuable by juvenile hormone treatment.⁹¹⁶ Both 20-hydroxyecdysone and 292 caused inhibition of vitellogenesis and ultrastructural damages in corpus allatum cells. Interestingly, some ultrastructural modifications were specific to each molecule, suggesting that they would act via different mechanisms.⁹¹⁷ The vitellogenesis inhibition produced by 292 in Labidura riparia consisted of direct cytotoxic effects as well as a generalized disruption of endocrine and neuroendocrine functions.⁹¹⁸ Spermiogenesis of Mamestra brassicae occurred in Grace's medium when the testis sheath was also present, but even in the presence of both ruptured testis and 20-hydroxyecdysone, 3 ppm of 292 caused degenerated spermatocysts.⁹¹⁹ Nisbet et al. reported that 292 bound preferentially to sites on the organelles associated with maturing Schistocerca gregaria sperm tails, and that 292 at concentrations of 10^{-4} M and above caused a time-dependent reduction in the motility of eupyrene sperm bundles liberated from the accessory glands of mature male S. gregaria.⁹²⁰ Subrahmanyam et al. pointed out that **292** delayed

the synthesis and release of neurosecretion from the A-type median neurosecretory cells of *S. gregaria*, thereby affecting the ovarian development.⁹²¹

Administration of a physiological dose of **292** into female *Locusta migratoria* by injection led neither to starvation (though food consumption was reduced) nor to a qualitative change in the neurosecretory proteins of the corpus cardiacum.⁹²² However, the neurosecretory system was accompanied by an unusually high accumulation of paraldehyde fuchsin (PAF)-stainable neurosecretory material in the brain fibers and in the storage lobes of the corpus cardiacum.⁹²³ The morphological and biochemical effects induced by **292** suggested a widespread blockade of factors presumably located in the central nervous system.⁹²⁴ **292** stimulated a specific deterrent neuron in the lepidopterous species tested and inhibited the firing of neurons with signal phagostimulants in another test.⁹²⁵

Experiments in vivo and in vitro proposed by Mordue et al. demonstrated that treatment with **292** resulted in a significant growth reduction in the rate of passage of food through the gut, and in gut motility of *Locusta migratoria*.⁹²⁶ Furthermore, azadirachtin (**292**) directly or indirectly inhibited the reduction

Table 33. Antifeedancy of Meliaceous Limonoids

compounds	insects and antifeedancy
azadirone (1)	Leptinotarsa decemlineata, AI = $11.6 \pm 6.3 (100 \text{ ppm})$, $22.4 \pm 7.4 (300 \text{ ppm})$, $26.9 \pm 5.1 (500 \text{ ppm})^{273}$
azadiradione (12)	Reticulitermes speratus, PC ₉₅ = 827.5 μ g/disk; ¹⁰³ Heliothis virescens, EC ₅₀ = 560 ppm ¹⁰¹
7-deacetylazadiradione (13)	<i>H. virescens</i> , $EC_{50} = 1600 \text{ ppm}^{101}$
17β -hydroxyazadiradione (18)	Reticulitermes speratus, $PC_{95} = 235.6 \ \mu g/disk^{103}$
7-deacetyl-17 β -hydroxyazadiradione (19)	Heliothis virescens, $EC_{s0} = 240 \text{ ppm}^{101}$
nilotin (129)	Leptinotarsa decemlineata, $ED_{s0} = 7 \ \mu g/mL^{191}$
12 α -hydroxyamoorastatin (166)	<i>Epilachna paenulata</i> , $ED_{50} = 0.80 \ \mu g/cm^2$ (in choice assay); $LD_{50} = 0.76 \ \mu g/cm^2$ (in no-choice assay) ⁸⁸⁰
chuanliansu (167)	<i>Helicoverpa armigera</i> , EC ₅₀ = 26.8 ppm; FI_{50} = 56.6 ppm (for third-instar larvae) ⁸⁶⁵
	Epilachna paenulata, $ED_{50} = 3.69 \ \mu g/cm^{2880}$
1 <i>β</i> ,2 <i>β</i> ;21,23-diepoxy-7 <i>α</i> -hydroxy-24,25,26,27-tetranor- apotirucalla-14,20,22-trien-3-one (246)	Leptinotarsa decemlineata, AI = $10.8 \pm 4.5 (100 \text{ ppm})$, $21.4 \pm 2.6 (300 \text{ ppm})$, $24.9 \pm 3.7 (500 \text{ ppm})^{273}$
3-tigloylazadirachtol (296)	<i>Epilachna varivesti</i> , $EC_{50} = 30 \text{ ppm}_i^{322} EC_{100} = 150 \text{ ppm}^{322}$
6 /	Schistocerca gregaria, $ED_{50} = 80 \mu g/l^{872}$
	Locusta migratoria, $ED_{50} = 12 \text{ mg/L}^{872}$
1-tigloyl-3-acetylazadirachtol (297)	<i>Epilachna varivesti</i> , $EC_{50} = 6 \text{ ppm}$; ³²² $EC_{100} = 50 \text{ ppm}^{322}$
salannin (332)	Spodoptera frugiperda, $ED_{50} = 13 \ \mu g/cm^2$; ³⁶² Reticulitermes speratus, $PC_{95} = 203.3 \ \mu g/disk^{103}$
3-deacetylsalannin (333)	R. speratus, $PC_{95} = 1373.1 \ \mu g/disk^{103}$
nimbolide (345)	<i>Epilachna varivesti</i> , $EC_{50} = 90 \text{ ppm}$; ³²² $EC_{100} > 500 \text{ ppm}^{322}$
volkensin (369)	Spodoptera frugiperda, $ED_{50} = 3.5 \ \mu g/cm^{2362}$
6-deacetylnimbin (392)	Reticulitermes speratus, $PC_{95} = 1581.2 \ \mu g/disk^{103}$
gedunin (416)	<i>R. speratus</i> , $PC_{95} = 218.4 \mu g/disk^{103}$
7-deacetylgedunin (421)	R. speratus, $PC_{95} = 113.7 \ \mu g/disk^{103}$
prieurianin (458)	<i>Helicoverpa armigera</i> , EC ₅₀ = 18.8 ppm (for neonates), EC ₅₀ = 92.2 ppm (for 3rd instar larvae) ⁴⁹⁴
epoxyprieurianin (464)	<i>H. armigera</i> , $EC_{50} = 3.2$ ppm (for neonates), $EC_{50} = 55.7$ ppm (for 3rd instar larvae) ⁴⁹⁴
dysoxylumin A (465)	<i>Pieris rapae</i> , AR = $73.8 (1000 \text{ ppm})^{507}$
dysoxylumin B (466)	<i>P. rapae</i> , $AR = 77.4 (1000 \text{ ppm})^{507}$
dysoxylumin C (46 7)	<i>P. rapae</i> , $AR = 74.9 (1000 \text{ ppm})^{507}$
dysoxylumolide B (501)	<i>P. rapae</i> , $AR = 28.3 (1000 \text{ ppm})^{507}$
dysoxylumic acid D (502)	<i>P. rapae</i> , $AR = 29.5 (1000 \text{ ppm})^{507}$
dysoxylumic acid A (503)	<i>P. rapae</i> , $AR = 78.7 (1000 \text{ ppm})^{507}$
dysoxylumic acid B (504)	<i>P. rapae</i> , $AR = 64.1(1000 \text{ ppm})^{507}$
dysoxylumic acid C (506)	<i>P. rapae</i> , $AR = 59.4 (1000 \text{ ppm})^{507}$
dysoxylumolide A (512)	<i>P. rapae</i> , $AR = 27.9 (1000 \text{ ppm})^{507}$
dysoxylumolide C (554)	<i>P. rapae</i> , AR = 22.4 (1000 ppm) ⁵⁰⁷
methyl angolensate (568)	Spodoptera frugiperda, AI = $66.4 \pm 10.63 (1000 \text{ ppm})^{556}$
swietenolide (638)	S. frugiperda, AI = 94.1 \pm 2.90 (1000 ppm) ⁴⁴⁵
6-acetylswietenolide (645)	<i>S. frugiperda,</i> AI = 72.2 ± 19.60 (1000 ppm) ⁴⁴⁵
diacetylswietenolide (647)	S. frugiperda, AI = $72.0 \pm 9.38(1000 \text{ ppm})^{445}$
xylocarpin (799)	S. frugiperda, AI = $77.8 \pm 6.90 (1000 \text{ ppm})^{556}$
swietemahonin F (805)	<i>S. frugiperda,</i> AI = 70.2 ± 8.90 (1000 ppm) ⁴⁴⁵
ruageanin A (808)	S. frugiperda, AI = 72.6 \pm 19.60 (1000 ppm) ⁵⁵⁶
ruageanin B (809)	S. frugiperda, AI = $86.3 \pm 6.41(1000 \text{ ppm})^{556}$
khayanolide A (1002)	S. littoralis, $EC_{50} = 11.18 \text{ mg/kg}^{678}$
khayanolide B (1004)	S. littoralis, $EC_{50} = 2.19 \text{ mg/kg}^{678}$
1-O-acetylkhayanolide B (1005)	S. littoralis, $EC_{50} = 2.66 \text{ mg/kg}^{678}$
marrangin (1067)	<i>Epilachna varivesti</i> , $EC_{50} = 6 \text{ ppm}$; ³²² $EC_{100} = 50 \text{ ppm}^{322}$
nimbandiol (1101)	Reticulitermes speratus, $PC_{95} = 245.4 \mu g/disk^{103}$
munroniamide (1152)	Pieris brassicae, AR = $27.6 (1000 \text{ ppm})^{765}$

of trypsin by the enzyme-secreting cells of the midgut wall and consequently resulted in the increased costs and reduced rate of

growth.⁹²⁷ When *Spodoptera litura* larvae were fed a diet of castor leaves treated with **292**, gut enzyme-acid phosphatases, alkaline

Table 34. MAC Values (ppm) of Antifeedancy of Meliaceous Limonoids

incluit (17)Syndprice angraphilabilit \$ kittershe ¹⁴ 9012.0 acceptrachiles (139)6. enget ^{202,04} 6. enget ^{202,04} 12.0 acceptrachiles (139)8. enget ^{202,04} 300titchiles (141)8. enget ^{202,04} 300titchiles (142)8. kittershe ²¹⁴ 300titchiles (144)8. kittershe ²¹⁴ 4001. acceptrachiles (143)8. enget ^{202,04} 4001. acceptrachiles (144)8. enget ^{202,04} 4001. acceptrachiles (144)8. enget ^{202,04} 4001. acceptrachiles (146)8. enget ^{202,04} 4001. Conceptrachines (146)8. enget ^{202,04} 4	compounds	insects	MAC values
12-Oasephichelin 5 (139)2 engla ^{20,211} 40012-Jasephichelin 5 (139)2 engla ^{20,211} 2aphanstan (142)8 engla ^{20,211} 200trichlin 5 (144)8 literals ²¹ 300trichlin 5 (145)8 engla ^{20,221} (2 endland ²⁴⁴ 300trichlin 5 (151)8 engla ^{20,221} (2 endland ²⁴⁴ 300trichlin 5 (155)8 engla ^{20,221} (2 endland ²⁴⁴ 30012-0 arephicelineabin 5 (156)8 literals ²¹ 30012-0 arephicelineabin 6 (159)8 engla ^{20,221} (2 endland ^{244,41} 30012-0 arephicelineabin 6 (169)8 literals ^{21,24} (2 endland ^{244,41} 30012-0 arephicelineabin 6 (169)8 literals ^{21,24} (2 endland ^{244,41} 30012-0 arephicelineabin 7 (156)8 literals ^{21,24} (2 endland ^{244,41} 30012-0 arephicelineabin 6 (161)8 literals ^{21,44} (2 engla ^{20,24} 30012-0 arephicelineabin 7 (156)8 literals ^{21,44} (2 engla ^{20,24} 30012-0 arephicelineabin 7 (156)8 literals ^{21,44}	trichilin B (137)	Spodoptera exigua; ^{207,220,341} S. littoralis ²¹⁴	200
1.12-deceptrachine B (199)c engour 97-20aphanatatin (142)C etigour 97-20aphanatatin (142)C etigour 97-20trichlin F (144)S horonds ¹²⁻¹ trichlin F (144)S koronds ¹²⁻¹ testihlin f (144)C etigour 97-2013/34 S relatins ²²⁻¹ trichlin F (145)S etigour 97-2013/34 S relatins ²²⁻¹ testihlin f (146)S etigour 97-2013/34 S relatins ²²⁻¹ trichlin F (157)S etigour 97-2013/34 S relatins ²²⁻¹ trichlin f (156)S etigour 97-2013/34 S relatins ²²⁻¹ testihlin f (156)S etigour 97-2014/34 S relatins ²²⁻¹ sendorn (156)S latoronds ¹²⁻¹ testihlin f (160)S latoronds ¹²⁻¹ 12-0-acetylacedinachin A (159)S etigour 97-2012-0-acetylacedinachin A (169)S latoronds ¹²⁻¹ 2-0-acetylacedinachin A (169)S latoronds ¹²⁻¹ 2-0-acetylacedinachin A (160)S latoronds ¹²⁻¹ 12-0-acetylacedinachin A (160)S latoronds ¹²⁻¹ 2-0-acetylacedinachin A (160)S latoronds ¹²⁻¹ 2-0-acetylacedinachin B (160)S latoronds ¹²⁻¹ 2-10-acetylacedinachin B (160)S latoronds ¹²⁻¹ 2-10-acetylacetin B (160) <td>12-O-acetyltrichilin B (138)</td> <td>S. exigua^{220,341}</td> <td>400</td>	12-O-acetyltrichilin B (138)	S. exigua ^{220,341}	400
tacklamc capae ^{375,10} aphaantatio (141)S etorahs ^{31,41} 200trichlin (143)S htronhs ^{31,41} 201trichlin (144)S htronhs ^{31,41} 4001 c copy (141,41)S etopae ^{320,21,41,41} , and and ^{214,41} 1001 c copy (141,41,41)S etopae ^{320,21,21,41} , and and ^{214,41} 2001 c copy (141,41,41)S etopae ^{320,21,21,41} , and and ^{214,41} 2001 c copy (141,41,41)S etopae ^{320,21,21,41} , and and ^{214,41} 2001 c copy (141,41,41)S etopae ^{320,21,21,41} , and etopae2001 c copy (141,41,41)S etopae ^{320,21,41} , and etopae2001 c copy (141,41,41)S etopae ^{320,21,41} , and etopae2001 c copy (141,41,41)S etopae ^{320,41,41} 2001 c copy (141,41,41)S etopae ^{31,41} <td>1,12-diacetyltrichilin B (139)</td> <td>S. exigua^{207,220,341}</td> <td></td>	1,12-diacetyltrichilin B (139)	S. exigua ^{207,220,341}	
aphatanta (142)Sciopa and Scialana ¹⁸⁴ 200incluin G (144)Sciopa a ¹²¹ 301incluin G (144)Sciopa a ¹²¹ 301incluin G (144)Sciopa a ¹²¹ 301incluin G (145)Sciopa a ¹²¹ 301incluin G (153)Sciopa a ¹²¹ 301incluin G (154)Sciopa a ¹²¹ 301incluin G (155)Sciopa a ¹²¹ 301incluin G (156)Sciopa a ¹²¹ 301incluin G (156)Sciopa a ¹²¹ 301incluin G (156)Sciopa a ¹²¹ 301incluin G (160)Sciopa a ¹²¹ 301incluin G (161)Sciopa a ¹²¹ 301incluin G (162)Sciopa a ¹²¹ 301incluin G (161)Sciopa a ¹²¹ 301incluin G (162)Sciopa a ¹²¹ 301incluin G (163)Sciopa a ¹²¹ 301incluin G (161)Sciopa a ¹²¹ 301incluin G (162)Sciopa a ¹²¹ 301incluin G (163)Sciopa a ¹²¹ 301incluin G	trichilin D (141)	S. exigua ^{207,220}	
indum (149)S. ktorath ²³ 90ricklin (149)S. ktorath ²³ (14)incklin (149)S. crigun ^{2003/03/34} S. cridania ²³⁴ (14)incklin (149)S. ktorath ^{23/34} (14)incklin (150)S. crigun ^{2003/23/41} S. cridania ²³⁴ (14)inchlin (151)S. crigun ^{2003/23/41} S. cridania ²³⁴ (14)inchlin (153)S. crigun ^{2003/23/41} S. cridania ²³⁴ (14)inchlin (16)S. ktorath ²³⁴ (14)inchlin (16)S. ktorath ²³⁴ (14)inchlin (16)S. ktorath ²³⁴ (10)inchlin (17)S. ktorath ²³⁴ (10)inchlin (16)S. ktorath ²³⁴ (10)inchlin (17)S. ktorath ²³⁴ (10)inchlin (17)S. ktorath ²³⁴ (10)inchlin (18)S. ktorath ²³⁴ (10)inchlin (19)S. ktorath ²³⁴ (10)<	aphanastatin (142)	S. exigua and S. eridania ³⁴¹	200
incluin G (144)S. ktoronkS. ktoronk11. constructionS. ktoronkS. ktoronk11. constructionS. ktoronkS. ktoronk11. constructionS. constructionS. ktoronk11. constructionS. constructionS. ktoronk11. constructionS. constructionS. ktoronk11. constructionS. constructionS. ktoronk11. constructionS. ktoronkS. ktoronk12. constructionS. ktoronkS. ktoronk13. constructionS. ktoronkS. ktoronk14. constructionS. ktoronkS. ktoronk15. constructionS. ktoronkS. ktoronk15. constructionS. ktoronkS. ktoronk <tr< td=""><td>trichilin F (143)</td><td>S. littoralis²²³</td><td>300</td></tr<>	trichilin F (143)	S. littoralis ²²³	300
richlin 1 (14s) 6 crigan ^{302,002,031} Scridani ²¹⁴ 90 1 acetytrichlin 1 (146) 5 crigan ^{302,002,141} Scridani ²¹⁴ 5 crigan ^{302,002,141} Scridani ²¹⁴ trichlin 1 (151) 5 crigan ^{302,002,141} Scridani ²¹⁴ richlin 1 (154) 5 crigan ^{302,022,141} Scridani ²¹⁴ redunin (156) 5 crigan ^{302,022,141} Scridani ²¹⁴ redunin (158) 5 crigan ^{302,021,141} Scridani ²¹⁴ redunin (158) 5 crigan ^{302,021,141} Scridani ²¹⁴ redunin 1 (158) 5 crigan ^{302,021,141} Scridani ²¹⁴ redunin 1 (158) 5 crigan ^{302,021,141} Scridani ^{214,141} 0 12-0 credytecharchin 1 (160) 5 crigan ^{302,021,141} Scridani ²¹⁴ reduction 1 (162) 7 crigan ^{302,021,021,021,021} 1 reduction 1 (162) 7 crigan ^{302,021,021,021,021,021,021,021,021,021,0}	trichilin G (144)	S. littoralis ²²³	
1.aceyIndim Ir (146)S. kitronik ²³ trichlin (151)S. cogua ²³⁰²³⁷⁴⁵ S. cridinni ²⁴³ trichlin K (154)S. cridani ²⁴³ trichlin K (155)S. cridani ²⁴³ sendanii (156)S. cogua ²³⁰²³⁷⁴⁵ S. cridinni ^{243,141} andiardin K (158)S. cogua ²³⁰²³⁷⁴⁵ S. cridanii ^{243,141} 2.O-aceyInducatachin A (159)S. cogua ²³⁰²³⁷⁴⁵ S. cridanii ^{243,141} 2.O-aceyInducatachin A (150)S. cridani ²⁴⁴ 2.O-aceyInducatachin A (160)S. cridani ²⁴⁴ 2.O-aceyInducatachin A (160)S. cridani ²⁴⁴ S. cridanii ²⁴¹ 2.O-aceyInducatachin A (160)S. cridani ²⁴⁴ S. cridanii ²⁴¹ 2.O-aceyInducatachin A (160)S. cridani ²⁴⁴ S. cridanii ²⁴¹ 2.O-aceyInducatachin B (161)S. cridani ²⁴⁴ S. cridanii ²⁴¹ 2.Colo aceyInducatachin B (161)S. cologua ²⁷⁰⁷⁴¹ S. cridanii ²⁴¹ 2.Colo aceyInducatachin B (161)S. itikranii ¹³ 2.Colo aceyInducatachin A (168)S. cologua ²⁷⁰⁴¹ 2.Colo aceyInducatachin A (166)S. itikranii ¹³ 2.Colo aceyInducatachin A (166)S. itikranii ¹³ 2.Colo aceyInducatachin A (167)S. itikranii ¹³ 2.Colo aceyInducatachin A (173)S. itikranii ¹³ 2.Colo aceyInducatachin A (277)S. itikr	trichilin H (145)	S. exigua; ^{207,220,227,341} S. eridania ²²⁴	400
incluin (151)S. erigan ^{230235/18} S. eridania ²³⁰ trichlin (153)S. eridania ²³⁰ trichlin (154)S. eridania ²³⁰ sendatin (155)S. eridania ²⁴¹ andinoh A (188)S. eridania ²⁴¹ andinoh A (189)S. eridania ²⁴¹ 12-0-acetylanedarschin B (160)S. httoralin ^{21,43} 12-0-acetylanedarschin B (161)S. eridania ²⁴³ 12-0-acetylanedarschin B (161)S. httoralin ^{21,41} 12-0-acet	1-acetyltrichilin H (146)	S. littoralis ²²⁵	
richiln (193) (293) 6. eridan ²³⁴ richiln (195) 6. eridan ²³⁴ sendani (196) 6. Seridan ²³⁴ 8. eridani ^{234,34,1} 7. 200 12-O-acetylaredanchin A (199) 7. 200 12-O-acetylaredanchin A (199) 7. 200 2-acetrylaredanchin A (199) 7. 200 2-acetrylaredanchin A (190) 7. 200 2-acetylaredanchin A (190) 7. 200 2-acetylaredanchin B (100) 7. 200 2-acetylaredanchin B (1	trichilin I (151)	S. exigua; ^{220,227,341} S. eridania ²²⁴	
richlin k (154) S. Sciang ²³ trichlin k (155) S. Sciang ^{23,227,44} S. Sciang ^{23,24,14} S. Sciang ²³	trichilin J (153)	S. exigua; ^{220,227,341} S. eridania ²²⁴	
rindin L (185)S. Gridani ²⁴ sendarin (166)S. tittraki ²⁴ S. oridani ^{243,541} G. oridani ^{243,541} G. oridani ^{243,541} G. oridani ^{241,545} G. oridani ^{241,545} G. Oridani ^{241,545} A0012-Oacetylazedarachin A (189)S. tittraki ²⁴¹ S. oridani ^{241,55} G. oridani ^{241,545} G. oridani ^{241,54} G. oridani ^{341,54} G. oridani ^{341,55} G. oridani ³⁴	trichilin K (154)	S. eridani ²²⁴	
sendamin (156) S. Strong 2027.14 S. criduna 24.3441 S. 200 Scriduar 2027.14 S. criduna 24.3441 S. 200 Scriduar 24.44 S. 200 200 200 Scriduar 24.44 S. 200 200 Scriduar 24.44 Scriduar 24.44 S. 200 200 Scriduar 24.44 Scriduar 24.44 S. 200 200 Scriduar 24.45 Scriduar 24.44 Scriduar 24.44 S. 200 200 Scriduar 24.45 Scriduar 2	trichilin L (155)	S. eridani ²²⁴	
aedarachin A (189) S. exigua 2 ^{02,27,341} S. eridania ^{24,341} A. eridania ¹⁴¹ A. Sexigua 2 ^{07,241} S. eridania ¹⁴¹ A. Sexigua 2 ^{07,242} S. eridania ¹⁴¹ A. Sexigua 2 ^{07,243} S. eridania ¹⁴¹ A. Sexigua 2 ^{07,244} S. Eridania ¹³⁵ A. B. D. (180–182) S. Eridania ²³⁹ A. Sexigua 2 ^{07,244} S. Sexigua 2 ^{17,244} S. Sexigua 2 ¹	sendanin (156)	S. littoralis ²¹⁴	
12-0-seetylazedarchin A (199) S. exigua ^{207,341} & Gridania ³⁴¹ zedarchin B (160) S. littorialis ^{13,4353} 400 12-0-seetylazedarchin B (161) S. cridanis ^{134,1535} 400 zedarchin C (162) S. cridanis ^{134,1535} 400 azedarchin C (162) S. kittorialis ^{134,1535} 400 meliatoxin A ₂ (163) S. littorialis ¹³⁴ S. cridanis ⁴¹¹ 400 12-c-hydroxyanoorastatin (166) S. littorialis ¹³² 300 12-c-hydroxyanoorastaton (173) S. littorialis ¹³⁴ 400 12-ac-hydroxyanoorastaton (173) S. littorialis ¹³⁵ 300 12-ac-hydroxyanoorastaton (173) S. littorialis ¹³⁵ 400 12-ac-hydroxyanoorastaton (173) S. littorialis ^{132,477} 400 tichnin C (196) S. littorialis ^{12,2477} 400 tichnin C (197) S. cridanis ⁴¹⁴ 50	azedarachin A (158)	S. exigua; ^{207,227,341} S. eridania ^{224,341}	200
S. litroriki ¹⁴ S. litroriki ¹⁴⁴²⁵ 400azedarachin B (10)S. tridmit ¹⁴⁴ S. exigua ^{207,227} 200azedarachin C (162)S. exigua ^{203,34,4} 300azedarachin C (163)S. exigua ^{203,44,4} 30012 <i>a</i> : hydrosyanocrastatin (166)S. litroriki ¹⁴ S. exigua ^{204,14} 30012 <i>a</i> : hydrosyanocrastatin (166)S. litroriki ¹⁴ S. exigua ^{204,14} 30012 <i>a</i> : hydrosyanocrastatine (173)S. litroriki ¹⁴ 30012 <i>a</i> : hydrosyanocrastatine (173)S. litroriki ^{12,13} 30012 <i>a</i> : hydrosyanocrastatine (173)S. litroriki ^{21,13} 30012 <i>i</i> : hydrosyanocrastatine (173)S. lit	12-O-acetylazedarachin A (159)	S. exigua; ^{207,341} S. eridania ³⁴¹	
acedarachin B (160)S. littoralis ^{24,54} , scigua ^{39,727} 20012-0-acctylazedarachin B (161)S. crigua ^{39,724} , S. crigua ^{39,724} 400accdarachin C (162)S. krigoral ^{39,741} S. crigua ^{39,741} S. drigua ^{31,742} Monto1 crigua and S. drigua ^{39,741} S. drigua ^{31,742} S. drigua ^{34,14} S. drigua ^{31,41} S. drigua ^{41,41} S.		S. littoralis ²¹⁴	400
12.0-seetylazedarachin B (161)S eridani, ²³⁴ S erigani ^{275,227} 400acadrachin C (162)S eridani, ^{234,541} 300S eridani, ⁶⁸⁸ S eridani, ³⁴¹ 40012.a hydroxyamoorastatin (166)S littoralis ²¹³ 20012.a hydroxyamoorastatine (173)S littoralis ²¹³ 30012.a hydroxyamoorastatine (173)S littoralis ²¹³ 300necozedarachins A, B, D (180–182)S littoralis ²¹³ 3001. cinnamoytrichilinin (192)S littoralis ²¹³ 3001. cinnamoytrichilinin (192)S littoralis ^{213,77} 3011. cinnamoytrichilinin (193)S littoralis ^{113,247} 50meliacarpinin B (328)S eridania ³³⁰ 50meliacarpinin B (327)S exigua, ³¹⁴ S. littoralis ^{12,147} 50meliacarpinin J (327)S exigua, ³¹⁴ S. littoralis ²¹⁴ 50meliacarpinin J (327)S exigua, ³¹⁴ S. littoralis ²¹⁴ 50meliacarpinin J (330)S eridania ³¹⁴ S. littoralis ²¹⁴ 501. decoetyhinholin A (355)S littoralis ¹²⁴ 501. decoetyhinholin A (355)S littoralis ¹²⁴ 501. decoetyhinholin A (355)S littoralis ¹³⁴ S. littoralis ¹⁴⁷ 1. inholinin A (355)S littoralis ¹³⁷ littoralis ¹³⁷ 1. decoetyhinholini A (356)S littoralis ¹³⁴ S. littoralis ¹³⁴ 1. decoetyhinho	azedarachin B (160)	S. littoralis ^{214,225}	200
aredrarchin C (162) S. exigua ^{233,341} meliatoxin A ₂ (163) S. littoralis ²¹⁴ 300 12 α -hydroxyamoorastatin (166) S. littoralis ²¹⁴ 400 12 α -hydroxyamoorastatin (166) S. littoralis ²¹⁴ 200 12 α -hydroxyamoorastatin (167) S. littoralis ²¹⁴ 200 12 α -hydroxyamoorastatine (173) S. littoralis ²¹⁴ 400 12 α -hydroxyamoorastatine (173) S. littoralis ²¹⁵ 200 12 α -hydroxyamoorastatine (173) S. littoralis ²¹⁵ 300 neoazedarachins A, B, D (180–182) S. littoralis ²¹⁵ 400 1-cinnamoytirichilinin (192) S. littoralis ²¹³ 1000 trichilinin D (196) S. eridania ²¹⁰ 1000 trichilinin D (197) S. littoralis ^{212,327} 1000 meliacarpinin B (328) S. exigua and S. eridania ⁴¹¹ 50 meliacarpinin B (329) S. exigua and S. eridania ⁴¹¹ 50 meliacarpinin B (320) S. exigua and S. eridania ⁴¹⁴ 50 meliacarpinin B (320) S. exigua and S. eridania ⁴¹⁴ 50 meliacarpinin C (329) S. exigua and S. eridania ⁴¹⁴ 51 adeacetrylisolanni (333) S. e	12-O-acetylazedarachin B (161)	S. eridani; ²²⁴ S. exigua ^{207,227}	400
meliatoxin $A_{2}^{1}(13)$ S. littoral ⁸⁷⁸ 300 S. exigur, ^{207,41} 4, eridania ⁴¹¹ 400 12a hydroxyanoorastatin (166) S. littoralis ²¹⁴ 150 tossendumin (167) S. littoralis ²¹⁴ 300 12a hydroxyanoorastatone (173) S. littoralis ²¹⁴ 300 12a hydroxyanoorastatone (173) S. littoralis ²²⁵ 300 1conamognit chinalis 4, B, D (180–182) S. littoralis ²²⁵ 400 1conamognit chinalis 5 400 1000 trichillinin (192) S. littoralis ²¹² 400 trichillinin C (196) S. eridania ³⁰⁹ 1000 trichillinin C (197) S. littoralis ^{212,3277} 50 meliacarpinin B (328) S. exigua and S. eridania ³⁴¹ 50 meliacarpinin B (329) S. exigua and S. eridania ³⁴¹ 50 meliacarpinin C (329) S. exigua and S. eridania ³⁴¹ 50 meliacarpinin G (330) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin G (331) S. eridania ⁴¹⁴ S. littoralis ²¹⁴ 50 meliacarpinin G (329) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴	azedarachin C (162)	S. exigua ^{228,341}	
Sexigur, 27,341 S. eridania ³⁴¹ 40012a. hydroxyanoorastatin (166)S. littoralis ^{21,4} 150toosendanin (167)S. littoralis ^{21,2} 200	meliatoxin A_2 (163)	S. litura ⁸⁷⁸	300
12 α -hydroxyamoorastatin (166) S litrorals ²¹⁴ 150 toosendami (167) S litrorals ²¹⁴ 200 12 α -hydroxyamoorastatone (173) S litrorals ²¹⁴ 400 12 α -hydroxyamoorastatone (173) S littorals ²²⁵ 300 neozaedarachins A, B, D (180–182) S littorals ²¹² 1000 1-cinnamoyltrichilinin (192) S littorals ²¹² 1000 trichilinin C (196) S eridamia ²³⁹ 1000 trichilinin S (197) S littorals ^{212,477} 1001 richilinin E (198) S littorals ^{212,477} 50 meliacarpinin B (328) S exigua and S eridania ⁴¹⁴ S littorals ²¹⁴ 50 meliacarpinin B (328) S exigua and S eridania ⁴¹⁴ S littorals ²¹⁴ 50 meliacarpinin B (320) S exigua and S eridania ⁴¹⁴ S littorals ²¹⁴ 50 meliacarpinin G (330) S eridania ⁴¹⁴ S littorals ²¹⁴ 50 alcarctylaine (332) S exigua and S eridania ⁴¹⁴ S littorals ²¹⁴ 50 <tr< td=""><td>2,</td><td>S. exigua;^{207,341} S. eridania³⁴¹</td><td>400</td></tr<>	2,	S. exigua; ^{207,341} S. eridania ³⁴¹	400
teosendarin (167) S. littoralis ²¹² 200 S. littoralis ²¹⁴ 300 12 a -hydroxyamoorastatone (173) S. littoralis ²¹⁴ 400 S. littoralis ²²⁵ 300 neoazedarachins A, B, D (180—182) S. littoralis ²²⁵ 400 1-cinnamoytrichilinin (192) S. littoralis ²²⁵ 400 1-cinnamoytrichilinin (192) S. littoralis ²²³ 400 1-cinnamoytrichilinin (192) S. littoralis ²³⁷ 400 trichilinin D (197) S. littoralis ²¹²⁴ 400 S. littoralis ²¹²⁴⁷⁷ 500 trichilinin B (195) S. eridania ⁴³⁹ trichilinin B (195) S. eridania ⁴³⁹ trichilinin B (197) S. littoralis ²¹²⁴⁷⁷ trichilinin B (327) S. exiguai ⁴¹⁴ S. littoralis ²¹⁴⁴ 50 meliacarptinin A (327) S. exiguai ⁴¹⁴ S. littoralis ²¹⁴⁴ 50 meliacarptinin A (327) S. exiguai A ⁴¹⁴ S. littoralis ²¹⁴⁴ 50 meliacarptinin B (328) S. exiguai A ⁴¹⁴ S. littoralis ²¹⁴⁴ 50 aneliacarptinin D (330) S. exiguai A ⁴¹⁴ S. littoralis ²¹⁴⁴ 50 aneliacarptinin D (330) S. exiguai A ⁴¹⁴ S. littoralis ²¹⁴ -decetyslannin (332) S. exiguai A ⁴¹⁵ S. littoralis ²¹⁴ -decetyslannin (333) S. exiguai A ⁴¹⁵ S. littoralis ²¹⁴ -decetyslannin (333) S. exiguai A ⁴¹⁵ S. littoralis ²¹⁴ -decetyslannin (335) S. littoralis ²¹⁷ nimbolinin A (355) S. littoralis ²¹⁷ nimbolinin A (356) S. littoralis ²¹⁷ nimbolinin D (364) S. eridania ⁴⁴³ -S. eridania ⁴⁴³ -S. O-acetybolicholol (399) S. eridania ⁴⁴³ S. eridania ⁴⁵³ S. eridania ⁴⁵⁴ S. eridania ⁴⁵⁴ S. eridania ⁴⁵⁴ S. S. eridania ⁴⁵⁴ S. S. eridania ⁴⁵⁴ S. S. eridania ⁴⁵⁴ S. S. S	12α -hydroxyamoorastatin (166)	S. littoralis ²¹⁴	150
S. littoralisS. littoralis30012 α -hydroxyamoorastatone (173)S. littoralis30012 α -hydroxyamoorastatone (173)S. littoralis320isochuanlansu (179)S. littoralis340S. littoralisS. littoralis300neozaedarachins A, B, D. (180–182)S. littoralis3251000S. littoralis325trichilinin B (192)S. littoralis320trichilinin C (196)S. eridania390trichilinin D (197)S. littoralis3247trichilinin B (198)S. littoralis3247meliacarpinin A (327)S. exiguan350meliacarpinin B (328)S. exiguan and S. eridania,50meliacarpinin D (320)S. exigua and S. eridania,50meliacarpinin D (330)S. exiguan and S. eridania,50meliacarpinin B (331)S. eridania503-daecetylsalannin (333)S. eridania503-daecetylsalannin (333)S. littoralis10003-daecetylsalannin (333)S. littoralis10003-daecetylsalannin B (358)S. littoralis10003-daecetylsalannin B (364)S. littoralis10003-daecetylsalannin B (364)S. littoralis10003-daecetylsalannin (333)S. littoralis10003-daecetylsalannin (333)S. littoralis10003-daecetylsalannin (364)S. littoralis10003-daecetylsalannin (364)S. littoralis10003-0.acetylsalannin (364)S. littoralis1000<	toosendanin (167)	S. littoralis ²¹²	200
12ac hydroxyamoorastatone (173)S. littoralisS. littora		S. littoralis ²¹⁴	300
isochunlarsu (179) S. littoralis ²¹⁴ 400 S. littoralis ²²⁵ 300 1-cinnamoyltrichilinin (192) S. littoralis ²¹² 400 1-cinnamoyltrichilinin (192) S. littoralis ²¹³ 1000 trichilinin B (195) S. eridania ²³⁹ trichilinin D (197) S. littoralis ^{212,247} meliacarpinin A (327) S. littoralis ^{212,247} meliacarpinin B (328) S. exigua ³⁴⁰ 150 S. exigua and S. eridania ³⁴¹ 50 meliacarpinin B (328) S. exigua ³⁴⁰ 150 S. exigua and S. eridania ³⁴¹ 50 meliacarpinin E (329) S. exigua and S. eridania ³⁴¹ salannin (330) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin E (310) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin B (330) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin B (330) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin B (330) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin B (330) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin B (330) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin B (330) S. eridania ³⁴² salannin (332) S. eridania ³⁴² salannin (333) S. eridania ³⁴² salannin (355) S. littoralis ²¹³ 1-deacetylnimbolinin A (356) S. littoralis ²¹⁴ - deacetylnimbolinin B (358) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ - deacetylnimbolinin B (358) S. exigua and S. eridania ³⁴¹ S. littoralis ²⁴⁷ nimbolinin D (364) S. littoralis ²⁴⁷ nimbolinin D (364) S. littoralis ²¹³ - deacetylnimbolinin A (356) S. littoralis ²¹⁴ - deacetylnimbolinin A (356) S. eridania ⁸⁴ - 3-O acetylohchinolal (399) S. eridania ⁸⁴ - 3-O acetylohchinolal (599) S. eridania ⁸⁴ - 3-O acetylohchinolal (599	12α -hydroxyamoorastatone (173)	S. littoralis ²²⁵	250
S. littoralisS. littoralis300necazedarachinsA, B, D (180–182)S. littoralis4001-cinnamoyltrichilini (192)S. littoralis1000trichilini B (195)S. eridania390trichilini D (196)S. eridania390trichilini D (197)S. littoralis12.247trichilini E (198)S. littoralis510meliacarpinin A (327)S. exigua; ³⁴¹ S. littoralis510neliacarpinin B (328)S. exigua; ³⁴⁰ 510s. exigua and S. eridania, ³⁴¹ S. littoralis50meliacarpinin E (329)S. exigua and S. eridania, ³⁴¹ S. littoralis50meliacarpinin E (331)S. exigua and S. eridania, ³⁴¹ S. littoralis50salannin (332)S. exigua and S. eridania, ³⁴¹ S. littoralis503-deacetylsalannin (333)S. eridania, ³⁴¹ S. littoralis511-deacetylninbolinin A (356)S. littoralis511-deacetylninbolinin A (356)S. littoralis10003-deacetylsalannin (333)S. eridania, ³⁴¹ S. littoralis10001-deacetylninbolinin A (363)S. littoralis10001-deacetylninbolinin A (364)S. littor	isochuanliansu (179)	S. littoralis ²¹⁴	400
neoazedarachins A, B, D (180–182) S. littoralis ²²⁵ 400 1-cinnamoyltrichilinin (192) S. littoralis ²¹² 1000 trichilinin G (195) S. eridania ²³⁹ 1 trichilinin D (197) S. littoralis ^{212,247} 100 trichilinin B (198) S. littoralis ^{212,247} 50 meliacarpinin A (327) S. exigua ³⁴ S. littoralis ^{214,47} 50 meliacarpinin B (328) S. exigua and S. eridania ³⁴¹ 50 meliacarpinin B (329) S. exigua and S. eridania, ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin D (330) S. exigua and S. eridania, ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin E (331) S. eridania ³⁴² 50 salanni (332) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 1-deacetylinabolinin A (356) S. littoralis ²¹⁷ 1000 3-deacetylsalanin (333) S. eridania ⁴¹⁴ 50 1-deacetylinabolinin A (356) S. littoralis ²¹⁷ 1000 1-deacetylinabolinin A (356) S. littoralis ²¹⁷ 1000 1-deacetylinabolinin D (364) S. littoralis ²¹³ 1000 1-deacetylinabolinin D (364		S. littoralis ²²⁵	300
1-cinnamoyltrichilini (192)S. littoralis1000trichilinin B (195)S. eridania2391000trichilinin C (196)S. eridania2391000trichilinin D (197)S. littoralis ^{212,2477} 1000meliacarpinin A (327)S. erigua ³⁴¹ S. littoralis ²¹⁴⁴ 50meliacarpinin B (328)S. erigua ³⁴¹ S. littoralis ²¹⁴ 50meliacarpinin D (330)S. erigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50meliacarpinin B (331)S. eridania ³⁴¹ S. littoralis ²¹⁴ 503-deacetylsalannin (332)S. erigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 503-deacetylsalannin (333)S. eridania ³⁴¹ S. littoralis ²¹⁴ 503-deacetylsalannin (333)S. eridania ³⁴¹ S. littoralis ²¹⁴ 501-deacetylninbolinin A (355)S. littoralis ²¹⁴ 501-deacetylninbolinin A (356)S. littoralis ²¹² 10001-deacetylninbolinin J (364)S. littoralis ²¹³² 10001-mibolinin D (364)S. littoralis ²¹² 10001-mibolinin D (364)S. littoralis ²¹³² 10001-mibolinin D (364)S. eridania ⁸⁴¹ 10001-mibolinin D (364)S. eridania ⁸⁴³ 10001-mibolinin D (364)S. eridania ⁸⁴³ 10001-mibolinin C (403)S. eridania ⁸⁴³ 10001-mibolinin C (406)S. eridania ⁸⁴³ 10001-mibolinin D (364)S. eridania ⁸⁴³ 10001-mibolinin D (364)S. eridania ⁸⁴³ 10001-mibolinin D (364)S. eridania ⁸⁴³ 10001-mibolinin S (40	neoazedarachins A, B, D (180–182)	S. littoralis ²²⁵	400
trichilnin B (195)S. eridania239trichilnin C (196)S. eridania239trichilnin D (197)S. littoralis212,247trichilnin F (198)S. littoralis212,247meliacarpinin A (327)S. exigua; 341 S. littoralis21450meliacarpinin B (328)S. exigua and S. eridania ³⁴¹ 50meliacarpinin D (330)S. exigua and S. eridania,341 S. littoralis21450meliacarpinin B (331)S. eridania,341 S. littoralis214503-deacetylsalannin (332)S. exigua and S. eridania,341 S. littoralis214503-deacetylsalannin (333)S. eridania ³⁴¹ 503-deacetylsalannin (333)S. eridania ³⁴² 10003-deacetylsalannin (335)S. littoralis21210001-deacetylnimbolinin A (356)S. littoralis21210001-mibolinin B (358)S. eridania ³⁴¹ S. eridania ²⁴⁷ nimbolinin D (364)S. littoralis21210001-deacetylohchinolal (399)S. eridania ⁸⁴¹ 10001-mibolinin B (407)S. eridania ^{247,342} 10001-mibolinin G (406)S. eridania ³⁴³ 5001-mibolinin G (407)S. eridania ³⁴³ 5001-mibolinin S (407)S. eridania ³⁴³ 5001-mibolinin G (412)S. eridania ³⁴³ 5001-mibolinin G (411)S. eridania ³⁴³ 5001-mibolinin G (411)S. eridania ³⁴³ 5001-mibolinin G (411)S. eridania ³⁴⁴ 5001-mibolinin G (411)S. eridania ³⁴³ 5001-mibolinin D (364)S. eridania ³⁴⁴ 500<	1-cinnamoyltrichilinin (192)	S. littoralis ²¹²	1000
trichilini C (196)S. eridania^{239}trichilini D (197)S. littoralis ^{212,247} trichilini E (198)S. littoralis ^{212,247} meliacarpinin A (327)S. exigua, 3 ⁴¹ S. littoralis ²¹⁴ 50S. exigua ³⁴⁰ meliacarpinin B (328)S. exigua ³⁴⁰ s. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ meliacarpinin D (329)S. exigua and S. eridania ³⁴¹ meliacarpinin E (331)S. eridania ³⁴¹ salannin (332)S. eridania ³⁴¹ 3-deacetylsalannin (333)S. eridania ³⁴² nimbolinin A (355)S. littoralis ²⁴⁷ nimbolinin A (356)S. littoralis ²¹² nimbolinin A (356)S. littoralis ²¹² nimbolinin D (364)S. littoralis ²¹² nimbolinin D (364)S. littoralis ²¹⁴ 3-0-acetylochchinolal (399)S. eridania ⁴⁴⁴ nimbolinin G (367)S. eridania ⁴⁴³ nimbolinin G (407)S. eridania ⁴⁴³ nimbolinin F (413)S. eridania ⁴⁶⁴ 3-0-acetylochchinolal (399)S. eridania ⁴⁶³ <tr <td="">S001imbolidi</tr>	trichilinin B (195)	S. eridania ²³⁹	
trichilini D (197)S. littoralisS. and S. a	trichilinin C (196)	S. eridania ²³⁹	
trichilini E (198) S. littoralis ^{212,247} meliacarpinin A (327) S. exigua; ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin B (328) S. exigua and S. eridania ³⁴¹ 50 meliacarpinin C (329) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin D (330) S. exigua and S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin E (331) S. eridania ³⁴¹ S. littoralis ²¹⁴ 50 salannin (332) S. eridania ⁴⁴² 1000 3-deacetylsalannin (333) S. eridania ⁴⁴² 1000 3-deacetylsalannin A (355) S. littoralis ²¹² 1 1-deacetylnimbolinin A (356) S. littoralis ²¹² 1 1-deacetylnimbolinin B (358) S. eridania ³⁴¹ S. eridania ³⁴¹ , 342 1000 1 mibolinin D (364) S. littoralis ²¹² 1 nimbolinin D (364) S. littoralis ²¹² 1 nimbolinin D (364) S. littoralis ²¹² 1 ohchinolide C (386) S. eridania ⁴¹ 1000 3-0-acetylohchinolal (399) S. eridania ^{47,342} 1000 S. eridania ^{47,342} 1000 S. eridania ⁴⁶³ 500 nimbolinin S (407) S. erida	trichilinin D (197)	S. littoralis ^{212,247}	
meliacarpinin A (327)S. exigua;S. exigua;S. littoralisS. onmeliacarpinin B (328)S. exigua and S. eridania,S. exigua,S.	trichilinin E (198)	S. littoralis ^{212,247}	
melia carpinin B (328)S. exigua 340 150S. exigua and S. eridania 341 50melia carpinin C (329)S. exigua and S. eridania, 341 S. littoralis ²¹⁴ 50melia carpinin D (330)S. exigua and S. eridania, 341 S. littoralis ²¹⁴ 50melia carpinin E (331)S. eridania, 342 10003-deacetylsalannin (332)S. exigua; 341 S. eridania, 84,239,341,342,363 10003-deacetylsalannin (333)S. eridania, 84,239,341,342,363 10003-deacetylsalannin (333)S. eridania, 84,239,341,342,363 10003-deacetylsalannin (333)S. eridania, 84,239,341,342,363 10003-deacetylsalannin (333)S. eridania, 342 10001-deacetylnimbolinin A (356)S. littoralis, 217 11-deacetylnimbolinin B (358)S. exigua; 341 S. eridania, 341,342 1000S. littoralis, 217 S. littoralis, 217 1nimbolinin C (363)S. littoralis, 212 1ohchinolide C (386)S. eridania, 84 13-O-acetylohchinolal (399)S. eridania, 84 1000S. eridania, 363 S001000S. eridania, 363 S00nimbolidin S C-E (410-412)S. eridania, 363 S00nimbolidin F (413)S. eridania, 84 S00	meliacarpinin A (327)	S. exigua; ³⁴¹ S. littoralis ²¹⁴	50
SectionSectionSectionSectionmeliacarpinin C (329)SectionSectionSectionSectionmeliacarpinin D (330)SectionSectionSectionSectionmeliacarpinin E (331)SectionSectionSectionSectionsalannin (332)SectionSectionSectionSection3-deacetylsalannin (333)SectionSectionSectionSection3-deacetylsalannin A (355)SectionSectionSectionSection1-deacetylnimbolinin A (356)SectionSectionSectionSectionnimbolinin B (358)SectionSectionSectionSectionNimbolinin D (364)SectionSectionSectionSectionohchinolide C (386)SectionSectionSectionSection3-O-acetylohchinolal (399)SectionSectionSectionSoonimbolidin B (407)SectionSectionSooSooNimbolidin F (413)SectionSectionSooSoo	meliacarpinin B (328)	S. exigua ³⁴⁰	150
meliacarpinin C (329) S. exigua and S. eridania, ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin D (330) S. exigua and S. eridania, ³⁴¹ S. littoralis ²¹⁴ 50 meliacarpinin E (331) S. eridania ³⁴² 1000 3-deacetylsalannin (332) S. exigua, ³⁴¹ S. eridania ^{84,239,341,342,363} 1000 3-deacetylsalannin (333) S. eridania ³⁴² 1000 3-deacetylsalannin (335) S. littoralis ²¹² 1 1-deacetylnimbolinin A (356) S. littoralis ²⁴⁷ 1 1-deacetylnimbolinin B (358) S. exigua, ³⁴¹ S. eridania ^{341,342} 1 1 nimbolinin C (363) S. littoralis ²¹² 1 nimbolinin D (364) S. littoralis ²¹² 1 ohchinolide C (386) S. eridania ⁸⁴ 1 3-O-acetylohchinolal (399) S. eridania ^{347,342} 1000 nimbolidin B (407) S. eridania ³⁶³ 500 nimbolidin G (413) S. eridania ³⁶⁴ 500		S. exigua and S. eridania ³⁴¹	50
meliacarpinin D (330) S. exigua and S. eridania, ³⁴¹ S. littoralis, ²¹⁴ meliacarpinin E (331) S. eridania, ³⁴² salannin (332) S. eridania, ³⁴² 3-deacetylsalannin (333) S. eridania, ³⁴² 3-deacetylsalannin (333) S. eridania, ³⁴² 3-deacetylsalannin (333) S. eridania, ³⁴² 1000 S. eridania, ³⁴² 1-deacetylnimbolinin A (355) S. littoralis, ²¹² 1-deacetylnimbolinin A (356) S. littoralis, ²⁴⁷ nimbolinin B (358) S. exigua, ³⁴¹ S. eridania, ^{341,342} S. littoralis, ²¹² S. littoralis, ²¹² nimbolinin D (364) S. littoralis, ²¹² ohchinolide C (386) S. eridania, ⁸⁴ 3-O-acetylohchinolal (399) S. eridania, ³⁴¹ nimbolidin B (407) S. eridania, ³⁶³ S. eridania, ³⁶³ S00 nimbolidin F (413) S. eridania, ³⁶⁴	meliacarpinin C (329)	S. exigua and S. eridania, ³⁴¹ S. littoralis ²¹⁴	50
meliacarpinin E (331) S. eridania ³⁴² salannin (332) S. eridania ³⁴¹ S. eridania ^{84,239,341,342,363} 1000 3-deacetylsalannin (333) S. eridania ³⁴² 1000 3-deacetylsalannin (333) S. eridania ³⁴² 1000 3-deacetylsalannin (333) S. eridania ³⁴² 1000 1-deacetylnimbolinin A (355) S. littoralis ²¹² 1-deacetylnimbolinin B (358) S. littoralis ²⁴⁷ nimbolinin B (358) S. exigua; ³⁴¹ S. eridania ^{341,342} S. littoralis ²⁴⁷ 1000 nimbolinin C (363) S. littoralis ²¹² 1-deacetylnimbolinin D (364) S. littoralis ²¹² ohchinolide C (386) S. eridania ⁸⁴ - - 3-O-acetylohchinolal (399) S. eridania ³⁶³ 500 nimbolidin B (407) S. eridania ³⁶³ 500 nimbolidin C-E (410-412) S. eridania ³⁶³ 500 nimbolidin F (413) S. eridania ⁸⁴ 500	meliacarpinin D (330)	S. exigua and S. eridania, ³⁴¹ S. littoralis ²¹⁴	
salanin (332)S. exigua; 341 S. eridania 84,239,341,342,363 10003-deacetylsalannin (333)S. eridania 342 1000nimbolinin A (355)S. littoralis 212 1-deacetylnimbolinin A (356)S. littoralis 247 nimbolinin B (358)S. exigua; 341 S. eridania 341,342 S. littoralis 247 nimbolinin D (364)S. littoralis 212 S. littoralis 212 ohchinolide C (386)S. eridania 84 S. eridania 84 3-O-acetylohchinolal (399)S. eridania 84 1000nimbolidin B (407)S. eridania 247,342 1000S. eridania 363 500nimbolidin S C-E (410-412)S. eridania 363 500nimbolidin F (413)S. eridania 84 500	meliacarpinin E (331)	S. eridania ³⁴²	
3-deacetylsalanin (333)S. eridania^{342}nimbolinin A (355)S. littoralis ²¹² 1-deacetylnimbolinin A (356)S. littoralis ²⁴⁷ nimbolinin B (358)S. exigua; ³⁴¹ S. eridania ^{341,342} S. littoralis ²⁴⁷ nimbolinin C (363)S. littoralis ²¹² nimbolinin D (364)S. littoralis ²¹² ohchinolide C (386)S. eridania ⁸⁴ 3-O-acetylohchinolal (399)S. eridania ³⁴¹ nimbolidin B (407)S. eridania ³⁶³ 500S. eridania ³⁶³ 1000S. eridania ³⁶³ 500S. eridania ³⁶³	salannin (332)	S. exigua; ³⁴¹ S. eridania ^{84,239,341,342,363}	1000
nimbolinin A (355)S. littoralis1-deacetylnimbolinin A (356)S. littoralisnimbolinin B (358)S. exigua;341 S. eridaniaS. eridania1S. littoralis1S. eridania1S. eridania3-O-acetylohchinolal (399)S. eridania1S. eridania <td>3-deacetylsalannin (333)</td> <td>S. eridania³⁴²</td> <td></td>	3-deacetylsalannin (333)	S. eridania ³⁴²	
1-deacetylnimbolini A (356)S. littoralisnimbolinin B (358)S. exigua;S. littoralisS. exigua;S. littoralisS. littoralisnimbolinin C (363)S. littoralisnimbolinin D (364)S. littoralisohchinolide C (386)S. eridania3-O-acetylohchinolal (399)S. eridanianimbolidin B (407)S. eridaniaS. eridania1000S. eridania500nimbolidins C-E (410-412)S. eridanianimbolidin F (413)S. eridania	nimbolinin A (355)	S. littoralis ²¹²	
nimbolinin B (358) S. exigua; 341 S. eridania 341,342 s. littoralis 247 nimbolinin C (363) S. littoralis 212 nimbolinin D (364) S. littoralis 212 ohchinolide C (386) S. eridania 84 3-O-acetylohchinolal (399) S. eridania 247,342 nimbolidin B (407) S. eridania 363 s. eridania 363 500 nimbolidins C-E (410-412) S. eridania 363 nimbolidin F (413) S. eridania 84	1-deacetylnimbolinin A (356)	S. littoralis ²⁴⁷	
S. littoralis ²⁴⁷ nimbolinin C (363) S. littoralis ²¹² nimbolinin D (364) S. littoralis ²¹² ohchinolide C (386) S. eridania ⁸⁴ 3-O-acetylohchinolal (399) S. eridania ⁸⁴ nimbolidin B (407) S. eridania ³⁶³ S. eridania ³⁶³ 500 nimbolidins C-E (410–412) S. eridania ³⁶⁴ s. eridania ³⁶³ 500	nimbolinin B (358)	S. exigua; ³⁴¹ S. eridania ^{341,342}	
nimbolinin C (363) S. littoralis ²¹² nimbolinin D (364) S. littoralis ²¹² ohchinolide C (386) S. eridania ⁸⁴ 3-O-acetylohchinolal (399) S. eridania ⁸⁴ nimbolidin B (407) S. eridania ³⁶³ 1000 S. eridania ³⁶³ 500 nimbolidin F (413) S. eridania ³⁸⁴		S. littoralis ²⁴⁷	
nimbolinin D (364) S. littoralis ²¹² ohchinolide C (386) S. eridania ⁸⁴ 3-O-acetylohchinolal (399) S. eridania ⁸⁴ nimbolidin B (407) S. eridania ^{247,342} 1000 S. eridania ³⁶³ 500 nimbolidins C-E (410–412) S. eridania ³⁶³ 500 nimbolidin F (413) S. eridania ⁸⁴ 500	nimbolinin C (363)	S. littoralis ²¹²	
ohchinolide C (386) S. eridania ⁸⁴ 3-O-acetylohchinolal (399) S. eridania ⁸⁴ nimbolidin B (407) S. eridania ^{247,342} 6 S. eridania ³⁶³ 1000 S. eridania ³⁶⁴	nimbolinin D (364)	S. littoralis ²¹²	
3-O-acetylohchinolal (399) S. eridania ⁸⁴ nimbolidin B (407) S. eridania ^{247,342} 1000 S. eridania ³⁶³ 500 nimbolidin S C-E (410-412) S. eridania ³⁶³ 500 nimbolidin F (413) S. eridania ⁸⁴ 500	ohchinolide C (386)	S. eridania ⁸⁴	
nimbolidin B (407) S. eridania ^{247,342} 1000 S. eridania ³⁶³ 500 nimbolidins C-E (410-412) S. eridania ³⁶³ 500 nimbolidin F (413) S. eridania ⁸⁴	3-O-acetylohchinolal (399)	S. eridania ⁸⁴	
S. eridania ³⁶³ 500 nimbolidins C-E (410-412) S. eridania ³⁶³ 500 nimbolidin F (413) S. eridania ⁸⁴ 500	nimbolidin B (407)	S. eridania ^{247,342}	1000
nimbolidins C-E (410-412) S. eridania ³⁶³ 500 nimbolidin F (413) S. eridania ⁸⁴ 500		S. eridania ³⁶³	500
nimbolidin F (413) S. eridania ⁸⁴	nimbolidins C-E (410–412)	S. eridania ³⁶³	500
	nimbolidin F (413)	S. eridania ⁸⁴	

Chemical Reviews

Table 34. Continued

compounds	insects	MAC values
Trs A-C (462 , 479 , 463)	Ajrotis sejetum Denis ⁴⁹³	200
methyl angolensate (568)	Spodoptera littoralis ^{547–549,551}	500
methyl 6-hydroxyangolensate (569)	S. littorali ^{547–549}	
methyl 6-acetoyxangolensate (570)	S. littoralis ^{547,549}	
sandoricin (573) and 6-hydroxysandoricin (574)	S. frugiperda ⁵³²	25
	Ostrinia nubilalis ⁵³²	200
khayanoside (598)	Spodoptera littoralis ⁵⁷⁴	1000
proceranolide butanoate (635)	Agrotis segetum ⁶⁴⁸	100
khayanone (668)	Spodoptera littoralis ⁶⁵⁸	300
angolensins A-C (672, 766, and 673)	S. littoralis ⁵⁴⁵	1000
8β ,14 α -dihydroxyswietenolide (674)	S. littoralis ⁵¹⁰	500
khayalactol (774)	S. littoralis ⁵⁴⁷	300
seneganolide (777)	S. littoralis ^{547,549,551}	
2-hydroxyseneganolide (778)	S. littoralis ^{559,658}	200
2-hydroxyswietemahonolide (797)	S. littoralis ⁶³⁰	500
swietemahonin G (806)	S. littoralis ⁶³⁰	300
6-0-acetylswietemahonin G (807)	S. littoralis ⁶³⁰	500
xyloccensin L (829)	Piece brassicae ⁶³⁵	1000
tabulalide D (857)	Spodoptera littoralis ⁷⁰⁶	500
swietenialides A–E (921–923 , 889 , 895)	S. littoralis ⁶⁶⁴	1000
xyloccensins P, Q (949, 950)	Mythimna separata ⁷⁰⁰	500
tabulalin (973)	Spodoptera littoralis ⁷⁰⁶	
tabulalides A, B, E (995, 996, and 978)	S. littoralis ⁷⁰⁶	1000
khayanolide A (1002)	S. littoralis ^{547–549}	300
1-O-acetylkhayanolide A (1003)	S. littoralis ^{559,658}	100
khayanolide B (1004)	S. littoralis ^{547–549}	1000
1-O-acetylkhayanolide B (1005)	S. littoralis ⁵⁴⁷	300
khayanolide D (1006)	S. littoralis ⁵⁵⁹	200
	S. littoralis ⁵⁷⁴	1000
khayanolide E (1007)	S. littoralis ⁵⁷⁴	100
khayanolide C (1013)	S. littoralis ⁵⁴⁹	500
spirosendan (1056)	S. littoralis ²⁴⁷	1000
azedararide (1138)	S. littoralis ²³⁰	500
fraxinellone (1142)	S. littoralis ²³⁰	
12a-acetoxyfraxinellone (1147)	S. littorali ²³⁰	

phosphatases, adenosine triphosphatases, and lactate dehydrogenase decreased. $^{928}\!$

Using Drosophila melanogaster as model system, the insect cellular cytoskeletal β -actin was found to be the probable target of azadirachtin (292).^{929,930} Azadirachtin (292), salannin (332), nimbin (391), and 6-deacetylnimbin (392) inhibited the ecdy-sone 20-monooxygenase (E-20-M) activity against *Aedes aegypti*, Drosophila melanogaster, and Manduca sexta in a dose-dependent fashion. Based on the dose reponse as well as the 50% inhibition (I₅₀) value, 332 was found to be the most effective whereas 391 was the least effective.⁹³¹ The effects of 17 β -hydroxyazadiradione (18), 292, 332, 3-deacetylnimbin (333), gedunin (416), and 7-deacetylgedunin(421) on enzyme lactate dehydrogenase (LDH) activity of *Cnaphalocrocis medinalis* larvae were investigated with clear dose–response dependency manner. Among these compounds, 292 is most potent in all experiments with EC₅₀ values at least 0.043, 0.057, and 0.063 ppm for third, fourth and fifth instars, respectively.^{932,933} Azadirachtin B (296) was 2.5-fold less active than azadiracthin (292) as an insect growth

inhibitor but comparably effective in ecdysis inhibition.^{316,843} Surprisingly, salannin (**332**) was comparable to **292** in growthregulatory activity against *Spodoptera litura*, *Pericallia ricini*, and *Oxya fuscovittata*.⁹³⁴

Nimocinolide (26) and isonimocinolide (29) affected fecundity in *Musca domestica* at doses of 100–500 ppm and showed mutagenic properties in *Aedes aegypti* producing intermediates.⁸⁰ Nutritional analyses revealed that both growth inhibition and reduced consumption of cedrelone (81) were a consequence of postingestive malaise rather than a peripherally mediated antifeedant effect.⁹³⁵ The feeding experiments showed the ED₅₀ values of sendanin (156) for growth inhibition against *Pectinophora gossypiella*, *Heliothis zea*, *H. virescens*, and *Spodoptera frugiperda* ranged from 9 to 60 ppm, with *P. gossypiella* being the most sensitive and *Heliothis* complex the least.¹⁹⁸ When incorporated into artificial diets of neonates at 50 ppm, humilinolides A-D (793, 794, 695, and 697) caused larval mortality, as well as growth reduction and increased the development time of survivors in a concentration-dependent manner. In addition, 695 at

Table 35. Insects Growth Regulatory Activity of Meliaceous Limonoids

compounds	insects and efficacy
hirtin (94)	<i>Peridroma saucia</i> , $EC_{50} = 13 \text{ ppm}^{170}$
toosendanin (167)	Spodoptera frugiperda, $LC_{50} = 7.0 \text{ ppm}^{413}$
azadirachtin (292)	Heliothis zea and H. virescens, $ED_{50} = 0.7$ ppm; Spodoptera frugiperda, Pectinophora gossypiella, $ED_{50} = 0.4$ ppm ⁹³⁶
	Rhodnius prolixus, $ED_{50} = 0.04 \mu g/mL^{888}$
	Helicoverpa armigera, $EC_{50} = 0.26$ ppm; Spodoptera litura, $EC_{50} = 0.21$ ppm ⁴⁴²
azadirachtin B (296)	Rhodnius prolixus, $ED_{50} = 0.015 \ \mu g/mL^{888}$
salannin (332)	<i>Helicoverpa armigera</i> , EC ₅₀ = 74.5 ppm, ⁴⁴² EC ₅₀ = 86.5 ppm, EC ₉₅ = 187.4 ppm ³⁶⁶
	Spodoptera litura, $EC_{50} = 72.0 \text{ ppm}^{442}$
	S. litura, EC ₅₀ = 87.7 ppm, EC ₉₅ = 197.3 ppm and FI ₅₀ = 2.8 μ g/cm ²³⁶⁶
salannol (336)	S. litura, EC ₅₀ = 77.4 ppm, EC ₉₅ = 220.8 ppm, and FI ₅₀ = 2.3 μ g/cm ²³⁶⁶
	<i>Helicoverpa armigera</i> , $EC_{50} = 79.7$ ppm, $EC_{95} = 219.7$ ppm ³⁶⁶
salannol acetate (337)	<i>H. armigera</i> , EC ₅₀ = 64.2 ppm, EC ₉₅ = 166.9 ppm ³⁶⁶
	Spodoptera litura, $EC_{50} = 65.6$ ppm, $EC_{95} = 169.1$ ppm, and $FI_{50} = 2.0 \ \mu g/cm^{2366}$
gedunin (416)	Spodoptera litura, $EC_{50} = 40.4 \text{ ppm}^{442}$
	S. frugiperda, $LC_{50} = 39.0 \text{ ppm}^{413}$
	<i>Helicoverpa armigera,</i> EC ₅₀ = 50.8 ppm ⁴⁴²
6 β -hydroxygedunin (420)	H. armigera, $EC_{50} = 24.2 \text{ ppm}$; Spodoptera litura, $EC_{50} = 21.5 \text{ ppm}^{442}$
photogedunin (433)	S. frugiperda, $LC_{50} = 10.0 \text{ ppm}^{413}$
prieurianin (458)	Drosophila melanogaster, $ED_{50} = 10^{-5} M^{498}$
rohitukin (480)	D. melanogaster, $ED_{50} = 1.25 \times 10^{-4} M^{498}$
khayalactol (774)	Spodoptera littoralis, EC ₅₀ = 11.48 mg/kg ⁶⁷⁸
khayanolide A (1002)	S. littoralis, $EC_{50} = 14.65 \text{ mg/kg}^{678}$
khayanolide B (1004)	S. littoralis, $EC_{50} = 6.96 \text{ mg/kg}^{678}$
1-O-acetylkhayanolide B (1005)	S. littoralis, $EC_{50} = 16.75 \text{ mg/kg}^{678}$
nimbinene (1099)	S. litura, $EC_{50} = 404.5$ ppm; Helicoverpa armigera, $EC_{50} = 394.1$ ppm ⁴⁴²

5 ppm also reduced growth and survivorship of Ostrinia nubilalis.⁶⁶⁵

The EC₅₀ values of 7-deacetyl-17 β -hydroxyazadiradione (19), azadiradione (12), and nimbocinol (13) against *Heliothis sirescens* were 240, 560, and 1600 ppm, respectively, which suggested that the insect growth regulating activity was reduced by a hydroxyl group at C-7 but increased by a hydroxyl group at C-17.¹⁰¹ Siddiqui et al. proposed that the senecioyloxy substituent at C-7 in 7-O-deacetyl-23-O-methyl-7 α -O-senecioylnimocinolide (28) resulted in a significant increase of insect growth regulating activity against *Aedes aegypti*.¹¹⁹

5.1.3. Insecticidal Activity. The insecticidal activities of azadirachtin-like compounds were listed in detail by Govindachari et al. in 1998.⁹³⁷ We now summarize the insecticidal efficacy of limonoids in Table 36. The LC₅₀ values of 292 against the secondinstar nymphs of nine species of aphids ranged from 2.4 ppm for Myzus persicae on pepper to 635.0 ppm for Chaetosiphon fragaefolii on strawberry.⁹³⁸ Contact and dipping LC₅₀ values of **292** against larvae of Hyalomma dromedarii were >20.3 μ g/cm² and >2.5 g/L, respectively.⁸⁹⁴ Arnason et al. proved that 292 was an effective botanical insecticide for control of Ostrinia nubilalis at 10 ppm.⁸⁸³ In addition, 292 was efficacious against Haematobia irritans, Stomoxys calcitrans, and Musca domestica and also had potential for H. irritans control.⁹³⁹ It was announced that 292 in ppm concentrations inhibited proliferation and monolayer formation of Spodoptera frugiperda (Sf9) insect cells in monolayer culture.^{831,940} However, Cohen et al. stated that 292 was not cytotoxic against Sf9 cell lines.⁹⁴¹ The evidence presented by Salehzadeh et al. suggested that in insect cells 292 acted similarly to the antimitotic plant metabolite colchicine, namely, by interfering with the polymerization of tubulin.⁹⁴²

Swietenin C (679), humilinolide E (698), methyl-2-hydroxy- 3β -isobutyroxy-1-oxomeliac-8(30)-enate (699), and humilin B (812) reduced survivorships at various stages against Ostrinia *nubilalis,* while 6α -acetoxygedunin (418) reduced growth at the test concentration of 50 ppm.⁴³⁴ Khayasin (652) exhibited marked insecticidal activity against the fifth larvae of Brontispa longissima at a concentration of 10 mg/L.558 Among khayasin T (655), febrifugin (694), cipadesin (703), ruageanin A (808), cipadesin A (815), and febrifugin A (716), the last showed the hightest insecticidal activity at 50.0 mg/kg against Spodoptera frugiperda, comparable to that of the positive control-gedunin (416).⁶⁵⁶ Moluccensins H and I (964 and 965) showed moderate insecticidal activity against the fifth instar larvae of Brontispa longissima at a concentration of 100 mg/L, whereas moluccensins J-L (966, 969, 970) exhibited no activity.⁵⁶⁸ Preliminary studies showed that the limonoids and triterpenoids in Cedrela fissilis and C. fruticosa were promising in controlling leaf-cutting ants Atta sexdens rubropilosa,⁶⁷¹ and subsequent research revealed that the toxicity for the ants seemed not to be related only to the presence of the limonoids.¹¹³ Neither 53 nor 20,21,22,23-tetrahydro-23oxoazadirone (56) showed insecticidal activity against Peridroma saucia.¹³¹ In addition, meliacinol (456) did not show insecticidal activity against Aedes aegypti at up to 100 ppm.⁹³

Quantitative molecular calculations of the structure–activity relationship indicated that the insecticidal activity of azadirachtins was directly proportional to the polarity of ring A, the steric requirements of the substituents at C-7, and the rotations around the single bond between C-8 and C-14.⁹⁴³ The potent larvicidal activity of gedunin (416) indicated that the epoxidation and expansion of ring D had a favorable effect on this activity, as was

compounds	insects and efficacy
nimocinol (7)	Aedes aegypti, $LC_{50} = 21 \text{ ppm}^{93}$
6α -O-acetyl-7-deacetylnimocinol (8)	A. aegypti, $LC_{50} = 83 \text{ ppm}^{93}$
23-O-methylnimocinolide (27)	A. aegypti, $LC_{50} = 53 \text{ ppm}^{119}$
7-O-deacetyl-23-O-methyl-7 α -O-senecioylnimocinolide (28)	A. aegypti, $LC_{50} = 2.14 \text{ ppm}^{119}$
22,23-dihydronimocinol (33)	Anopheles stephensi, $LC_{50} = 60 \text{ ppm}^{120}$
1α , 7α , 11β -triacetoxy- 4α -carbomethoxy- 12α -	A. gambiae, $LD_{50} = 4.0 \text{ ppm}^{188}$
$(2-methylpropanoyloxy)-14\beta$,15 β -epoxyhavanensin (123)	
1α , 11β -diacetoxy- 4α -carbomethoxy- 7α -hydroxy- 12α -	A. gambiae, $LD_{50} = 3.6 \text{ ppm}^{188}$
(2-methylpropanoyloxy)-15-oxohavanensin (130)	
1α -acetyl- 3α -propionylvilasinin (187)	A. gambiae, $LD_{50} = 7.1 \text{ ppm}^{188}$
meliatetraolenone (245)	A. stephensi, $LC_{50} = 16 \text{ ppm}^{272}$
azadirachtin (292)	 A. gambiae, LD₅₀ = 57.1 ppm¹⁸⁸Plutella xylostella, LD₅₀ = 7.04 (24 h); 4.12 (48 h); 1.28 (72 h); 0.87 (96 h) μg/g³²⁴Spodoptera littoralis, LC₅₀ = 0.32 ppm, EC₅₀ = 0.11 ppm³³⁸
azadirachtol (295)	<i>Plutella xylostella</i> , $LD_{50} = 4.88 (24 h)$; 3.28 (48 h); 2.35 (72 h); 1.78 (96 h) $\mu g/g^{324}$
azadirachtin B (296)	<i>P. xylostella</i> , $LD_{50} = 4.85 (24 h)$; 2.26 (48 h); 1.56 (72 h); 1.06 (96 h) $\mu g/g^{324}$
azadirachtin O (301)	<i>P. xylostella</i> , LD ₅₀ = 3.92 (24 h); 1.92 (48 h); 1.19 (72 h); 0.79 (96 h) µg/g ³²⁴
azadirachtin Q (302)	<i>P. xylostella,</i> LD ₅₀ = 5.95 (24 h); 1.89 (48 h); 1.40 (72 h); 1.10 (96 h) µg/g ³²⁴
1,3-dicinnamoyl-11-hydroxymeliacarpin (313)	Spodoptera littoralis, LC_{50} = 2.36 ppm, EC_{50} = 0.57 ppm ³³⁸
1-cinnamoyl-3-acetyl-11-hydroxymeliacarpin (314)	S. littoralis, $LC_{50} = 0.48 \text{ ppm}^{338}$
1-cinnamoyl-3-methacrylyl-11-hydroxymeliacarpin (315)	S. littoralis, $LC_{50} = 1.19$ ppm, $EC_{50} = 0.57$ ppm ³³⁸
7α ,12 α -diacetyoxy-11 β -hydroxyneotecleanin (621)	Anopheles gambiae, $LD_{50} = 7.83 \text{ ppm}^{579}$
11 β ,12 α -diacetoxyneotecleanin (622)	A. gambiae, LD ₅₀ = 7.07 ppm ⁵⁷⁹
11 β ,12 α -diacetoxy-14 β ,15 β -epoxyneotecleanin (623)	A. gambiae, LD ₅₀ = 7.05 ppm ⁵⁷⁹
azadirachtin L (1067)	Plutella xylostella, LD ₅₀ = 10.27 (24 h); 7.89 (48 h); 5.39 (72 h); 1.92 (96 h) $\mu g/g^{324}$
11 α -azadirachtin H (1068)	<i>P. xylostella</i> , LD ₅₀ = 5.75 (24 h); 4.20 (48 h); 1.38 (72 h); 0.75 (96 h) $\mu g/g^{324}$
azadirachtin M (1071)	<i>P. xylostella</i> , $LD_{50} = 8.46 (24 h)$; 4.84 (48 h); 4.23 (72 h); 1.30 (96 h) $\mu g/g^{324}$
azadirachtin P (1072)	<i>P. xylostella</i> , $LD_{50} = 2.19$ (24 h); 1.73 (48 h); 1.19 (72 h); 0.79 (96 h) $\mu g/g^{324}$
desfurano-6 α -hydroxyazadiradione (1128)	Anopheles stephensi, $LC_{50} = 43 \text{ ppm}^{120}$

also the case for the C=C bond in the ring A in nimbocinol (13) and nimolicinol (451).⁹⁴⁴

5.1.4. Antiphytopathogen Activity. Interestingly, pure azadiradione (12), epoxyazadiradione (60), salannin (332), and nimbin (391) did not have appreciable antifungal activity. However, when these limonoids were mixed and bioassayed, they showed antifungal activity against Drechslera oryzae, Alter*naria tenuis*, and *Fusarium oxysporum* f. sp. *vasinfectum*, indicating possible additive/synergistic effects.¹⁰⁵ Among azadiradione (12), cedrelone (81), and several derivatives of 81, the most effective in reducing rust pustule emergence was 81 itself, which gave emergence reductions of 98.4% and 93.4% at concentrations of 1 μ g/cm² and 10 μ g/cm², repectively.⁹⁴⁵ The results obtained by Kraus et al. showed that nimbolide (345) inhibited *Bacillus subtilis* even at a concentration of $0.5 \,\mu$ g/spot.³²² Nimbin (391) inhibited the growth of potato virus X *in vitro* by <50% at a concentration of 1000 ppm.⁹⁴⁶ Ten limonoids from *Khaya* ivorensis were tested antifungal activity against Botrytis cinerea, and among these 1,3,7-trideacetylkhivorin (438) and 568 showed the highest activity, while 7-deacetylgedunin (421) had the lowest activity.447 With the exception of Penicillium expansum, 3α , 7α -dideacetylkhivorin (440) showed stronger antimicrobial activity than methyl 6-hydroxyangolensate (569) against all of the fungi tested (Aspergillus niger, Monilinia fructicola, Botrytis cinerea, Geotrichum candidum, Colletotrichum acutatum, Penicillium expansum, P. italicum, Glomerella cingulata, and Phytophthora citrophthora).⁴⁴⁷ Among the microbial species tested

(Bacillus subtilis, Aspergillus fumigatus, A. niger, and Alternaria alternata), methyl angolensate (568) exhibited the maximum zone of inhibition (17.3 mm) against A. niger.947 mexicanolide (626), 2α , 3β -dihydroxy-3-deoxymexicanolide (628), 3β -hydroxy-3-deoxymexicanolide (629), 6-acetyl-3-tigloylswitenolide (646), and 6-acetylswietenine (687) effectively reduced the number of rust pustules on detached groundnut leaves.⁶⁰³ 2-Acetoxyseneganolide (725) at concentrations of 1000 and 1500 ppm showed inhibitions against B. cinerea growth of 61.50% and 68.33%, respectively, which differ only insignificantly from the inhibitions yielded by methyl 6-hydroxyangolensate (569) at 1500 ppm (65.33%) and seneganolide A (723) at 1000 ppm (60.83%).⁴⁷² 1,2-Dihydro- 6α -acetoxyazadirone (239) showed strong inhibitory properties against the pathogenic fungi Curvularia verruciformis, Dreschlera oryzae, and Alternaria solani, but no related data were presented in the original paper.²⁶⁷ 6-Acetoxy-7 α -hydroxy-3-oxo-14 β ,15 β -epoxymeliac-1,5-diene (69) exhibited strong antibacterial activity against Bacillus antimacis, B. pumilus, and B. subtilis, but no data were provided in the original paper.142

5.1.5. Others. Cherry found that **292** did not cause mortality, antifeeding responses, or change the growth rate of *Melanotus communis* wireworms; however, azadirachtin-treated soil was repellent to the wireworms.⁹⁴⁸ 7-Deacetoxy-7-oxogedunin (**423**) acted as an inhibitor of photophosphorylation in spinach thylakoids since it inhibited ATP synthesis and phosphorylating electron flows by 88 and 83%, respectively, at a concentration

Table 37. Cytotoxic Activity of Meliaceous Limonoids against Tumor Cell Lines

compounds	cells	activity
dysobinin (11)	КВ	$IC_{50} = 3.17 \ \mu g/mL^{97}$
	NCI-H187	$IC_{50} = 1.67 \mu g/mL^{97}$
	MCF7	$IC_{50} = 2.15 \mu g/mL^{97}$
azadiradione (12)	KB	$IC_{50} = 9.38 \ \mu g/mL^{97}$
	NCI-H187	$IC_{50} = 6.44 \ \mu g/mL^{97}$
	MCF7	$IC_{50} = 7.13 \ \mu g/mL^{97}$
mahonin (17)	NCI-H187	$IC_{50} = 15.61 \ \mu g/mL^{97}$
	MCF7	$IC_{50} = 18.42 \ \mu g / mL^{97}$
epoxyazadiradione (nimbinin) (60)	GPK	$ED_{50} = 7.13 \ \mu g/mL^{500}$
	KB	$IC_{50} = 12.87 \ \mu g/mL^{97}$
	NCI-H187	$IC_{50} = 7.54 \mu g/mL^{97}$
	MCF7	$IC_{50} = 4.68 \mu g/mL^{97}$
	$N1 imes 10^{-115}$	$IC_{50} = 23 \ \mu M^{941}$
	143B.TK	$IC_{50} = 24 \mu M^{941}$
anthothecol (84)	P388	$ED_{50} = 1.2 \ \mu g/mL^{210}$
1,12-diacetyltrichilin B (139)	P388	$IC_{50} = 0.46 \mu g/mL^{221}$
trichilin D (141)	P388	$IC_{50} = 0.055 \ \mu g/mL^{221}$
trichilin H (145)	P388	$IC_{50} = 0.16 \mu g/mL^{221}$
	KB	$IC_{50} = 0.11 \mu g/mL^{211}$
1-acetyltrichilin H (146)	P388	$IC_{50} = 0.47 \mu g/mL^{221}$
1-acetyl-2-deacetyltrichilin H (147)	P388	$IC_{50} = 0.66 \mu g/mL^{221}$
3-deacetyltrichilin H (148)	P388	$IC_{50} = 0.045 \ \mu g/mL^{221}$
1-acetyl-3-deacetyltrichilin H (149)	P388	$IC_{50} = 0.40 \mu g/mL^{221}$
12-O-deacetyltrichilin H (150)	HeLa S3	$IC_{50} = 0.48 \mu M^{226}$
12-deacetyltrichilin I (152)	P388	$IC_{50} = 0.011 \mu g/mL^{221}$
sendanin (156)	P388	$IC_{50} = 0.078 \ \mu g/mL_{i}^{205} ED_{50} = 0.01 \ \mu g/mL^{210}$
	$\mathrm{N1} imes 10^{-115}$	$IC_{50} = 133 \mu M^{941}$
	143B.TK	$IC_{50} = 89 \ \mu M^{941}$
29-deacetylsendanin (157)	Hepa1c1c7	$GI_{50} = 0.238 \mu g/mL^{202}$
	HepG2	$GI_{50} = 0.805 \mu g/mL^{202}$
	P388	$IC_{50} = 0.026 \mu g/mL^{205}$
29-isobutylsendanin (161)	P388	$IC_{50} = 0.034 \mu g/mL^{205}$
12α-hydroxyamoorastatin (166)	P388	$ED_{50} = 0.002 \mu g/mL;^{210} IC_{50} = 0.090 \mu g/mL^{205}$
toosendanin (167)	KB	$IC_{50} = 3.82 \mu g/mL^{211}$
	PC3	$IC_{50} = 1.2 \times 10^{-7} M (120 h)^{960}$
	BEL7404	$IC_{50} = 2.6 \times 10^{-8} M (96 h)^{960}$
	SH-SY5Y	$IC_{50} = 1.5 \times 10^{-7} M (96 h)^{960}$
	U251	$IC_{50} = 3.3 \times 10^{-8} \text{ M} (96 \text{ h})^{960}$
	HL-60	$IC_{50} = 6.1 \times 10^{-9} \text{ M} (96 \text{ h})^{960}$
	U937	$IC_{50} = 5.4 \times 10^{-9} \text{ M} (72 \text{ h})^{960}$
amoorastatone (172)	P388	$ED_{50} = 30 \ \mu g/mL^{210}$
meliatoxin B_1 (177)	P388	$IC_{50} = 5.4 \mu g/mL^{221}$
	KB	$IC_{50} > 10 \mu g/mL^{211}$
toosendanal (185)	KB	$IC_{50} > 10 \mu g/mL^{211}$
meliavolkin (200)	A-549	$ED_{50} = 0.57 \mu g/mL^{248}$
	MCF-7	$ED_{50} = 0.26 \mu g/mL^{248}$
	HT-29	$ED_{50} = 0.12 \mu g/mL^{248}$
malleastrone A (227)	A2780	$IC_{50} = 0.49 \mu M^{242}$
	MDA-MB-435	$IC_{50} = 0.41 \mu M^{242}$
	HT-29	$IC_{50} = 0.24 \mu M^{242}$
	H552-T1	$IC_{50} = 0.24 \mu M^{242}$
	U937	$IC_{50} = 0.20 \ \mu M^{242}$
malleastrone B (228)	A2780	$IC_{50} = 0.63 \mu M^{242}$
	MDA-MB-435	$IC_{50} = 0.34 \mu M^{242}$

dx.doi.org/10.1021/cr9004023 |Chem. Rev. XXXX, XXX, 000–000

compounds	cells	activity
	HT-29	$IC_{50} = 0.22 \ \mu M^{242}$
	H552-T1	$IC_{50} = 0.23 \ \mu M^{242}$
	U937	$IC_{50} = 0.19 \mu M^{242}$
malleastrone C (229)	A2780	$IC_{50} = 18 \mu M^{242}$
turrapubesin A (290)	P388	$IC_{50} = 12.14 \mu M^{287}$
1-tigloyl-3-acetyl-11-methoxymeliacarpinin (318)	P388	$IC_{50} = 3.2 \mu g/mL^{205}$
1-tigloyl-3,20-diacetyl-11-methoxymeliacarpinin (321)	P388	$IC_{50} = 100 \mu g/mL^{345}$
3-tigloyl-1,20-diacetyl-11-methoxymeliacarpinin (322)	P388	$IC_{50} = 48 \mu g/mL^{345}$
1-cinnamoyl-3-hydroxy-11-methoxymeliacarpinin (323)	P388	$IC_{50} = 1.5 \mu g/mL^{345}$
1-deoxy-3-methacrylyl-11-methoxymeliacarpinin (324)	P388	$IC_{50} = 47 \mu g/mL^{345}$
1-cinnamoyl-3-acetyl-11-methoyxmeliacarpinin (327)	P388	$IC_{50} = 10.5 \mu g/mL^{345}$
1-acetyl-3-tigloyl-11-methoxymeliacarpinin (329)	P388	$IC_{50} = 3.3 \mu g/mL^{205}$
nimbolide (345)	GPK	$ED_{50} = 10.14 \mu g/mL^{300}$
	$N1 \times 10^{-113}$	$IC_{50} = 1.5 \mu g/mL;^{901} 5.2 \mu M^{941}$
	143B.TK	$IC_{50} = 4.3 \mu M^{241}$
	BC-1	$ED_{50} = 0.39 \ \mu g/mL;^{3/3} 3.1 \ \mu g/mL^{3/3}$
	COL-2	$ED_{50} = 0.41 \ \mu g/mL;^{5/5} 4.2 \ \mu g/mL^{5/5}$
	HT-1080	$ED_{50} = 0.31 \mu g/mL^{3/3}$
	LU-I	$ED_{50} = 0.42 \ \mu g/mL;^{5/3} 3.3 \ \mu g/mL^{5/5}$
	MEL-2	$ED_{50} = 0.53 \mu g/mL^{3/3}$
	KB D200	$ED_{50} = 0.25 \ \mu g/mL;^{50} \ I./ \ \mu g/mL^{573}$
	P388	$ED_{50} = 0.005 \mu g/mL$
28 deoxonimbolide (316)	LNCaP BC 1	$ED_{50} = 0.9 \ \mu g/mL$ $ED_{-} = 1.34 \ \mu g/mL \cdot \frac{373}{3.2} \ \mu g/mL^{369}$
20-deoxonimbolide (3+0)	COL-2	$ED_{50} = 1.54 \ \mu g/mL, \qquad 5.2 \ \mu g/mL$
	HT-1080	$ED_{50} = 1.01 \ \mu g/mL, \qquad 9.0 \ \mu g/mL$
	LU-1	$ED_{50} = 0.84 \mu g/mL^{373} 8.5 \mu g/mL^{369}$
	MEL-2	$ED_{50} = 2.05 \ \mu g/mL^{373}$
	KB	$ED_{50} = 1.30 \ \mu g/mL^{373} 4.1 \ \mu g/mL^{369}$
	P388	$ED_{50} = 0.66 \ \mu g/mL^{373}$
	LNCaP	$ED_{50} = 1.9 \mu g/mL^{369}$
12-O-methylvolkensin (370)	KB	$IC_{50} = 8.72 \mu g/mL^{211}$
1-O-deacetylohchinolide A (372)	HeLa S3	$IC_{50} = 2.40 \ \mu M^{387}$
1-O-deacetyl-1-O-tigloylohchinolide A (373)	HeLa S3	$IC_{50} = 29.7 \ \mu M^{387}$
ohchinolide B (374)	HeLa S3	$IC_{50} = 40.5 \mu M^{387}$
1-O-deacetylohchinolide B (375)	HeLa S3	$IC_{50} = 0.10 \ \mu M^{387}$
1-O-deacetyl-1-O-tigloylohchinolide B (376)	HeLa S3	$IC_{50} = 33.8 \mu M^{387}$
1-O-deacetyl-1-O-benzoylohchinolide B (377)	HeLa S3	$IC_{50} = 33.0 \ \mu M^{387}$
chisonimbolinin C (380)	HeLa	$IC_{50} = 13 \mu M^{390}$
chisonimbolinin D (381)	HeLa	$IC_{50} = 32 \mu M^{390}$
15-O-deacetyl-15-O-methylnimbolindin A (406)	HeLa S3	$IC_{50} = 37.4 \mu M^{226}$
15-O-deacetylnimbolindin B (408)	HeLa S3	$IC_{50} = 0.10 \mu M^{226}$
15-O-deacetyl-15-O-methylnimbolindin B (409)	HeLa S3	$IC_{50} = 28.3 \ \mu M^{226}$
walsogyne A (414)	P388	$IC_{50} = 5 \mu g/mL^{412}$
gedunin (416)	CaCo-2	$IC_{50} = 16.83 \mu M^{49}$
	GPK	$ED_{50} = 275.10 \mu g/mL^{500}$
	P388	$IC_{50} = 3.3 \mu g/mL^{433}$
7-deacetylgedunin (421)	CHAGO	$IC_{50} = 16.00 \mu M^{448}$
	Hep-G2	$IC_{50} = 10.26 \mu M^{448}$
	P388	$IC_{50} = 4.5 \mu g/mL^{433}$
7-deacetoxy-7-oxogedunin (423)	Hep-G2	$IC_{50} = 16.17 \mu M^{448}$
7-deacetoxy- 7α ,11 β -dihydroxygedunin (424)	P388	$IC_{50} = 7.8 \ \mu g/mL^{433}$
11α-hydroxygedunin (426)	P388	$IC_{50} = 71 \mu g/mL^{433}$
l1β-hydroxygedunin (427)	P388	$IC_{50} = 5.4 \mu g/m L^{+33}$
11-oxogedunin (429)	P388	$IC_{50} = 3.0 \mu g/mL^{433}$

Table 37. Continued

Table 57. Continued		
compounds	cells	activity
3α ,7 α -diacetylkhivorin (440)	Caco-2	$IC_{50} = 35 \text{ ppm}^{473}$
	SiHa	$IC_{50} = 54 \text{ ppm}^{473}$
	MCF-7	$IC_{50} = 69 \text{ ppm}^{473}$
humilinolide C (695)	A-549	$ED_{50} = 37.7 \ \mu g/mL^{665}$
	MCF-7	$ED_{50} = 94.1 \mu g/mL^{665}$
humilinolide D (697)	A-549	$ED_{50} = 60.6 \mu g/mL^{665}$
	MCF-7	$ED_{50} = 65.0 \mu g/mL^{665}$
	HT-29	$ED_{50} = 53.6 \mu g/mL^{665}$
erythrocarpine B (714)	P388	$IC_{50} = 6.0 \mu g/mL^{667}$
erythrocarpine C (715)	P388	$IC_{50} = 9.9 \mu g/mL^{667}$
erythrocarpine A (727)	P388	$IC_{50} = 2.0 \ \mu g/mL^{667}$
xylogranatin B (762)	P388	$IC_{50} = 8.9 \mu M^{637}$
	A549	$IC_{50} = 11.3 \mu M^{637}$
xylogranatin C (763)	P388	$IC_{50} = 6.3 \mu M^{637}$
xylogranatin D (764)	P388	$IC_{50} = 14.6 \mu M^{637}$
xyloccensin M (771)	HCT-8	$IC_{50} = 14.77 \ \mu M^{677}$
	Bel-7402	$IC_{50} = 12.81 \mu M^{677}$
	BGC-283	$IC_{50} = 8.90 \mu M^{677}$
	A549	$IC_{50} = 18.55 \mu M^{677}$
	A2780	$IC_{50} = 16.60 \ \mu M^{677}$
xylocarpin J (776)	HCT-8	$IC_{50} = 7.75 \mu M^{677}$
	Bel-7402	$IC_{50} = 8.22 \mu M^{677}$
	BGC-283	$IC_{50} = 8.38 \mu M^{677}$
	A549	$IC_{50} = 5.35 \mu M^{677}$
	A2780	$IC_{50} = 4.77 \mu M^{677}$
humilinolide A (793)	A-549	$ED_{50} = 64.4 \mu g/mL^{665}$
	MCF-7	$ED_{50} = 79.5 \mu g/mL^{665}$
	HT-29	$ED_{50} = 59.6 \mu g/mL^{665}$
humilinolide B (794)	HT-29	$ED_{50} = 81.1 \mu g/mL^{665}$
granaxylocarpin A (819)	P388	$IC_{50} = 9.3 \mu M^{632}$
xylomexicanin A (821)	KT	$IC_{50} = 4.59 \mu M^{675}$
granaxylocarpin B (822)	P388	$IC_{50} = 4.9 \mu M^{632}$
xylogranatin C (823)	CHAGO	$IC_{50} = 9.16 \mu M^{448}$
erythrocarpine D (827)	P388	$IC_{50} = 10.0 \mu g/mL^{667}$
erythrocarpine E (828)	P388	$IC_{50} = 16.0 \mu g/mL^{667}$
xylogranatin A (832)	A549	$IC_{50} = 15.7 \mu M^{637}$
xyloccensin Y (988)	HCT-8	$IC_{50} = 10.43 \mu M^{677}$
	Bel-7402	$IC_{50} = 13.55 \mu M^{677}$
	BGC-283	$IC_{50} = 9.87 \mu M^{677}$
	A549	$IC_{50} = 16.23 \mu M^{677}$
	A2780	$IC_{50} = 11.64 \mu M^{677}$
ceramicine A (1118)	P388	$IC_{50} = 15 \mu g/mL^{412}$

of 300 μ M.⁴³⁵ The epimeric mixture of photogedunin (433)⁴⁶² and cedrelanolide I (599)⁵⁷¹ partially inhibited photophosphorylation, H⁺ uptake, and noncyclic electron flow, and then 599 interfered with monocot preemergence properties, mainly energy metabolism of the seeds at the level of respiration.⁵⁷¹ In addition, an epimeric mixture of photogedunin inhibited seed germination, seedling growth, and root and hypocotyl/coleoptyle growth in all species assayed.⁹⁴⁹ Humilinolides A (793) and C (695) inhibited the radicle growth of *Echinochloa crus-galli* with IC₅₀ values of 99.06 μ g/mL and 163.0 μ g/mL, respectively. In addition, *Amaranthus hypochondriacus* was less sensitive to 793 and 695 with IC₅₀ values of 199.0 μ g/mL and 215.8 μ g/mL, respectively, in contrast to no

inhibition of humilinolides B (794) and D (697) at the tested concentration. 629

5.2. Biological Activities in Medicinal Use

5.2.1. Antineoplastic Activity. Most limonoids showed their antineoplastic activity as cytotoxicity with the IC₅₀ values listed in Table 37. The cytotoxicity of ten limonoids from *Turrea pubescens* was evaluated. Of these limonoids, isoazadironolide (**38**) and turrapubesin E (**276**) exhibited moderate activities against the P388 cell line, with the IC₅₀ values of 16.0 and 12.3 μ M, respectively, and none of them were active against the A549 cells.¹²⁶ Among the eight human cancer cell lines M14,

Table 38. Inactive Meliaceous Limonoids against Tumor Cell Lines

compounds	cell lines
mahonin (17)	KB ⁹⁷
6α -acetoxyepoxyazadiradione (62)	KB, NCI-H187, MCF7 ⁹⁷
toonaciliatone A (73), perform A (535), and methyl 3β -acetoxy-	SMMC-7721, HL-60, A549, SK-BR-3, PANC-1 ¹⁴⁵
2 decomposite de la construction	A CTZ ³⁶⁹
3-deoxymethylminoldate (339), 2,3-dinydronimbolide (34/)	ASK
1-O-detigloyl-1-O-cinnamoylohchinolal (398), ohchinolal (556)	nela 55
chisonimbolinins $A-G(378-384)$	HeLa, SMMC-7721 ³⁹⁰
7-deacetoxy- 7α ,11 α -dihydroxygedunin (425)	P388 ⁴³³
rohitukin (480)	P388 ²¹⁰
gaudichaudysolin A (492)	HL-60, RPMI8226, NCI-H226, HCT116, MCF7 ⁵⁰²
cipadonoids B–G (567, 1046–1050)	P388 ⁵⁴⁴
methyl angolensate (568), mexicanolide (626), proceranolide (632),	CHAGO, SW-620, KATO-3, BT-474, Hep-G2 ⁴⁴⁸
xyloccensins K (788), O (948), P (949)	
methyl 2 β ,3 β -diacetoxy-3-deoxoangolensate (577), cineracipadesins	P-388 ⁵⁶³
A-F (816, 580-583, 1040)	
humilinolide C (695)	HT-29 ⁶⁶⁵
xylomexicanin B (750)	HeLa, HEC-1, SHIN3, HOC-2, HAC-2, HLE, U251-SP, T-98,MM1-CB, HMV-1, KT ⁶⁷⁵
xylogranatin S (765)	HeLa, HLE, MDA-MB-231, SW-620 ⁶⁷⁶
humilinolide B (794)	A549, MCF-7 ⁶⁶⁵
granaxylocarpins A and B (819 and 840)	A549 ⁶³²
xylomexicanin A (821)	HeLa, HEC-1, SHIN3, HOC-2, HAC-2, HLE, U251-SP, T-98,MM1-CB, HMV-1 ⁶⁷⁵
xylocarpanoid A (825)	MDAMB-21, SW-620 ⁶³⁴
granaxylocarpins C–E (830, 984, and 981)	P388, A549 ⁶³²
moluccensins H–J (963, 967, and 968)	BT474, CHAGO, Hep-G2, KATO-3, SW-620 ⁷²³
trichiliton A (997)	HL-60, SMMC-7721, A-549, SK-BR-3 ⁶⁵¹
cipatrijugins A–D (1023–1026), cipadesin A (1051)	A549, K562 ⁷³⁵
trichilins A and B (1036 and 1043)	HL-60, BEL7402, Hela, MCF-7 ⁷³¹
cipadonoid F (1049)	HT29, HCT116, SW480, MDA-MB-231, MDA-MB-468, MCF-7, SMMC-7721, BEL-7402 MKN28, MKN45, SGF-7901, KB, RH30, SK-OV-3, Hela, HL-60, K562, K562/A02 ⁵⁴⁴

NCI-H23, SF-539, PC-3, SW620, KM12, UO-31, and ACHN, the most sensitive cells according to the dose-response profiles to 29-deacetylsendanin (157) were SF-539 and PC-3 which had GI₅₀ (growth inhibition of 50%) values of less than 0.010 μ g/ 203 12lpha-Hydroxyamoorastatin (166), 12lpha-acetoxyamoorasmL. tatin (167), and 12α -hydroxyamoorastatone (173) were all significantly cytotoxic to the human tumor cell lines of A-549, SK-OV-3, SK-MEL-2, XF-498, and HCT-15. Of these compounds, 167 was the most active with ED₅₀ values from 0.7 to 40 ng/mL.²¹³ In the human glioblastoma cell lines of G-28, G-112, and G-60, azadiracthin (292) induced a significant suppression of the binucleation index of 11, 8, and 24% respectively.⁹⁵⁰ In comparison with azadirachtin (292), nimbolide (345) was found to be a more potent antiproliferative and apoptosis-inducing agent and offered promise as a candidate agent in multitargeted prevention and treatment of cancer.^{951,952} The cellular and molecular mechanism by which 292 and 345 act against the HeLa cell line was investigated, and it was concluded that both compounds simultaneously arrest the cell cycle and target multiple molecules involved in mitochondrial apoptosis, and thus offer immense potential as anticancer therapeutic drugs.⁹⁵³ Treatment with nimbolide (345) resulted in dose and time-dependent inhibition of growth of BeWo cells,954,955 HL-60, U937, THP-1 and B16,956 suggesting that 345 has immense potential in cancer prevention and therapy based on

its antiproliferative and apoptosis inducing effects. The nimbolide-induced growth inhibition and cell cycle arrest of HT-29 were not associated with cellular differentiation, but instead with the time-dependent up-regulation of p21, cyclin D2, Chk2.⁹⁵⁷ Methyl angolensate (**568**) inhibited growth of T-cell leukemia and chronic myelogenous leukemia cells in a time- and dosedependent manner, which involved the induction of apoptosis by triggering the intrinsic pathway.⁹⁵⁸

Nimbolin B (**366**) was moderately active in the brine shrimp lethality test, and it was significantly cytotoxic against HT-29 with an ED₅₀ value of $<10^{-3} \mu g/mL$.³⁸⁴ Volkensinin (**1057**) showed weak bioactivity in BST with an LC₅₀ value of 57 $\mu g/mL$, and it was generally but weakly cytotoxic against six human tumor cell lines, giving ED₅₀ values of 27.90, 28.35, 33.56, 29.56, 8.43, and 28.51 $\mu g/mL$ against A-498, PC-3, PACA-2, A-549, MCF-7, and HT-29, respectively.⁷⁴⁴ Gedunin (**416**) showed anticancer activity via inhibition of the 90 kDa heat shock protein (Hsp90) folding machinery and caused the degradation of Hsp90-dependent client proteins similarly to other Hsp90 inhibitors.⁹⁵⁹ Nymania 1 (**522**) showed reproducible, significant, and selective activity against the DNA repair-deficient RS322YK yeast strain, whereas Tr-B (**479**) exhibited moderate but selective activity, suggesting that they might have cytotoxic activity mediated by a DNA-damaging mechanism.¹⁹²

Aphanastatin (142), together with amoorastatin (165) and 12α -hydroxyamoorastatin (166), was reported as showing

significant antineoplastic activity, but no data were provided.¹⁹⁷ On the negative side, many limonoids were found to be inactive against specific tumor cell lines. These results are listed in Table 38 in detail.

The presence of both a C-19/28 lactol and a C-14/15-epoxide group was found to be especially important for pronounced inhibition of the P-388 lymphocytic leukemia system in vitro cell line, and substitution of an A-ring $\alpha_{,\beta}$ -unsaturated ketone (3-oxo-1-ene) for the lactol led to diminished activity, while reduction of the olefin caused complete loss of activity.⁸⁴⁵ Most trichilin-class limonoids with a C-14/15-epoxide and a C-19/ 28 acetal bridge exhibited strong cytotoxicity against P388 cells.^{196,205,213,221,226,433} Similarly, trichilin H (145) and toosendanin (167), which have C-14/15 epoxide moieties, showed highly cytotoxicity against KB cell, whereas toosendanal (185) and meliatoxin B_1 (177), possessing C-15 keto structure, did not show any significant level of cytotoxicity.²¹¹ The ED₅₀ values of 12α -hydroxyamoorastatin (166) (0.002 μ g/mL) and amoorastatone (172) $(30 \,\mu g/mL)$ further supported the supposition that the C-14 β /15 β epoxy was a definite requirement for growth inhibition of P388 cell lines.²¹⁰ The cytotoxic activity against P388 cells of the five melicarpinin derivatives (321-324 and 327) with a C-3 acetate was decreased, and with a C-20 acetate it was almost zero.³⁴⁵ The more pronounced cell growth inhibitory activity of the structurally simpler amoorastatin (165) as compared to aphanastatin (142) suggested that the 1α -acetoxy, 2α , 12α -dihydroxy, and 28-methylbutyryl groups of 142 were unnecessary and indeed might even lessen inhibition of neoplastic (P388) cell growth.²²⁹ In addition, the α_{β} -unsaturated enone moiety or its equivalent conjugated system in the A-ring, the C-7 acetyloxy/chloroacetyloxy or keto group on the B-ring, and the furan moiety were the structural requirements for the high activity of azadirone (1), which was a potent cytotoxic agent with good in vitro and in vivo activity.⁸

5.2.2. Antimicrobial Activity. Among the five limonoids dysobinin (11), azadiradione (12), mahonin (17), epoxyazadiradione (60), and 6α -acetoxyepoxyazadiradione (62), only 12 exhibited a strong antibacterial effect against Mycobacterium tuberculosis, giving a MIC of 6.25 μ g/mL.⁹⁷ 6-Acetoxy-11 α hydroxy-7-oxo-14 β ,15 β -epoxymeliacin-1,5-diene-3-O- α -Lrhamnopyranoside (104) had more positive antibacterial activity than streptomycin at the concentrations tested against Vibrio cholerae, Klebsiella pneumoniae, Salmonella typhimurium, and Escherichia coli.¹⁷⁶ 1-Cinnamoyltrichilinin (192), trichilinin B (195), and 12-ethoxynimbolinin C (385) exhibited significant antibacterial activity against Porphyromonas gingivalis ATCC 33 277, with MIC values of 15.6, 31.5, and 31.3 µg/mL, respectively.¹⁸⁶ No mutagenicity of nimbolide (345) was detected by Ames' test using both TA98 and TA100 tested strains. However, at 0.875 mg/disk it exhibited antibacterial activity against the three strains *Staphylococcus aureus*, *S. coagulase* (+), and *S. coagulsae* (-) out of a total of 3/17 strains.⁹⁶² The results obtained by Kraus et al. showed that 345 inhibited Pseudomonas stutzeri even at a concentration of 0.5 μ g/spot.³²² 3 α ,7 α -Dideacetylkhivorin (440) showed stronger antimicrobial activity than methyl 6-hydroxyangolensate (569) against Rhizopus stolonifer.447 Methyl angolensate (568) displayed growth inhibition against Proteus vulgaris with an inhibition zone of 14.1 mm, followed by Klebsiella pneumoniae with 13.5 mm, Staphylococcus aureus with 13.3 mm, Escherichia coli with 12.8 mm, and Salmonella typhimurium with 12.0 mm.⁹⁴⁷ As swietenolide (638) and 2-hydroxy-3-O-tigloylswietenolide (642) have the same skeleton, and show

promising antibacterial activity against all the eight tested multiple-drug-resistant (MDR) bacterial strains tested, this limonoid skeleton may be useful as a template for the synthesis of more potent structural analogs.⁶⁴⁹ 2-Hydroxy-3-O-isobutyrylproceranolide (636) and 2-hydroxyfissinolide (649) exhibited antimicrobial activity against *Micrococcus luteus* ATCC 9341 with MIC values of 50 and 12.5 μ g/mL, respectively.⁴⁵⁸ Moluccensins H–J (963, 967, and 970) were tested for antibacterial properties against *Staphylococcus aureus*, *S. hominis*, *S. epidermidis*, *Enterococcus faecalis*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Proteus vulgaris*, and *Salmonella typhimurium*, but only 967 displayed weak activity against *S. hominis* and *E. faecalis* with a MIC at 256 μ g/mL.⁷²³ 6-Acetoxy-7 α -hydroxy-3-oxo-14 β ,15 β -epoxymeliac-1,5-diene (69) exhibited strong antibacterial activity against *Salmonella paratyphi* and *Vibrio cholerae* but no data were provided in the original paper.¹⁴²

Neither xyloccensin I (769) nor xyloccensin J (770) was active in a broad screening effort which included assays for antimicrobial, antiviral, anthelmintic, and antikinase responses.⁶²⁶ The six limonoids grandifolide A (775), anthothecanolide (779), 3-Oacetylanthothecanolide (780), 6S-hydroxykhayalactone (999), khayanolide A (1002), and deacetylkhayanolide E (1008), were all inactive in an antimicrobial assay against *Escherichia coli, Staphylococcus aureus, S. epidermidis,* and *Candida albicans* with MIC values of greater than 50 μ g/mL.⁶⁷⁹

The antiviral activity of limonoids was also investigated. 29-Deacetylsendanin (157) showed antiviral activity by inhibiting the replication of HSV-1, reducing the synthesis of HSV-1 TK, and leading to the formation of defective nucleocapsids.⁹⁶³ Dysoxylins A-D (205-208) showed anti-RSV (respiratory syncytial virus) activities with the EC₅₀ values in the range of 1.0–4.0 μ g/mL in cytopathic effect inhibition and plaque reduction assays.²⁵⁵ 1-Cinnamoyl-3,11-dihydroxymeliacarpin (312) displayed a potent antiviral action affecting both DNA and RNA viruses by the same mechanism of action, and also comprised an additional biological property consisting of altering the NF- κ B pathway, which suggested an eventual role as an anti-inflammatory agent.³³⁷ In addition, **312** showed IC₅₀ values of 6 μ M and 20 μ M for vesicular stomatitis (VSV) and herpes simplex (HSV-1) viruses, respectively.³³⁶ 312 exerted its antiviral action on the endocytic and exocytic pathways of VSV by pre- and posttreatment, respectively.⁹⁶⁴ In addition to its antiviral effect, 312 would be acting as an immunomodulating candidate, which would be responsible for the improvement of murine HSK already reported.⁹⁶⁵ The delay on glycoprotein transport caused by 312 would account for the strong inhibition on virus multiplication without interfering with the bioactivity of cellular glycoproteins.⁹⁶⁶ Besides, for 6-O-acetyl-2-hydroxyswietenine (688), 2-hydroxyswietenine (689), 2-hydroxyswietemahonolide (797), swietemahonin G (806), and 6-O-acetylswietemahonin G (807), their antiviral activity against HIV-1 replication was tested by their inhibition of virus-induced cytopathicity in MT-4 cells, and none of them showed activity at 100 μ g/mL.⁶³⁰

5.2.3. Antiprotozoal Activity. Omar et al. reviewed the traditionally used antimalarials from *Azadirachta indica, Lansium domesticum,* and *Cedrela odorata,* and presented the improvement of the activity in vivo of gedunin (416).⁹⁶⁷ Gedunin (416) has been proved to be the most active limonoid according to miscellaneous antimalarial tests up to now. It had IC₅₀ values against *Plasmodium falciparum* of 3.1 and 0.14 μ M using [³H]-hypoxanthine and 48 h culture assays, respectively.⁹⁶⁸ Its antimalarial activity was qualitatively assessed in vitro with an IC₅₀ of

~1 μ M after 48 h exposure (0.3 μ M after 96 h), which is roughly equivalent to quinine.⁴²⁹ Among the 27 limonoids tested, **416** showed the most potent activity against *P. falciparum* with an IC₅₀ value of 0.72 μ g/mL, but it did not inhibit *P. berghei* in a 4-day test in mice at doses of 90 mg/kg/day.⁵⁰⁰ The five limonoids, gedunin (**416**), 1-deacetylkhivorin (**435**), 7-deacetylkhivorin (**437**), methyl angolensate (**568**), and 6-acetylswietenolide (**645**) showed antimalarial activity with IC₅₀ values between 1.25 and 9.63 μ g/mL, among which the most active, **416**, had an additive effect with chloroquine.⁴³⁶ When orally administered at 50 mg/kg/d for 4 days, **416** suppressed the parasitemia level by 44%, and synergism with the cytochrome P450 inhibitor dillapiol or addition of a stable methoxy group at the C-7 position increased its antimalarial activity.⁹⁶⁹

Among the four limonoids nimocinol (7), meldenin (243), isomeldenin (244), and nimbandiol (1101), 243 was the most active with IC₅₀ value of 5.23 μ g/mL against a chloroquineresistant Plasmodium falciparum strain.270 All limonoids of dysobinin (11), azadiradione (12), mahonin (17), epoxyazadiradione (60), and 6α -acetoxyepoxyazadiradione (62) had an inhibitory effect against P. falciparum with IC50 values ranging from 2.06 to 6.31 μ g/mL.⁹⁷ Azadiradione (12), domesticulides B-D (562, 589, and 590), methyl angolensate (568), methyl 6-acetoxyangolensate (570), dukunolide C (616), and 6-acetoxymexicanolide (631) showed antimalarial activities against *P. falciparum* with IC₅₀ values of 2.4–9.7 μ g/mL, and among these **589** was the most active.¹⁰⁰ Anthotechol (84) showed potent antimalarial activity against P. falciparum with IC50 values of 1.4 and 0.17 μM as measured by two different assays.⁹⁶⁸ Ceramicine B (222) had potent in vitro antiplasmodial activity against P. falciparum 3D7 with an IC₅₀ value of 0.23 μ g/mL, while ceramicines C and D (223 and 224) exhibited moderate activity with IC₅₀ values of 2.38 μ g/mL and 2.15 μ g/mL, respectively.²⁶² Trichirubine A (226) had significant antimalarial activity against *P. falciparum* with an IC₅₀ value of $0.3 \,\mu g/mL$.²⁶³ A single dose of 292 was sufficient to give the insect host-Rhodnius prolixus, a permanent resistance against its reinfection with Trypanosoma cruzi and to block the ecdysis for a long time.970 Fifth-instar larvae of Rhodnius prolixus, Triatoma infestans, and Dipetalogaster maximus infected with different clone/ strains of Trypanosoma cruzi displayed drastic inhibition of trypanosome development when treated with 292, which might act directly on gut physiology and/or indirectly through the neurosecretory system.⁹⁷¹ Jones et al. demonstrated blockage of the development of the motile male malarial gamete by azadirachtin (292), and changes in the hemiacetal group at C-11 in the molecule resulted in a loss of activity.⁹⁷² In addition, 292 disrupted formation of organized microtubule arrays during microgametogenesis of P. berghei and specifically disrupted the patterning of microtubules into more complex structures, such as mitotic spindles and axonemes.⁹⁷³ Nimbolide (**345**) inhibited *P*. *falciparum* in culture with moderate potency, giving an EC_{50} of 0.95 mg/mL.⁹⁷⁴ 7-Deacetylgedunin (421) and 7-deacetoxy-7oxogedunin (423) exhibited good antiprotozoal activity against Trypanosoma brucei rhodesiense, T. cruzi, Plasmodium falciparum, and Leishmania donovani, suggesting a lack of specificity for a protozoal target.443 Among mexicanolide (626), febrifugin (694), cipadesin (703), and cipadesin A (815), the last, with an IC₅₀ value of 136.1 μ M, showed more appreciable trypanocidal activity against Trypanosoma cruzi.⁶⁴³ Fissinolide (648) was slightly active against chloroquine resistant strains of P. falciparum (IC₅₀ 48 \pm 3 μ M) and promastigotes of Leishmania major

(IC₅₀ 69 ± 13 μ M), and 2,6-dihydroxyfissinolide (**668**) had an IC₅₀ of 0.12 ± 0.08 mM against *P. falciparum* and an IC₅₀ of greater than 0.20 mM against *L. major.*⁶⁰¹ Walsuronoids A and B (**1054** and **1058**) showed 40% inhibition of *P. falciparum* at a concentration of 40 μ M.⁷³⁹

The in vitro trypanocidal activity of six mexicanolide- and gedunin-class limonoids on trypomastigote forms of *Trypanosoma cruzi* was less than the activity of oleanane- and tirucallane-type triterpenes.¹³² Ceramicines B–D (**222–224**), which contain a tetrahydrofuran ring, showed potent antiplasmodial activity, whereas ceramicine A (**1118**) without the tetrahydrofuran ring exhibited relatively weak activity.²⁶² From the data obtained with the modified furan moieties of gedunin (**416**), it seemed that this section of the molecule was less important for antimalarial activity than the α , β -unsaturated ketone in ring A and the 7-acetate function in ring B.⁴³²A comparison of the activities of methyl angolensate (**568**) and methyl 6-hydroxyangolensate (**569**) suggested that the addition of a hydroxyl group at C-6 decreased the antimalarial activity considerably.¹⁰⁰

5.2.4. Others. Dysobinin (11) showed general CNS-depressant action and mild anti-inflammatory activity.⁶⁶ All of azadiradione (12), 7-acetyl-16,17-dehydro-16-hydroxyneotrichilenone (23), epoxyazadiradione (60), 17-epi-17-hydroxyazadiradione (78), 7-deacetylgedunin (421), and nimolicinol (451) exhibited marked anti-inflammatory activity (ID₅₀ values 0.09-0.26 mg/ ear) against TPA-induced inflammation.⁷⁰ 6α -Acetoxyepoxyazadiradione (62), gedunin (416), 6α -acetoxygedunin (418), 7-deacetoxy-7-oxogedunin (423), and irobin (556), and methyl angolensate (568) of Carapa guianensis oil were responsible for the antiedematogenic and analgesic effects which were dependent on blockade of signaling mechanisms triggered by histamine, bradykinin, and PAF.⁹⁷⁵ In addition, these limonoids inhibited zymosan-induced arthritis in mice via the impairment of TNF- α , IL-1 β , and CXCL8/IL-8 generation, as well as the NF- κ B signaling pathway.⁹⁷⁶ Isochuanliansu (179) and 1-O-tigloyl-1-O-debenzoylohchinal (344) were the active constituents contributing to the anti-inflammatory and analgesic effects of the fruit of Melia toosendan.235 The data provided by Thoh et al. suggested that azadirachtin (292) modulated cell surface TNFRs thereby decreasing TNFinduced biological responses, which might be beneficial for anti-inflammatory therapy.⁹⁷⁷ Among the eleven limonoids isolated from Swietenia macrophylla, 6-O-acetylswietemahonin G (807) showed the most effective anti-inflammatory activity (IC $_{50}$ = 27.6 \pm 1.7 $\mu \rm M$) against fMLP-induced super-oxide anion generation. 653

Toosendanin (167), which itself was not able to form ion channels in lipid bilayers, increased Ca²⁺ conductance related to the intrinsic channel activity.⁹⁷⁸ 167 not only had different effects on various subtypes of calcium channels,⁹⁷⁹ but also had an inhibitory effect on the inward rectifier potassium channel in an excised inside-out patch of the neuron under a symmetrical 150 mM K^+ condition.⁹⁸⁰ It inhibited the activity of smallconductance calcium-activated potassium channels by significant concentration-dependent reduction of the open probability and open frequency, and these effects were partially reversible.⁹⁸¹ Moreover, 167 did not selectively affect acetylcholine release, but probably acted on a common mechanism responsible for transmitter release at different synapses by interfering with the proteins involved in fusion and resulting in diffusion of the vesicular contents into the cytoplasm and blockade of normal exocytosis.982

Salannin (332) showed a significant protective activity on aspirin induced gastric lesions at oral doses of 10, 20, and 50 mg/kg. At 0.5 and 0.25% concentrations, 332 also showed spermicidal activity against human spermatozoa.⁹⁸³ H⁺ K⁺-ATPase activity in vitro was significantly inhibited by gedunin (416) and photogedunin (433) with IC₅₀ values of 58.86 and 66.54 μ g/mL, respectively, confirming their antisecretory activity as compared to the IC₅₀ value of omeprazole (30.24 μ g/mL).⁴²⁷ Methyl angolensate (568) produced its antiulcer activity by inhibition of gastric acid secretion,⁹⁸⁴ exerted significant spasmolytic activity through concentration dependent inhibition of smooth muscle and reduced the propulsive action of the gastrointestinal tract in mice,⁹⁸⁵ reduced spontaneous motor activity in mice, prolonged the duration of pentobarbital sleeping time, and attenuated amphetamine-induced stereotype behavior in rats.⁹⁸⁶

Among the limonoids tested (swietenolide (638), 3-acetylswietenolide (643), swietenine (677), swietemahonin A (800), and swietemahonin E (804)), when the final concentration of PAF and sample were 7.5×10^{-8} M and 100 µg/mL, respectively, 800 showed the strongest anti-PAF activity with an inhibition of 97.4% against rabbit platelet aggregation.⁶⁵² In another test, 800 showed an IC₅₀ value of 40.3 µg/mL against PAF-induced aggregation of rabbit platelets in vitro, comparable to that of swietemahonin D (803).⁹⁸⁷

Penido et al. demonstrated that in mice the inhibition of allergic eosinophilia by 6α -acetoxyepoxyazadiradione (62), gedunin (416), 6α -acetyoxygedunin (418), 7-deacetoxy-7-oxogedunin (423), and irobin (556), and methyl angolensate (568) was correlated with the inhibition of CCL11/eotaxin and IL-5 generation through impairment of the NF- κ B signaling pathway.⁹⁸⁸ 29-Deacetylsendanin (157) was found to promote slightly the drug metabolizing enzyme activities and decreased serum transaminase activities, which were elevated by CCl₄ intoxication.²⁰⁴ TS3 (221) increased chloride conductance in epithelial cells to an extent comparable to genistein, a known cystic fibrosis transmembrane conductance regulator.²⁶¹ In a similar bioassay, rubralins A and B (262 and 263) showed moderate inhibitory activity with IC₅₀ values of $30-50 \ \mu M.^{281}$ Rubrins A-G (518-524), with the hemi ortho ester A-ring moiety which is crucial to potency, showed potent inhibitory activity in the LFA-1:ICAM-1 mediated cell adhesion assay with $\rm IC_{50}$ values of 10–25 $\rm nM.^{504}$ Oral administration of swietenine (677) at 25 and 50 mg/kg body weight per day to diabetic rats was found to possess significant dose dependent hypoglycemic and hypolipidemic activity in type 2 diabetic rats.⁶⁶² The contractile response induced by humilinolide A (793) could be mediated by estrogens, probably by occupancy of some receptors in myometrial plasma membranes to induce uterotonic response, which might be estrogen-dependent.⁶⁸⁴ Owing to the low DPPH free radical scavenging activity of swietephragmins H and I (945 and **946**), the IC₅₀ values could not be determined in the study proposed by Tan et al.⁷¹⁷ In comparison with pentoxifylline as a standard, the antisickling activity of methyl 1α , 2β , 3α , $6, 8\alpha$, 14β -hexahydroxy-[4,2,1^{10,30},1^{1,4}]tricyclomeliac-7-oate (1014) was much higher at any concentration and incubation condition without altering significantly the corpuscular indices.⁷²⁸

AUTHOR INFORMATION

Corresponding Author

*Phone: 86-871-5223177. Fax: 86-871-5150227. E-mail: xdluo@ mail.kib.ac.cn.

BIOGRAPHIES

Qin-Gang Tan was born in Sichuan, China, in 1977. He received his B.Sc. degree from Southwest Forestry College in 2000, M.S. degree from Yunnan University of Traditional Chinese Medicine in 2006, and Ph.D. degree from State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences in 2009. Now he is a lecturer in Natural Products Chemistry Department at Guilin Medical University. His research interests include the structure and biological significance of secondary metabolites in the Traditional Chinese Medicine and ethnopharmacol system.

Xiao-Dong Luo (born 1970) is a professor of natural products chemistry at State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences. He received his B.Sc. degree in Applied Chemistry from East China University of Sciences and Technology (1991), and Ph.D. degree in Phytochemistry from Kunming Institute of Botany, CAS (1999). He worked as an assistant engineer in Yunnan Baiyao Pharmaceutical Corporation (1991), Postdoctoral research fellow (2001) in Lehman College, City University of New York, and a visiting scientist (2005) in Chemistry Department, Oxford University. He is interesting in discovery and development of natural bioactive compounds. During his research career, he has published over 90 scientific papers in international journals. Besides, his group developed a market neem pesticide and finished preclinical trials of a new natural medicine in China.

ACKNOWLEDGMENT

The research related to this review was supported by Natural Science Foundation of China (30000213, 30370160, 30670214),
the National Basic Research Program of China (973 Program 2009CB522300), and the Chinese Academy of Sciences (XiBuZhiGuang Project). The authors thank Dr. Yan-Ping Zhang for the courtesy of photographs, Dr. Da-Gang Wu, Dr. Edward J. Kennelly, and Dr. Yi-Wei Li for their advice and polishing on this review, and Dr. Xiang-Hai Cai, Dr. Shu-Hua Qi, Dr. Hua-Ping Zhang et al. for their related phytochemical research.

REFERENCES

(1) da Silva, M. F. das G. F.; Gottlieb, O. R. Biochem. Syst. Ecol. 1987, 15, 85.

(2) Editorial Committee of Flora of China. *Flora Reipublicae Popularis Sinicae*; Science Press: Beijing, 1997; Vol. 43.

(3) Ascher, K. R. S. Arch. Insect Biochem. Physiol. 1993, 22, 433.

- (4) Liang, G. M.; Chen, W.; Liu, T. X. Crop Prot. 2003, 22, 333.
- (5) http://www.neem4organicfarming.com/index2.htm; accessed December 2009.

(6) Wang, Y. B.; Wen, Y. X. J. Tradit. Chin. Med. 1959, 262, 46.

- (7) Connolly, J. D. Annu. Proc. Phytochem. Soc. 1983, 22, 175.
- (8) Banerji, B.; Nigam, S. K. Fitoterapia 1984, 55, 3.
- (9) Taylor, D. A. H. In *Progress in the Chemistry of Organic Natural Products*; Herz, W., Grisebach, H., Kirby, G. W., Eds.; Springer: Vienna, 1984; Vol. 45.
- (10) Mackinnon, S.; Chauret, D.; Wang, M.; Mata, R.; Pereda-Miranda, R.; Jiminez, A.; Bernard, C. B.; Krishnamurty, H. G.; Poveda, L. J.; Sanchez-

Vindas, P. E.; Arnason, J. T.; Durst, T. ACS Symp. Ser. 1997, 658, 49.

(11) Mulholland, D. A.; Parel, B.; Coombes, P. H. Curr. Org. Chem. 2000, 4, 1011.

(12) Connolly, J. D.; Overton, K. H.; Polonsky, J. Progr. Phytochem. 1970, 2, 385.

(13) Dreyer, D. L. Fortschr. Chem. Org. Naturst. 1968, 26, 190.

(14) Moss, G. P. Planta Med. 1966, Suppl, 86.

- (15) Taylor, D. A. H. In Annual Proceedings of the Phytochemical Society of Europe; Waterman, P. G., Grundon, M. F., Eds.; Academic Press: London, 1983; Vol. 22.
 - (16) Jain, D. C.; Tripathi, A. K. Phytother. Res. 1993, 7, 327.
- (17) Champagne, D. E.; Koul, O.; Isman, M. B.; Scudder, G. G. E.; Towers, G. H. N. *Phytochemistry* **1992**, *31*, 377.
 - (18) Roy, A.; Saraf, S. Biol. Pharm. Bull. **2006**, 29, 191.
 - (19) Sundaram, K. M. S. J. Environ. Sci. Health, Part B **1996**, 31, 913.
 - (1) Sundardini, R. M. S. J. Environ. Sci. Thearin, Furt D 1990, 51, 915.(20) Kraus, W.; Bokel, M.; Schwinger, M.; Vogler, B.; Soellner, R.;
- Wendisch, D.; Steffens, R.; Wachendorff, U. Proc. Phytochem. Soc. Eur. 1993, 34, 18.
- (21) Ley, S. V.; Denholm, A. A.; Wood, A. Nat. Prod. Rep 1993, 10, 109.
- (22) Hansen Dale, J.; Cuomo, J.; Khan, M.; Gallagher Rex, T.; Ellenberger William, P. In *Natural and Engineered Pest Management Agents*; American Chemical Society: Washington, DC, 1993; Vol. 551.
 - (23) Ley, S. V. Pure Appl. Chem. 2005, 77, 1115.
 - (24) Devakumar, C.; Kumar, R. Curr. Sci. 2008, 95, 573.
 - (25) Mordue, A. J.; Blackwell, A. J. Insect Physiol. 1993, 39, 903.
- (26) Simmonds, M. S. J.; Blaney, W. M. Entomol. Exp. Appl. 1996, 80, 23.
- (27) Karnavar, G. K. Proc.—Indian Acad. Sci., Anim. Sci. 1987, 96, 341.
- (28) Subrahmanyam, B. Proc.—Indian Acad. Sci., Anim. Sci. **1990**, 99, 277.
- (29) Lowery, D. T.; Isman, M. B. ACS Symp. Ser. 1994, 557, 78.
- (30) Mordue, A. J.; Nisbet, A. J. Ann. Soc. Entomol. Brasil 2000,

29, 615.

- (31) Mordue (Luntz), A. J. In *Neem: Today and in the New Millenium;* Koul, O., Wahab, S., Eds.; Kluwer Academic: Netherlands, 2004.
- (32) Rembold, H. Adv. Invertebr. Reprod. **1984**, 3, 481.
- (33) Schmutterer, H. J. Insect Physiol. **1988**, 34, 713.
- (34) Champagne, D. E.; Isman, M. B.; Towers, G. H. N. ACS Symp.
- (34) Champagne, D. E.; Isman, M. B.; Towers, G. H. N. ACS Symp. Ser. 1989, 387, 95.
 - (35) Rembold, H. ACS Symp. Ser. 1989, 387, 150.

- (36) Jacobson, M. ACS Symp. Ser. 1986, 296, 220.
- (37) Mahato, S. B.; Sahu, N. P.; Podder, G. Sci. Cult 1987, 53, 29.
- (38) Ley, S. V. Ciba Found. Symp. 1990, 154, 80.
- (39) Schmutterer, H. Annu. Rev. Entomol. 1990, 35, 271.
- (40) Akhila, A.; Rani, K. In *Progress in the Chemistry of Organic Natural Products*; Herz, W., Falk, H., Kirby, G. W., Moore, R. E., Eds.; Springer: Vienna, 1999; Vol. 78.
- (41) Biswas, K.; Chattopadhyay, I.; Banerjee, R. K.; Bandyopadhyay, U. *Curr. Sci.* **2002**, *82*, 1336.
- (42) van der Nat, J. M.; van der Sluis, W. G.; de Silva, K. T.; Labadie, R. P. J. Ethnopharmacol. **1991**, 35, 1.
 - (43) Govindachari, T. R. Curr. Sci. 1992, 63, 117.
 - (44) Kataria, H. C. Orient. J. Chem. 1994, 10, 178.
 - (45) Vishnukanta, A. C. R. Pharmacogn. Rev. 2008, 2, 173.
- (46) Nakatani, M. Insect Antifeeding Limonoids from the Chinaberry Tree Melia Azedarach Linn. And Related Compounds; CRC Press: New York, 1999; p 1.
- (47) Nakatani, M. In *Bioact. Compd. Nat. Sources*; Tringali, C., Ed.; Taylor & Francis Ltd.: London, 2001.
 - (48) Govindachari, T. R. J. Indian Chem. Soc. 1968, 45, 1063.
- (49) Uddin, S. J.; Nahar, L.; Shilpi, J. A.; Shoeb, M.; Borkowski, T.; Gibbons, S.; Middleton, M.; Byres, M.; Sarker, S. D. *Phytother. Res.* **2007**, 21, 757.
- (50) Narender, T.; Khaliq, T.; Shweta; Reddy, K. P.; Sharma, R. K. Nat. Prod. Commun. 2007, 2, 203.
- (51) Butterworth, J. H.; Morgan, E. D. J. Chem. Soc., Chem. Commun. 1968, 1, 23.
- (52) Broughton, H. B.; Ley, S. V.; Slawin, A. M. Z.; Williams, D. J. J. Chem. Soc., Chem. Commun. **1986**, *1*, 46.
- (53) Ren, Y. L.; Tang, Q. R.; Di, Y. T.; He, H. P.; Zhang, Z.; Li, S. L.; Hao, X. J. *Helv. Chim. Acta* **2007**, *90*, 764.
- (54) Yuan, X. H.; Li, B. G.; Xu, C. X.; Zhou, M.; Qi, H. Y.; Zhang,
 G. L. Chem. Pharm. Bull. 2007, 55, 902.
- (55) Taylor, A. R. H.; Taylor, D. A. H. Phytochemistry 1983, 22, 2870.
- (56) Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekimoto, H. Chem. Pharm. Bull. **1990**, 38, 894.
 - (57) Lavie, D.; Jain, M. K. Chem. Commun. (London) 1967, 6, 278.
 - (58) Lavie, D.; Levy, E. C.; Jain, M. K. Tetrahedron 1971, 27, 3927.
 - (59) Ali, M.; Qadry, J. S. Curr. Sci. 1988, 57, 550.
- (60) Halsall, T. G.; Troke, J. A. J. Chem. Soc., Perkin Trans. 1 1975, 18, 1758.
- (61) Suresh, G.; Narasimhan, N. S.; Palani, N. Phytochemistry 1997, 45, 807.
- (62) Suresh, G.; Narasimhan, N. S.; Masilamani, S.; Partho, P. D.; Gopalakrishnan, G. *Phytoparasitica* **1997**, *25*, 33.
- (63) Kabaleeswaran, V.; Malathi, R.; Rajan, S. S.; Suresh, G.; Narashiman, N. S. *Acta Crystallogr., Sect. C* **2000**, *56*, 82.
- (64) Siddiqui, S.; Siddiqui, B. S.; Faizi, S.; Mahmood, T. *Phytochemistry* **1984**, 23, 2899.
- (65) Gopalakrishnan, G.; Singh, N. D. P.; Kasinath, V. *Molecules* 2002, 7, 112.
 - (66) Singh, S.; Garg, H. S.; Khanna, N. M. Phytochemistry 1976, 15, 2001.
- (67) Sarkhel, S.; Jain, G. K.; Singh, S.; Subramanya, H. S.; Maulika,
- P. R. Acta Crystallogr., Sect. C 2000, 56, e253.
- (68) Kraus, W.; Cramer, R.; Sawitzki, G. Phytochemistry 1981, 20, 117.
- (69) Saikia, B.; Kataky, J. C. S.; Mathur, R. K.; Baruah, J. N. Indian J. Chem., Sect. B 1978, 16, 1042.
- (70) Akihisa, T.; Noto, T.; Takahashi, A.; Fujita, Y.; Banno, N.; Tokuda, H.; Koike, K.; Suzuki, T.; Yasukawa, K.; Kimura, Y. *J. Oleo Sci.* **2009**, *58*, 581.
- (71) Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekimoto, H. Chem. Pharm. Bull. **1990**, 38, 1495.
- (72) Siddiqui, S.; Mahmood, T.; Faizi, S.; Siddiqui, B. S. J. Chem. Soc., Perkin Trans. 1 1987, 7, 1429.
- (73) Narayanan, C. R.; Pachapurkar, R. V.; Sawant, B. M. Tetrahedron Lett. 1967, 37, 3563.

(74) Chan, W. R.; Gibbs, J. A.; Taylor, D. R. J. Chem. Soc., Perkin Trans. 1 1973, 1047.

(75) Mulholland, D. A.; Osborne, R.; Roberts, S. L.; Taylor, D. A. H. *Phytochemistry* **1994**, *37*, 1417.

(76) Nakatani, M.; Okamura, H.; Iwagawa, T.; Huang, R. C.; Zhou, J. B.; Yagi, F.; Tadera, K. *Tennen Yuki Kagobutsu Toronkai Koen Yoshishu* **1995**, 37, 289.

(77) Okorie, D. A.; Taylor, D. A. H. J. Chem. Soc., C 1968, 14, 1828.
(78) Narayanan, C. R.; Pachapurkar, R. V.; Sawant, B. M.; Wadia,

M. S. Indian J. Chem. 1969, 7, 187.
 (79) Siddiqui, S.; Siddiqui, B. S.; Ghiasuddin; Faizi, S. Phytochemistry

(79) Sidulqui, S.; Sidulqui, B. S.; Ginasuddini; Faizi, S. *Phytochemistry* **1991**, 30, 1615.

(80) Siddiqui, S.; Faizi, S.; Mahmood, T.; Siddiqui, B. S. J. Chem. Soc., Perkin Trans. 1 1986, 6, 1021.

(81) Siddiqui, S.; Faizi, S.; Siddiqui, B. S.; Ghiasuddin J. Nat. Prod. 1992, 55, 303.

(82) Siddiqui, S.; Faizi, S.; Siddiqui, B. S. Z. Naturforsch., B 1986, 41, 922.

(83) Nanduri, S.; Thunuguntla, S. S. R.; Nyavanandi, V. K.; Kasu, S.; Kumar, P. M.; Ram, P. S.; Rajagopal, S.; Kumar, R. A.; Deevi, D. S.; Rajagopalan, R.; Venkateswarlu, A. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 4111.

(84) Zhou, J. B.; Minami, Y.; Yagi, F.; Tadera, K.; Nakatani, M. *Phytochemistry* **1997**, *46*, 911.

(85) Nakatani, M. Heterocycles 1999, 50, 595.

(86) Arenas, C.; Rodriguez-Hahn, L. Phytochemistry 1990, 29, 2953.

(87) Bentley, M. D.; Gaul, F.; Rajab, M. S.; Hassanali, A. J. Nat. Prod. 1992, 55, 84.

- (88) Purushothaman, K. K.; Duraiswamy, K.; Connolly, J. D.; Rycroft, D. S. *Phytochemistry* **1985**, *24*, 2349.
- (89) Ekong, D. E. U.; Okogun, J. I.; Sondengam, B. L. J. Chem. Soc., Perkin Trans. 1 1975, 21, 2118.
- (90) Odero, O. J. H.; Ndung'u, M.; Hassanali, A. J. Kenya Chem. Soc. 2008, 5, 43.

(91) Laphookhieo, S.; Maneerat, W.; Koysomboon, S.; Kiattansakul, R.; Chantrapromma, K.; Syers, J. K. *Can. J. Chem.* **2008**, *86*, 205.

(92) Siddiqui, B. S.; Afshan, F.; Gulzar, T.; Hanif, M. *Phytochemistry* **2004**, 65, 2363.

(93) Siddiqui, B. S.; Afshan, F.; Ghiasuddin; Faizi, S.; Naqvi, S. N. H.; Tariq, R. M. *Phytochemistry* **2000**, *53*, 371.

(94) Chatterjee, A.; Nayak, L.; Das, B.; Patra, A.; Dhara, K. P.; Mukherjee, K.; Banerji, J.; Shoolery, J. N. *Indian J. Chem., Sect. B* **1989**, 28, 231.

(95) Yadav, R. D.; Kataky, J. C. S.; Mathur, R. K. Indian J. Chem., Sect. B 1999, 38, 1359.

(96) Sarmah, G. K.; Bhattacharyya, N. K.; Goswami, B. N.; Borthakur, N.; Baruah, P.; Kataky, J. C. S. *Chemistry (Rajkot, India)* **2003**, *1*, 42.

(97) Maneerat, W.; Laphookhieo, S.; Koysomboon, S.; Chantrapromma, K. *Phytomedicine* **2008**, *15*, 1130.

(98) de Paula, J. R.; Vieira, I. J. C.; da Silva, M. F. das G. F.; Fo, E. R.; Fernandes, J. B.; Vieira, P. C.; Pinheiro, A. L.; Vilela, E. F. *Phytochemistry*

1997, 44, 1449. (99) Coombes, P. H.; Mulholland, D. A.; Randrianarivelojosia, M.

(99) Coombes, P. H.; Multioliand, D. A.; Kandrianarivelojosta, M. Phytochemistry **2004**, 65, 377.

(100) Saewan, N.; Sutherland, J. D.; Chantrapromma, K. *Phytochemistry* **2006**, *67*, 2288.

(101) Lee, S. M.; Olsen, J. I.; Schweizer, M. P.; Klocke, J. A. *Phytochemistry* **1988**, *27*, 2773.

(102) Govindachari, T. R.; Sandhya, G.; Raj, S. P. G. Indian J. Chem., Sect. B 1992, 31, 295.

(103) Ishida, M.; Serit, M.; Nakata, K.; Juneja, L. R.; Kim, M.; Takahasha, S. *Biosci. Biotechnol. Biochem.* **1992**, *56*, 1835.

(104) Serit, M.; Ishida, M.; Nakata, K.; Kim, M.; Takahashi, S. Nippon Noyaku Gakkaishi **1992**, *17*, 267.

(105) Govindachari, T. R.; Suresh, G.; Gopalakrishnan, G.; Banumathy, B.; Masilamani, S. *Phytoparasitica* **1998**, *26*, 109.

(106) Govindachari, T. R.; Suresh, G.; Gopalakrishnan, G. J. Liq. Chromatogr. 1995, 18, 3465.

(107) Kraus, W.; Koll-Weber, M.; Maile, R.; Wunder, T.; Vogler, B. Pure Appl. Chem. **1994**, 66, 2347.

- (108) Siddiqui, S.; Waheed, T. N.; Luecke, J.; Voelter, W. Z. Naturforsch., B 1975, 30, 961.
- (109) Siddiqui, S.; Faizi, S. S.; Shaheen, B. Z. Naturforsch., B 1986, 41, 922.

(110) Galkwad, B. R.; Mayelvaganan, T.; Vyas, B. A.; Bhat, S. V. *Phytochemistry* **1990**, 29, 3963.

(111) Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekimoto, H. Chem. Pharm. Bull. 1989, 37, 1419.

(112) Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekimoto, H. Chem. Pharm. Bull. **1990**, 38, 639.

(113) Ambrozin, A. R. P.; Leite, A. C.; Bueno, F. C.; Vieira, P. C.; Fernandes, J. B.; Bueno, O. C.; da Silva, M. F. das G. F.; Pagnocca, F. C.;

Hebling, M. J. A.; Bacci, M., Jr. J. Braz. Chem. Soc. 2006, 17, 542.

(114) Kraus, W.; Cramer, R. Tetrahedron Lett. **1978**, 19, 2395.

(115) Hallur, G.; Sivramakrishnan, A.; Bhat, S. V. J. Nat. Prod. 2002,
 65, 1177.

(116) Siddiqui, S.; Fuchs, S.; Lucke, J.; Voelter, W. Tetrahedron Lett. 1978, 19, 611.

(117) Connolly, J. D.; Labbe, C.; Rycroft, D. S.; Taylor, D. A. H. J. Chem. Soc., Perkin Trans. 1 1979, 12, 2959.

(118) Siddiqui, S.; Mahmood, T.; Siddiqui, B. S.; Faizi, S. Heterocycles 1987, 26, 1827.

(119) Siddiqui, B. S.; Afshan, F.; Ghiasuddin; Faizi, S.; Naqvi,

S. N.-u.-H.; Tariq, R. M. J. Chem. Soc., Perkin Trans. 1 1999, 16, 2367.

(120) Siddiqui, B. S.; Afshan, F.; Faizi, S.; Naeem-ul-Hassan Naqvi, S.; Tariq, R. M. J. Nat. Prod. **2002**, 65, 1216.

(121) Siddiqui, S.; Siddiqui, B. S.; Mahmood, T.; Faizi, S. Heterocycles 1989, 29, 87.

(122) Siddiqui, S.; Faizi, S.; Mahmood, T.; Siddiqui, B. S. *Hetero-cycles* **1986**, *24*, 1319.

(123) Siddiqui, B. S.; Ghiasuddin; Faizi, S.; Rasheed, M. J. Nat. Prod. **1999**, *62*, 1006.

(124) Siddiqui, B. S.; Ali, S. T.; Rasheed, M.; Kardar, M. N. Helv. Chim. Acta 2003, 86, 2787.

(125) Cheplogoi, P. K.; Mulholland, D. A. Phytochemistry 2003, 62, 1173.

(126) Wang, X. N.; Yin, S.; Fan, C. Q.; Lin, L. P.; Ding, J.; Yue, J. M. Tetrahedron 2007, 63, 8234.

(127) Siddiqui, B. S.; Rasheed, M. Helv. Chim. Acta 2001, 84, 1962.

(128) Siddiqui, B. S.; Ghiasuddin; Faizi, S. Phytochemistry 1998,

47, 1631.

(129) Cortez, D. A. G.; Fernandes, J. B.; Vieria, P. C.; da Silva, M. F. das G. F.; Ferreira, A. G.; Cass, Q. B.; Pirani, J. R. *Phytochemistry* **1998**, 49, 2493.

(130) Kumar, C. S. S. R.; Srinivas, M.; Yakkundi, S. *Phytochemistry* **1996**, 43, 451.

(131) Gunning, P. J.; Jeffs, L. B.; Isman, M. B.; Towers, G. H. N. *Phytochemistry* **1994**, *36*, 1245.

(132) Leite Ana, C.; Ambrozin Alessandra, R.; Fernandes Joao, B.; Vieira Paulo, C.; da Silva, M. F. das G. F.; de Albuquerque, S. *Planta Med.* **2008**, *74*, 1795.

(133) Zhang, Y.; Tang, C. P.; Ke, C. Q.; Yao, S.; Ye, Y. J. Nat. Prod. 2010, 73, 664.

(134) Connolly, J. D.; Handa, K. L.; McCrindle, R. *Tetrahedron Lett.* **1968**, *9*, 437.

(135) Madhusudanan, K. P.; Chaturvedi, R.; Garg, H. S.; Bhakuni, D. S. Indian J. Chem., Sect. B **1984**, 23, 1082.

(136) Siddiqui, S.; Mitra, C. J. Sci. Ind. Res. 1945, 4, 5.

(137) Lavie, D.; Levy, E. C.; Zelnik, R. Bioorg. Chem. 1972, 2, 59.

(138) Maneerat, W.; Fun, H. K.; Buatip, T.; Laphookhieo, S.; Chantrapromma, S. Acta Crystallogr., Sect. E 2007, 63, 03583.

(139) Govindachari, T. R.; Malathi, R.; Gopalakrishnan, G.; Suresh, G.; Rajan, S. S. *Phytochemistry* **1999**, *52*, 1117.

(140) Neto, J. O.; Agostinho, S. M. M.; da Silva, M. F. das G. F.; Vieira, P. C.; Fernandes, J. B.; Pinheiro, A. L.; Vilela, E. F. *Phytochemistry* **1995**, *38*, 397. (141) Okorie, D. A.; Taylor, D. A. H. J. Chem. Soc., Perkin Trans. 1 1972, 12, 1488.

(142) Srivastava, S. K.; Gupta, H. O. Indian J. Chem., Sect. B 1985, 24, 166.

(143) Mulholland, D. A.; Monkhe, T. V.; Coombes, P. H.; Rajab, M. S. *Phytochemistry* **1998**, *49*, 2585.

(144) Luo, X. D.; Wu, S. H.; Ma, Y. B.; Wu, D. G. J. Nat. Prod. 2000, 63, 947.

(145) Ning, J.; He, H. P.; Li, S. F.; Geng, Z. L.; Fang, X.; Di, Y. T.; Li, S. L.; Hao, X. J. J. Asian Nat. Prod. Res. **2010**, *12*, 448.

(146) Das, K.; Sinha, U. C.; Mayelvaganan, T.; Bhat, S. V.; Tavale, S. S. Acta Crystallogr, Sect. C **1991**, 47, 1426.

(147) Parihar, D. B.; Dutt, S. J. Indian Chem. Soc. 1950, 27, 77.

(148) Grant, I. J.; Hamilton, J. A.; Hamor, T. A.; Hodges, R.; McGeachin, S. G.; Raphael, R. A.; Robertson, J. M.; Sim, G. A. *Proc. Chem. Soc., London* **1961**, *Dec*, 444.

(149) Gofrinath, K. W.; Govindachari, T. R.; Parthasarathy, P. C.; Viswanathan, N.; Arigoni, D.; Wildmann, W. C. *Proc. Chem. Soc., London* **1961**, *Dec*, 446.

(150) Hodges, R.; McGeachin, S. G.; Raphael, R. A. J. Chem. Soc. 1963, 2515.

(151) Aghoramurthy, K.; Dass, I.; Mukherjee, S. K.; Rao, M. M. J. Sci. Ind. Res. (India) **1962**, 21B, 95.

- (152) Chaudhuri, B.; Das, I. M.; Talukdar, A. N. *Indian J. Phys.* **1962**, 36, 602.
- (153) Grant, I. J.; Miss, J. A. H.; Hamor, T. A.; Robertson, J. M.; Sim, G. A. J. Chem. Soc. **1963**, 2506.

(154) Agostinho, S. M. M.; Fatima, M.; da Silva, M. F. das G. F.; Fernandes, J. B.; Vieira, P. C.; Pinheiro, A. L.; Vilela, E. F. *Biochem. Syst. Ecol.* **1994**, *22*, 323.

(155) Gopalakrishnan, G.; Singh, N. D. P.; Kasinath, V.; Malathi, R.; Rajan, S. S. *Photochem. Photobiol.* **2000**, *72*, 464.

(156) Burke, B. A.; Chan, W. R.; Rawle, J. R.; Taylor, D. R. *Experientia* 1977, 33, 578.

(157) Devi, S. S.; Rajan, S. S.; Kumar, R. M.; Narasimhan, S. Acta Crystallogr., Sect. E 2007, 63, 03963.

(158) Chatterjee, A.; Chakrabortty, T.; Chandrasekharan, S. *Phytochemistry* **1971**, *10*, 2533.

(159) Banerji, R.; Mitra, C. R. Planta Med. 1975, 28, 52.

(160) Modey, W. K.; Mulholland, D. A.; Raynor, M. W. J. Chromatogr. Sci. **1996**, 34, 320.

(161) Neto, J. O.; da Silva, M. F. das G. F.; Fo, E. R.; Fernandes, J. B.; Vieira, P. C.; Pinheiro, A. L. *Phytochemistry* **1998**, *49*, 1369.

(162) Mulholland, D. A.; Taylor, D. A. H. Phytochemistry 1992, 31, 4163.

- (163) Adesogan, E. K.; Okorie, D. A.; Taylor, D. A. H. J. Chem. Soc., C 1970, 2, 205.
- (164) Adesida, G. A.; Adesogan, E. K.; Okorie, D. A.; Taylor, D. A. H.; Styles, B. T. *Phytochemistry* **1971**, *10*, 1845.
- (165) Matos, A. P.; Nebo, L.; Vieira, P. C.; Fernandes, J. B.; da Silva, M. F. das G. F.; Rodrigues, R. R. *Quim. Nova* **2009**, *32*, 1553.
- (166) Bevan, C. W. L.; Rees, A. H.; Taylor, D. A. H. J. Chem. Soc. 1963, 983.

(167) Bevan, C. W. L.; Powell, J. W.; Taylor, D. A. H. J. Chem. Soc. 1963, 980.

(168) Bevan, C. W. L.; Ekong, D. E. U.; Taylor, D. A. H. Nature (London, U. K.) **1965**, 206, 1323.

(169) Chan, W. R.; Taylor, D. R. Chem. Commun. (London) 1966, 7, 206.

(170) Xie, Y. S.; Isman, M. B.; Gunning, P.; MacKinnon, S.; Arnason, J. T.; Taylor, D. R.; Sanchez, P.; Hasbun, C.; Towers, G. H. N. *Biochem. Syst. Ecol.* **1994**, *22*, 129.

(171) Simmonds, M. S. J.; Stevenson, P. C.; Porter, E. A.; Veitch, N. C. J. Nat. Prod. **2001**, *64*, 1117.

(172) Cortez, D. A. G.; Vieira, P. C.; Fernandes, J. B.; da Silva, M. F. das G. F.; Ferreira, A. G. *Phytochemistry* **1992**, *31*, 625.

(173) Srivastava, S. D.; Srivastava, S. K. J. Indian Chem. Soc. 1996, 73, 467.

(174) Srivastava, S. D. Planta Med. 1987, 53, 100.

- (175) Rusia, K.; Srivastava Proc. Natl. Acad. Sci. India, Sect. A 1988, 58, 33.
- (176) Srivastava, S. D. J. Nat. Prod. 1986, 49, 56.
- (177) Okorie, D. A.; Taylor, D. A. H. Chem. Commun. 1968, 13, 737.
- (178) Connolly, J. D.; Handa, K. L.; McCrindle, R.; Overton, K. H. J. Chem. Soc., C 1968, 2227.
- (179) Ochi, M.; Kotsuki, H.; Tokoroyama, T. Chem. Lett. 1978, 6, 621.
- (180) Torto, B.; Bentley, M. D.; Cole, B. J. W.; Hassanali, A.; Huang, F. Y.; Gelbaum, L.; Vanderveer, D. G. *Phytochemistry* **1995**, *40*, 239.

(181) Chan, W. R.; Gibbs, J. A.; Taylor, D. R. Chem. Commun. 1967, 14, 720.

- (182) Taylor, D. R. Rev. Latinoam. Quim. 1971, 2, 87.
- (183) Adesogan, E. K.; Taylor, D. A. H. Chem. Commun. 1967, 8, 379.
- (184) Taylor, D. A. H. J. Chem. Soc., C 1969, 18, 2439.

(185) Connolly, J. D.; Handa, K. L.; McCrindle, R.; Overton, K. H. Chem. Commun. (London) 1966, 23, 867.

(186) Zhang, Q.; Shi, Y.; Liu, X. T.; Liang, J. Y.; Ip, N. Y.; Min, Z. D. Planta Med. **2007**, 73, 1298.

(187) Rogers, L. L.; Zeng, L.; Kozlowski, J. F.; Shimada, H.; Alali, F. Q.; Johnson, H. A.; McLaughlin, J. L. J. Nat. Prod. **1998**, *61*, 64.

- (188) Ndung'u, M. W.; Kaoneka, B.; Hassanali, A.; Lwande, W.; Hooper, A. M.; Tayman, F.; Zerbe, O.; Torto, B. *J. Agric. Food Chem.* **2004**, *52*, 5027.
- (189) Akinniyi, J. A.; Connolly, J. D.; Mulholland, D. A.; Rycroft, D. S.; Taylor, D. A. H. *Phytochemistry* **1986**, *25*, 2187.

(190) Torto, B.; Hassanali, A.; Nyandat, E.; Bentley, M. D. Phytochemistry 1996, 42, 1235.

(191) Bentley, M. D.; Adul, G. O.; Alford, A. R.; Huang, F. Y.; Gelbaum, L.; Hassanali, A. J. Nat. Prod. **1995**, 58, 748.

(192) Gunatilaka, A. A. L.; da S. Bolzani, V.; Dagne, E.; Hofmann, G. A.; Johnson, R. K.; McCabe, F. L.; Mattern, M. R.; Kingston, D. G. I.

J. Nat. Prod. **1998**, 61, 179. (193) Nakatani, M.; Nakanishi, K. Kagoshima Daigaku Rigakubu

Kiyo, Sugaku, Butsurigaku, Kagaku 1992, 25, 59.
 (194) Nakatani, M.; James, J. C.; Nakanishi, K. J. Am. Chem. Soc.
 1981, 103, 1228.

(195) Oelrichs, P. B.; Hill, M. W.; Vallely, P. J.; MacLeod, J. K.; Molinski, T. F. *Phytochemistry* **1983**, *22*, 531.

- (196) Polonsky, J.; Varon, Z.; Arnoux, B.; Pascard, C.; Pettit, G. R.; Schmidt, J. H.; Lange, L. M. J. Am. Chem. Soc. **1978**, 100, 2575.
 - (197) Arnoux, B.; Pascard, C. Acta Crystallogr., Sect. B 1980, 36, 2709.

(198) Kubo, I.; Klocke, J. A. Experientia 1982, 38, 639.

- (199) Ochi, M.; Kotsuki, H.; Hirotsu, K.; Tokoroyama, T. Tetrahedron Lett. 1976, 17, 2877.
- (200) Nakatani, M.; Iwashita, T.; Naoki, H.; Hase, T. *Phytochemistry* **1985**, *24*, 195.
- (201) Ochi, M.; Kotsuki, H.; Ishida, H.; Tokoroyama, T. *Chem. Lett.* 1978, *1*, 99.
- (202) Kim, Y. H.; Hwang, B. Y.; Kim, S. E.; Kim, H. M.; Oh, G. T.; Ro, J. S.; Lee, K. S.; Lee, J. J. *Yakhak Hoechi* **1994**, *38*, 6.
- (203) Kim, H. M.; Oh, G. T.; Han, S. B.; Hong, D. H.; Hwang, B. Y.; Kim, Y. H.; Lee, J. J. Arch. Pharmacal Res. **1994**, *17*, 100.
- (204) Kim, B.; Kim, H.; Choi, J. W.; Lee, C. K. Saengyak Hakhoechi 1996, 27, 47.
- (205) Itokawa, H.; Qiao, Z. S.; Hirobe, C.; Takeya, K. Chem. Pharm. Bull. **1995**, 43, 1171.

(206) Nakatani, M.; Huang, R. T.; Arikawa, S.; Yamauchi, K.; Okamura, H.; Iwagawa, T.; Naoki, H. *Tennen Yuki Kagobutsu Toronkai Koen Yoshishu* **1993**, 35, 385.

(207) Huang, R. C.; Okamura, H.; Iwagawa, T.; Nakatani, M. Bull. Chem. Soc. Jpn. 1994, 67, 2468.

(208) Carpinella, C.; Ferrayoli, C.; Valladares, G.; Defago, M.; Palacios, S. Biosci. Biotechnol. Biochem. 2002, 66, 1731.

(209) Huang, R. C.; Zhou, J. B.; Suenaga, H.; Takezaki, K.; Kenjiro, T.; Nakatani, M. *Biosci. Biotechnol. Biochem.* **1995**, *59*, 1755.

- (211) Tada, K.; Takido, M.; Kitanaka, S. Phytochemistry 1999, 51, 787.
- (212) Nakatani, M.; Fukuman, Y.; Sakumoto, T.; Yamashita, N.; Okamura, H.; Iwagawa, T. *Heterocycles* **2000**, *53*, 689.
- (213) Ahn, J. W.; Choi, S. U.; Lee, C. O. Phytochemistry 1994, 36, 1493.
- (214) Zhou, J. B.; Minami, Y.; Yagi, F.; Tadera, K.; Nakatani, M. *Heterocycles* **1997**, *45*, 1781.
- (215) Chung, C. C.; Hsie, T. H.; Chen, S. F.; Liang, H. T. Acta Pharmac. Sin. 1975, 33, 35.
- (216) Shu, G. X.; Liang, X. T. Acta Pharmac. Sin. 1980, 38, 196.
- (217) Vardamides, J. C.; Dongo, E.; Nkengfack, A. E.; Fomum, Z. T.;
- Ngando, T. M.; Vogler, B.; Kraus, W. Fitoterapia 2001, 72, 386.
- (218) Fukuyama, Y.; Nakaoka, M.; Yamamoto, T.; Takahashi, H.; Minami, H. *Chem. Pharm. Bull.* **2006**, *54*, 1219.
- (219) Huang, R. C.; Okamura, H.; Iwagawa, T.; Suenaga, H.; Nakatani, M. Kagoshima Daigaku Rigakubu Kiyo, Sugaku, Butsurigaku, Kagaku **1994**, 27, 45.
- (220) Nakatani, M.; Chun Huang, R.; Okamura, H.; Naoki, H.; Iwagawa, T. *Phytochemistry* **1994**, *36*, 39.
- (221) Takeya, K.; Qiao, Z. S.; Hirobe, C.; Itokawa, H. *Bioorg. Med. Chem.* **1996**, *4*, 1355.
- (222) Oelrichs, P. B.; Hill, M. W.; Vallely, P. J.; MacLeod, J. K.;
- Molinski, T. F. In *Plant Toxicology, Proceedings of the Australia–U.S.A. Poisonous Plants Symposium;* Seawright, A. A., Ed.; Queensland Poisonous Plants Committee: Yeerongpilly, Australia, 1985.
 - (223) Nakatani, M.; Nakanishi, K. Heterocycles **1993**, 36, 725.
- (224) Zhou, J. B.; Okamura, H.; Iwagawa, T.; Nakatani, M. Phytochemistry **1996**, 41, 117.
- (225) Zhou, J. B.; Tadera, K.; Minami, Y.; Yagi, F.; Kurawaki, J.; Takezaki, K.; Nakatani, M. *Biosci. Biotechnol. Biochem.* **1998**, 62, 496.
- (226) Zhou, H. L.; Hamazaki, A.; Fontana, J. D.; Takahashi, H.; Wandscheer, C. B.; Fukuyama, Y. *Chem. Pharm. Bull.* **2005**, *53*, 1362.
- (227) Nakatani, M.; Zhou, J. B.; Iwagawa, T.; Okamura, H. *Heterocycles* **1994**, 38, 2407.
- (228) Huang, R. C.; Okamura, H.; Iwagawa, T.; Tadera, K.; Nakatani, M. *Phytochemistry* **1995**, 38, 593.
- (229) Polonsky, J.; Varon, Z.; Arnoux, B.; Pascard, C.; Pettit, G. R.; Schmidt, J. M. J. Am. Chem. Soc. **1978**, 100, 7731.
- (230) Nakatani, M.; Huang, R. C.; Okamura, H.; Iwagawa, T.; Tadera, K. *Phytochemistry* **1998**, *49*, 1773.
- (231) Ahn, J. W.; Yoo, G. S.; Ho, Z.; Lee, S. H. Bull. Korean Chem. Soc. 1993, 14, 554.
- (232) Ahn, J. W.; Choe, S. W.; Lee, J. O.; Ji, O. P.; Yu, S. Y.; Han, J. S. KR Patent 9615969, 1996; *Chem. Abstr.* **2000**, *133*, 238153.
- (233) Zhou, C. Y.; Tang, H. Y.; Li, X.; Sang, Y. S. Helv. Chim. Acta 2009, 92, 1191.
 - (234) Xie, J. X.; Yuan, A. X. Acta Pharmacol. Sin. 1985, 20, 188.
- (235) Xie, F.; Zhang, M.; Zhang, C. F.; Wang, Z. T.; Yu, B. Y.; Kou, J. P. J. Ethnopharmacol. 2008, 117, 463.
 - (236) Podder, G.; Mahato, S. B. Heterocycles 1985, 23, 2321.
- (237) Nakatani, M.; Iwashita, T.; Mizukawa, K.; Hase, T. *Heterocycles* **1987**, *26*, 43.
- (238) Pachapurkar, R. V.; Kornule, P. M.; Narayanan, C. R. Chem. Lett. 1974, 4, 357.
- (239) Zhou, J. B.; Okamura, H.; Iwagawa, T.; Yumiko, N.; Nakayama, N.; Tadera, K.; Nakatani, M. *Heterocycles* **1995**, *41*, 2795.
- (240) Ekong, D. E. U.; Fakunle, C. O.; Fasina, A. K.; Okogun, J. I. J. Chem. Soc., Chem. Commun. **1969**, 20, 1166.
- (241) Zhang, H. P.; Bao, G. H.; Wang, H. B.; Qin, G. W. Nat. Prod. Res. 2004, 18, 415.
- (242) Murphy, B. T.; Brodie, P.; Slebodnick, C.; Miller, J. S.; Birkinshaw, C.; Randrianjanaka, L. M.; Andriantsiferana, R.; Rasamison, V. E.; TenDyke, K.; Suh, E. M.; Kingston, D. G. I. *J. Nat. Prod.* **2008**, *71*, 325.

- (243) Cheplogoi, P. K.; Mulholland, D. A. Biochem. Syst. Ecol. 2003, 31, 799.
- (244) Coombes, P. H.; Mulholland, D. A.; Randrianarivelojosia, M. Biochem. Syst. Ecol. **2008**, *36*, 74.
 - (245) Kraus, W.; Cramer, R. Liebigs Ann. Chem. 1981, 1, 181.
 - (246) Rajab, M. S.; Bentley, M. D. J. Nat. Prod. 1988, 51, 840.
- (247) Nakatani, M.; Shimokoro, M.; Zhou, J. B.; Okamura, H.;
- Iwagawa, T.; Tadera, K.; Nakayama, N.; Naoki, H. *Phytochemistry* **1999**, *52*, 709.
- (248) Zeng, L.; Gu, Z. M.; Fang, X. P.; Fanwick, P. E.; Chang, C. J.; Smith, D. L.; McLaughlin, J. L. *Tetrahedron* **1995**, *51*, 2477.
- (249) Mitra, C. R.; Garg, H. S.; Pandey, G. N. *Phytochemistry* **1971**, *10*, 857.
- (250) Mitra, C. R.; Garg, H. S.; Pandey, G. N. Tetrahedron Lett. 1970, 11, 2761.
- (251) Okogun, J. I.; Fakunle, C. O.; Ekong, D. E. U.; Connolly, J. D. J. Chem. Soc., Perkin Trans. 1 1975, 14, 1352.
- (252) Banerji, R.; Nigam, S. K. Fitoterapia 1981, 52, 3.
- (253) Purushothaman, K. K.; Duraiswamy, K.; Connolly, J. D. *Phytochemistry* **1984**, *23*, 135.
- (254) Srivastava, S. D.; Srivastava, S. K. Fitoterapia 1996, 67, 113.
- (255) Chen, J. L.; Kernan, M. R.; Jolad, S. D.; Stoddart, C. A.; Bogan, M.; Cooper, R. J. Nat. Prod. **2007**, 70, 312.
- (256) Ragasa, C. Y.; Nacpil, Z. D.; Natividad, G. M.; Tada, M.; Coll, J. C.; Rideout, J. A. *Phytochemistry* **1997**, *46*, 555.
- (257) Bilton, J. N.; Broughton, H. B.; Jones, P. S.; Ley, S. V.; Rzepa, H. S.; Sheppard, R. N.; Slawin, A. M. Z.; Williams, D. J.; Lidert, Z.;
- Morgan, E. D. Tetrahedron **1987**, 43, 2805.
- (258) Nguyen, K. P. P.; Nguyen, T. A. T.; Tran, T. T. Tap Chi Hoa Hoc **2004**, 42, 227.
 - (259) Cai, X. H.; Luo, X. D. Chin. J. Chem. 2007, 25, 986.
- (260) Siddiqui, S.; Ghiasuddin; Siddiqui, S.; Bina; Faizi, S. Pak. J. Sci. Ind. Res. **1989**, 32, 435.
- (261) deCarvalho, A. C. V.; Ndi, C. P.; Tsopmo, A.; Tane, P.; Ayafor, J.; Connolly, J. D.; Teem, J. L. *Mol. Med.* **2002**, *8*, 75.
- (262) Mohamad, K.; Hirasawa, Y.; Litaudon, M.; Awang, K.; Hadi, A. H. A.; Takeya, K.; Ekasari, W.; Widyawaruyanti, A.; Zaini, N. C.;
- Morita, H. Bioorg. Med. Chem. 2009, 17, 727.
- (263) Krief, S.; Martin, M. T.; Grellier, P.; Kasenene, J.; Sevenet, T. Antimicrob. Agents Chemother. **2004**, *48*, 3196.
- (264) Nanduri, S.; Banstola, K. P. Indian J. Chem., Sect. B 1995, 34, 1019.
- (265) El-Shamy, A. M.; El-Shabrawy, A. O.; Selim, M. A.; Motawe, H. M. Fitoterapia **1988**, *59*, 219.
- (266) Qi, S. H.; Wu, D. G.; Zhang, S.; Luo, X. D. Z. Naturforsch., B 2003, 58, 1128.
- (267) Bordoloi, M.; Saikia, B.; Mathur, R. K.; Goswami, B. N. Phytochemistry **1993**, 34, 583.
- (268) Rajab, M. S.; Bentley, M. D.; Hassanali, A.; Chapya, A. Phytochemistry 1988, 27, 2353.
- (269) Pachapurkar, R. V.; Kornule, P. M. Acta Cienc. Indica, Chem. 1983, 9, 55.
- (270) Joshi, S. P.; Rojatkar, S. R.; Nagasampagi, B. A. J. Med. Arom. Plant Sci. **1998**, 20, 1000.
- (271) Pachapurkar, R. V.; Kornule, P. M. Acta Cienc. Indica, Chem. 1983, 9, 55.
- (272) Siddiqui, B. S.; Afshan, F.; Gulzar, T.; Sultana, R.; Naqvi, S. N. H.; Tariq, R. M. Chem. Pharm. Bull. **2003**, *51*, 415.
- (273) Rodriguez, B.; Caballero, C.; Ortego, F.; Castanera, P. J. Nat. Prod. 2003, 66, 452.
 - (274) Mulholland, D. A.; Taylor, D. A. H. Phytochemistry 1980, 19, 2421.
 - (275) Mulholland, D. A.; Naidoo, N. Phytochemistry 1999, 51, 927.
- (276) Ayafor, J. F.; Kimbu, S. F.; Ngadjui, B. T.; Akam, T. M.; Dongo, E.; Sondengam, B. L.; Connolly, J. D.; Rycroft, D. S. *Tetrahedron*
- 1994, 50, 9343.
 (277) Sondengam, B. L.; Kamga, C. S.; Connolly, J. D. Tetrahedron Lett. 1979, 20, 1357.
 - (278) Kraus, W.; Kypke, K. Tetrahedron Lett. 1979, 20, 2715.

⁽²¹⁰⁾ Polonsky, J.; Varon, Z.; Marazano, C.; Arnoux, B.; Pettit, G. R.; Schmid, J. M.; Ochi, M.; Kotsuki, H. *Experientia* **1979**, *35*, 987.

(279) Chen, H. D.; Yang, S. P.; Liao, S. G.; Zhang, B.; Wu, Y.; Yue, J. M. J. Nat. Prod. **2008**, 71, 93.

(280) Sondengam, B. L.; Kamga, C. S.; Kimbu, S. F.; Connolly, J. D. *Phytochemistry* **1981**, 20, 173.

- (281) Musza, L.; Killar, L. M.; Speight, P.; Barrow, C. J.; Gillum, A. M.; Cooper, R. *Phytochemistry* **1995**, *39*, 621.
- (282) Lin, L. G.; Tang, C. P.; Ke, C. Q.; Zhang, Y.; Ye, Y. J. Nat. Prod. 2008, 71, 628.
- (283) MacLachlan, L. K.; Taylor, D. A. H. Phytochemistry 1982, 21, 1701.
- (284) Fraser, L. A.; Mulholland, D. A.; Nair, J. J. Phytochemistry 1994, 35, 455.
- (285) McFarland, K.; Mulholland, D. A.; Fraser, L.-A. *Phytochemistry* 2004, 65, 2031.

(286) Kraus, W.; Grimminger, W.; Sawitzki, G. Angew. Chem., Int. Ed. 1978, 17, 452.

- (287) Wang, X. N.; Yin, S.; Fan, C. Q.; Wang, F. D.; Lin, L. P.; Ding, J.; Yue, J. M. Org. Lett. **2006**, *8*, 3845.
 - (288) Kraus, W.; Grimminger, W. Nouv. J. Chim. 1980, 4, 651.

(289) Kraus, W.; Grimminger, W.; Sawitzki, G. In IUPAC International Symposium on Chemistry of Natural Products, 11th; Marekov, N.,

Ognyanov, I., Orahovats, A., Eds.; Izd. BAN: Sofia, Blug, 1978; Vol. 2. (290) Liao, S. G.; Yang, S. P.; Yuan, T.; Zhang, C. R.; Chen, H. D.;

- Wu, Y.; Xu, Y. K.; Yue, J. M. J. Nat. Prod. 2007, 70, 1268.
- (291) Chen, H. D.; Yang, S. P.; Wu, Y.; Dong, L.; Yue, J. M. J. Nat. Prod. 2009, 72, 685.
- (292) Kraus, W.; Grimminger, W. Liebigs Ann. Chem. 1981, 10, 1838.
- (293) Butterworth, J. H.; Morgan, E. D. J. Insect Physiol. 1971, 17, 969.
- (294) Butterworth, J. H.; Morgan, E. D.; Percy, G. R. J. Chem. Soc., Perkin Trans. 1 1972, 2445.
 - (295) Nakanishi, K. Recent Adv. Phytochem. 1975, 9, 283.
- (296) Zanno, P. R.; Miura, I.; Nakanishi, K. J. Am. Chem. Soc. 1975, 97, 1975.

(297) Bilton, J. N.; Broughton, H. B.; Ley, S. V.; Lidert, Z.; Morgan, E. D.; Rzepa, H. S.; Sheppard, R. N. J. Chem. Soc., Chem. Commun. 1985,

- 14, 968. (298) Kraus, W.; Bokel, M.; Klenk, A.; Pohn, H. Tetrahedron Lett.
- (298) Kraus, W.; Bokel, M.; Klenk, A.; Polin, H. Tetranearon Lett. 1985, 26, 6435.
- (299) Kraus, W.; Bokel, M.; Cramer, R.; Klenk, A.; Poehnl, H. F.E.C.
- S. Int. Conf. Chem. Biotechnol. Biol. Act. Nat. Prod., [Proc.], 3rd 1987, 4, 446.
- (300) Kraus, W.; Bokel, M.; Bruhn, A.; Cramer, R.; Klaiber, I.; Klenk, A.; Nagl, G.; Pohnl, H.; Sadlo, H.; Vogler, B. *Tetrahedron* **1987**, 43, 2817.
- (301) Turner, C. J.; Tempesta, M. S.; Taylor, R. B.; Zagorski, M. G.; Termini, J. S.; Schroeder, D. R.; Nakanishi, K. *Tetrahedron* **1987**, *43*, 2789.
- (302) Govindachari, T. R.; Gopalakrishnan, G.; Raghunathan, R.; Rajan, S. S. *Curr. Sci.* **1994**, *66*, 295.
- (303) Kabaleeswaran, V.; Rajan, S. S.; Govindachari, T. R.; Gopalakrishnan, G. *Curr. Sci.* **1994**, *66*, 362.
- (304) Ley, S. V.; Lovell, H.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1992, 18, 1304.
- (305) Ley, S. V.; Anderson, J. C.; Blaney, W. M.; Lidert, Z.; Morgan, E. D.; Robinson, N. G.; Simmonds, M. S. J. *Tetrahedron Lett.* **1988**, 29, 5433.
- (306) Taylor, D. A. H. Tetrahedron 1987, 43, 2779.

(307) Klenk, A.; Bokel, M.; Kraus, W. J. Chem. Soc., Chem. Commun. 1986, 7, 523.

- (308) Kubo, I.; Matsumoto, T.; Matsumoto, A.; Shoolery, J. N. Tetrahedron Lett. 1984, 25, 4729.
- (309) Rembold, H.; Forster, H.; Sonnenbichler, J. Z. Naturforsch., C 1987, 42, 4.
 - (310) Sidhu, O. P.; Behl, H. M. Curr. Sci. 1996, 70, 1084.
- (311) Rojatkar, S. R.; Nagasampagi, B. A. *Phytochemistry* **1992**, 32, 213.
- (312) Govindachari, T. R.; Sandhya, G.; Raj, S. P. G. J. Nat. Prod. 1992, 55, 596.

- (313) Kraus, W.; Gutzeit, H.; Bokel, M. Tetrahedron Lett. 1989, 30, 1797.
- (314) Morgan, E. D.; Thornton, M. D. *Phytochemistry* 1973, *12*, 391.
 (315) Uebel, E. C.; Warthen, J. D., Jr.; Jacobson, M. J. Liq. Chrom-
- atogr. 1979, 2, 875.
 (316) Kubo, I.; Matsumoto, A.; Matsumoto, T.; Klocke, J. A. Tetrahedron 1986, 42, 489.
- (317) Jarvis, A. P.; Morgan, E. D.; Edwards, C. Phytochem. Anal. 1999, 10, 39.
 - (318) Johnson, S.; Morgan, E. D. J. Chromatogr., A 1997, 761, 53.
- (319) Govindachari, T. R.; Sandhya, G.; Ganeshraj, S. P. Chromatographia 1991, 31, 303.
- (320) Yamasaki, R. B.; Klocke, J. A.; Lee, S. M.; Stone, G. A.; Darlington, M. V. J. Chromatogr., A **1986**, 356, 220.

(321) Govindachari, T. R.; Gopalakrishnan, G.; Suresh, G. J. Liq. Chromatogr. Relat. Technol. 1996, 19, 1729.

(322) Kraus, W.; Maile, R.; Vogler, B.; Wundrak, B. J. Indian Chem. Soc. 1997, 74, 870.

(323) Malathi, R.; Rajan, S. S.; Gopalakrishnan, G.; Suresh, G. Acta Crystallogr, Sect. C 2002, 58, 0708.

(324) Kanokmedhakul, S.; Kanokmedhakul, K.; Prajuabsuk, T.; Panichajakul, S.; Panyamee, P.; Prabpai, S.; Kongsaeree, P. *J. Nat. Prod.* **2005**, *68*, 1047.

- (325) Luo, X. D.; Wu, S. H.; Ma, Y. B.; Wu, D. G. Nat. Prod. Res. Dev. 2001, 13, 9.
- (326) Govindachari, T. R.; Gopalakrishnan, G.; Suresh, G. J. Liq. Chromatogr. Relat. Technol. 1997, 20, 1633.
- (327) Kalinowski, H. O.; Krack, C.; Ermel, K.; Chriathamjaree, C. Z. Naturforsch., B **1997**, 52, 1413.
- (328) Rojatkar, S. R.; Nagasampagi, B. A. Indian J. Chem., Sect. B 1995, 34, 1016.
- (329) Govindachari, T. R.; Gopalakrishnan, G. *Phytochemistry* **1997**, 45, 397.
- (330) Lee, S. M.; Klocke, J. A.; Balandrin, M. F. Tetrahedron Lett. 1987, 28, 3543.
- (331) Lee, S. M.; Klocke, J. A.; Barnby, M. A.; Yamasaki, R. B.; Balandrin, M. F. ACS Symp. Ser. **1991**, 449, 293.

(332) Klocke, J. A.; Lee, S. M.; Yamasaki, R. B. EP Patent 308044, 1989; *Chem. Abstr.* **1989**, *112*, 153732.

- (333) Wagner, H.; Fansworth, N. R. *Economic and Medicinal Plant Research*; Academic Press: London, UK, 1989; p57.
- (334) Rojatkar, S. R.; Nagasampagi, B. A. Phytochemistry 1993, 34, 1663.
 (335) Ramji, N.; Venkatakrishnan, K.; Madyastha, K. M. Phytochemistry 1998, 49, 265.
- (336) Alche, L. E.; Ferek, G. A.; Meo, M.; Coto, C. E.; Maier, M. S. Z. Naturforsch., C 2003, 58, 215.
- (337) Barquero, A. A.; Michelini, F. M.; Alche, L. E. Biochem. Biophys. Res. Commun. 2006, 344, 955.
- (338) Bohnenstengel, F. I.; Wray, V.; Witte, L.; Srivastava, R. P.; Proksch, P. *Phytochemistry* **1999**, *50*, 977.
- (339) Nakatani, M.; Arikawa, S.; Okamura, H.; Iwagawa, T. Heterocycles 1994, 38, 327.
- (340) Nakatani, M.; Huang, R. C.; Okamura, H.; Iwagawa, T. *Chem. Lett.* **1993**, 22, 2125.
- (341) Nakatani, M.; Huang, R. C.; Okamura, H.; Iwagawa, T.; Tadera, K.; Naoki, H. *Tetrahedron* **1995**, *51*, 11731.
- (342) Huang, R. C.; Tadera, K.; Yagi, F.; Minami, Y.; Okamura, H.; Iwagawa, T.; Nakatani, M. *Phytochemistry* **1996**, *43*, 581.
- (343) Luo, X. D.; Ma, Y. B.; Wu, S. H.; Wu, D. G. J. Nat. Prod. **1999**, 62, 1022.
- (344) Tan, Q. G.; Li, X. N.; Chen, H.; Feng, T.; Cai, X. H.; Luo, X. D. J. Nat. Prod. **2010**, 73, 693.
- (345) Takeya, K.; Qiao, Z. S.; Hirobe, C.; Itokawa, H. *Phytochemistry* **1996**, *42*, 709.
- (346) Fukuyama, Y.; Ogawa, M.; Takahashi, H.; Minami, H. Chem. Pharm. Bull. 2000, 48, 301.
- (347) Kabaleeswaran, V.; Rajan, S. S.; Gopalakrishnan, G.; Govindachari, T. R. Acta Crystallogr, Sect. C 1999, 55, 1952.

- (349) Malathi, R.; Rajan, S. S.; Gopalakrishnan, G.; Suresh, G. Acta Crystallogr., Sect. C 2002, 58, o681.
- (350) Ekong, D. E. U.; Ibiyemi, S. A.; Olagbemi, E. O. J. Chem. Soc., D 1971, 18, 1117.
 - (351) Ekong, D. E. U.; Ibiyemi, S. A. Phytochemistry 1985, 24, 2259.
 - (352) Ekundayo, O. Z. Pflanzenphysiol. 1983, 112, 139.
 - (353) Rani, K.; Akhila, A. Nat. Prod. Lett. 1994, 4, 179.
 - (354) Akhila, A.; Rani, K. Indian J. Heterocycl. Chem. 2002, 11, 299.
- (355) Anitha, G.; Raj, J. J. L.; Narasimhan, S.; Solomon, K. A.; Rajan, S. S. J. Agric. Food Chem. **2006**, *8*, 445.
 - (356) Garg, H. S.; Bhakuni, D. S. Phytochemistry 1984, 23, 2383.
- (357) Henderson, R.; McCrindle, R.; Overton, K. H.; Melera, A. Tetrahedron Lett. 1964, 52, 3969.
- (358) de Silva, L. B.; Stocklin, W.; Geissman, T. A. *Phytochemistry* **1969**, *8*, 1817.
- (359) Yamasaki, R. B.; Ritland, T. G.; Barnby, M. A.; Klocke, J. A. J. Chromatogr. **1988**, 447, 277.
- (360) Nakatani, M.; Huang, R. C.; Okamura, H.; Iwagawa, T.; Tadera, K. *Chem. Lett.* **1995**, *11*, 995.
- (361) Huang, R. C.; Minami, Y.; Yagi, F.; Nakamura, Y.; Nakayama, N.; Tadera, K.; Nakatani, M. *Heterocycles* **1996**, *43*, 1477.
- (362) Rajab, M. S.; Bentley, M. D.; Alford, A. R.; Mendel, M. J. J. Nat. Prod. **1988**, *51*, 168.
- (363) Nakatani, M.; Zhou, J. B.; Nakayama, N.; Okamura, H.; Iwagawa, T. *Phytochemistry* **1996**, *41*, 739.
- (364) Ochi, M.; Kotsuki, H.; Kataoka, T.; Tada, T.; Tokoroyama, T. *Chem. Lett.* **1978**, *4*, 331.
- (365) Rajab, M. S.; Bentley, M. D. Bull. Chem. Soc. Ethiopia 1992, 6, 97.
- (366) Koul, O.; Singh, G.; Singh, R.; Singh, J.; Daniewski, W. M.; Berlozecki, S. J. Biosci. **2004**, *29*, 409.
- (367) Rojatkar, S. R.; Bhat, V. S.; Kulkarni, M. M.; Joshi, V. S.; Nagasampagi, B. A. *Phytochemistry* **1989**, *28*, 203.
 - (368) Garg, H. S.; Bhakuni, D. S. Phytochemistry 1985, 24, 866.
- (369) Cui, B. L.; Chai, H. B.; Constant, H. L.; Santisuk, T.;
- Reutrakul, V.; Beecher, C. W. W.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Kinghorn, A. D. *Phytochemistry* **1998**, *47*, 1283.
- (370) Fukuyama, Y.; Miura, I.; Ochi, M. Bull. Chem. Soc. Jpn. 1983, 56, 1139.
- (371) Xie, F.; Zhang, C. F.; Zhang, M.; Wang, Z. T.; Yu, B. Y. Chin. Chem. Lett. 2008, 19, 183.
- (372) Ekong, D. E. U. Chem. Commun. (London) **1967**, *16*, 808.
- (373) Kigodi, P. G. K.; Blask, G.; Thebtaranonth, Y.; Pezzuto, J. M.; Cordell, G. A. J. Nat. Prod. **1989**, *52*, 1246.
- (374) Nair, M. S.; Gopal, S.; Issac, D. *Phytochemistry* **1997**, 46, 1177.
- (375) Malathi, R.; Anitha, G.; Solomon, K. A.; Suresh, G.; Rajan, S. S.; Narasimhan, S.; Raj, J. J. L.; Gopalakrishnan, G. Acta Crystallogr.,

Sect. C 2005, 61, o70.

- (376) Uwaifo, A. O. J. Toxicol. Environ. Health 1984, 13, 521.
- (377) Bokel, M.; Cramer, R.; Gutzeit, H.; Reeb, S.; Kraus, W. Tetrahedron **1990**, 46, 775.
- (378) Mulholland, D. A.; Kotsos, M.; Mahomed, H. A.; Taylor, D. A. H. *Phytochemistry* **1998**, 49, 2457.
- (379) Siddiqui, S.; Siddiqui, B. S.; Faizi, S.; Mahmood, T. *Hetero-cycles* **1986**, *24*, 3163.
- (380) Siddiqui, S.; Faizi, S.; Mahmood, T.; Siddiqui, B. S. *Tetrahedron* **1986**, *42*, 4849.
- (381) Zhang, Q.; Liang, J. Y.; Li, Q. S.; Min, Z. D. Chin. Chem. Lett. 2010, 21, 838.
 - (382) Kraus, W.; Bokel, M. Chem. Ber 1981, 114, 267.
- (383) Ara, I.; Siddiqui, B. S.; Faizi, S.; Siddiqui, S. *Heterocycles* **1989**, 29, 729.
- (384) Zeng, L.; Gu, Z. M.; Fanwick, P. E.; Chang, C. J.; Smith, D. L.; McLaughlin, J. L. *Heterocycles* **1995**, *41*, 741.
- (385) Ara, I.; Siddiqui, B. S.; Faizi, S.; Siddiqui, S. J. Nat. Prod. **1989**, *52*, 1209.

- (386) Adesida, G. A.; Okorie, D. A. Phytochemistry 1973, 12, 3007.
- (387) Zhou, H. L.; Hamazaki, A.; Fontana, J. D.; Takahashi, H.; Esumi, T.; Wandscheer, C. B.; Tsujimoto, H.; Fukuyama, Y. J. Nat. Prod.

2004, 67, 1544.

- (388) Nakai, H.; Shiro, M.; Ochi, M. Acta Crystallogr., Sect. B 1980, 36, 1698.
- (389) Ochi, M.; Kotsuki, H.; Ido, M.; Nakai, H.; Shiro, M.; Tokoroyama, T. *Chem. Lett.* **1979**, *9*, 1137.
- (390) Yang, M. H.; Wang, J. S.; Luo, J. G.; Wang, X. B.; Kong, L. Y. J. Nat. Prod. **2009**, 72, 2014.
- (391) Tane, P.; Akam, M. T.; Tsopmo, A.; Ndi, C. P.; Sterner, O. *Phytochemistry* **2004**, *65*, 3083.
 - (392) Mitra, C. J. Sci. Ind. Res. 1956, 15B, 425.
 - (393) Mitra, C. J. Sci. Ind. Res. 1957, 16B, 477.
 - (394) Narasimhan, N. S. Chem. Ind. (London, U. K.) 1957, 661.
 - (395) Narasimhan, N. S. Chem. Ber. 1959, 92, 769.
- (396) Sengupta, P.; Sengupta, S. K.; Khastgir, H. N. *Tetrahedron* **1960**, *11*, 67.
- (397) Narayanan, C. R.; Pradhan, S. K.; Pachapurkar, R. V.; Narasimhan, N. S. *Chem. Ind. (London, U. K.)* **1962**, *14*, 1283.
- (398) Henderson, R.; McCrindle, R.; Overton, K. H.; Harris, M.; Turner, D. W. Proc. Chem. Soc., London **1963**, Sept, 269.
- (399) Narayanan, C. R.; Pachapurkar, R. V.; Pradhan, S. K.; Shah, V. R. Indian J. Chem. **1964**, 2, 108.
- (400) Narayanan, C. R.; Pachapurkar, R. V.; Pradhan, S. K.; Shah, V. R.; Narasimhan, N. S. Chem. Ind. (London, U. K.) **1964**, 8, 322.
- (401) Narayanan, C. R.; Pachapurkar, R. V. Tetrahedron Lett. 1965, 48, 4333.
- (402) Narayanan, C. R.; Pachapurkar, R. V.; Pradhan, S. K.; Shah, V. R.; Narasimhan, N. S. Chem. Ind. (London, U. K.) **1964**, 8, 324.
- (403) Harris, M.; Henderson, R.; McCrindle, R.; Overton, K. H.; Turner, D. W. *Tetrahedron* **1968**, *24*, 1517.
- (404) Ziffer, H.; Weiss, U.; Narayanan, G. R.; Pachapurkar, R. V. J. Org. Chem. **1966**, 31, 2691.
- (405) Siddiqui, S. Curr. Sci. 1942, 11, 278.
- (406) Mitra, C.; Rao, P. N.; Siddiqui, S. J. Sci. Ind. Res. 1953, 12B, 152.
 - (407) Narayanan, C. R.; Iyer, K. N. Indian J. Chem. 1967, 5, 460.
- (408) Siddiqui, S.; Mahmood, T.; Siddiqui, B. S.; Faizi, S. J. Nat. Prod. **1986**, 49, 1068.
- (409) Ara, I.; Siddiqui, B. S.; Faizi, S.; Siddiqui, S. Phytochemistry 1988, 27, 1801.
- (410) Devakumar, C.; Mukerjee, S. K. Indian J. Chem., Sect. B 1985, 24, 1105.
- (411) Githua, M.; Hassanali, A.; Keriko, J.; Murilla, G.; Ndungu, M.; Nyagah, G. Afr. J. Tradit., Complementary Altern. Med. **2010**, *7*, 207.
- (412) Mohamad, K.; Hirasawa, Y.; Lim, C. S.; Awang, K.; Hadi, A. H. A.; Takeya, K.; Morita, H. *Tetrahedron Lett.* **2008**, *49*, 4276.
- (413) Cespedes, C. L.; Calderon, J. S.; Lina, L.; Aranda, E. J. Agric. Food Chem. 2000, 48, 1903.
- (414) Baldwin, M. A.; Loudon, A. G.; Maccoll, A.; Bevan, C. W. L. J. Chem. Soc., C 1967, 11, 1026.
 - (415) Powell, J. W. J. Chem. Soc. C 1966, 20, 1794.
- (416) Sutherland, S. A.; Sim, G. A.; Robertson, J. M. Proc. Chem. Soc., London 1962, June, 222.
- (417) Toscano, R. A.; Mata, R.; Calderon, J.; Segura, R. J. Chem. Crystallogr. **1996**, 26, 707.
- (418) Akisanya, A.; Bevan, C. W. L.; Halsall, T. G.; Powell, J. W.; Taylor, D. A. H. J. Chem. Soc. **1961**, 3705.
- (419) Hofer, M.; Greger, H.; Mereiter, K. Acta Crystallogr., Sect. E 2009, 65, 01942.
- (420) Cespedes, C. L.; Calderon, J. S.; King-Diaz, B.; Lotina-Hennsen, B. J. Agric. Food Chem. **1998**, 46, 2810.
- (421) Akisanya, A.; Arene, E. O.; Bevan, C. W. L.; Ekong, D. E. U.; Nwaji, M. N.; Okogun, J. I.; Powell, J. W.; Taylor, D. A. H. *J. Chem. Soc., C* **1966**, *5*, 506.

(422) Zhang, H. P.; VanDerveer, D.; Chen, F.; Wang, X.; Wargovich, M. J. *Acta Crystallogr., Sect. E* **200**7, *63*, No. 04162.

(423) Akisanya, A.; Bevan, C. W. L.; Hirst, J.; Halsall, T. G.; Taylor, D. A. H. *J. Chem. Soc.* **1960**, 3827.

- (424) Taylor, D. A. H. J. Chem. Soc. 1965, May, 3495.
- (425) Mulholland, D. A.; Schwikkard, S. L.; Sandor, P.; Nuzillard, J. M. *Phytochemistry* **2000**, *53*, 465.
- (426) Li, M. Y.; Yang, X. B.; Pan, J. Y.; Feng, G.; Xiao, Q.; Sinkkonen, J.; Satyanandamurty, T.; Wu, J. *J. Nat. Prod.* **2009**, *72*, 2110.

(427) Lakshmi, V.; Singh, N.; Shrivastva, S.; Mishra, S. K.; Dharmani, P.; Mishra, V.; Palit, G. *Phytomedicine* **2010**, *17*, 569.

- (428) Nazma, B. S. V.; Rao, J. M. Curr. Sci. 1977, 46, 714.
- (429) Khalid, S. A.; Duddeck, H.; Gonzalez-Sierra, M. J. Nat. Prod. 1989, 52, 922.
- (430) Madhusudana Rao, M.; Meshulam, H.; Zelnik, R.; Lavie, D. Phytochemistry 1975, 14, 1071.
- (431) Campos, A. M.; Oliveira, F. S.; Machado, M. I. L.; Braz-Filho, R.; Matos, F. J. A. *Phytochemistry* **1991**, *30*, 1225.
- (432) MacKinnon, S.; Durst, T.; Arnason, J. T. J. Nat. Prod. 1997, 60, 336.
- (433) Mitsui, K.; Saito, H.; Yamamura, R.; Fukaya, H.; Hitotsuyanagi, Y.; Takeya, K. J. Nat. Prod. **2006**, *69*, 1310.
- (434) Jimenez, A.; Villarreal, C.; Toscano, R. A.; Cook, M.; Arnason, J. T.; Bye, R.; Mata, R. *Phytochemistry* **1998**, *49*, 1981.
- (435) Achnine, L.; Mata, R.; Lotina-Hennsen, B. Pestic. Biochem. Physiol. 1999, 63, 139.
- (436) Bickii, J.; Njifutie, N.; Ayafor Foyere, J.; Basco, L. K.; Ringwald, P. J. Ethnopharmacol. 2000, 69, 27.

(437) Pereira da Silva, V.; Oliveira, R. R.; Figueiredo, M. R. *Phytochem. Anal.* 2009, 20, 77.

- (438) Marcelle, G. B.; Mootoo, B. S. Phytochemistry 1975, 14, 2717.
- (439) Fuzzati, N.; Dyatmiko, W.; Rahman, A.; Achmad, F.; Hostettmann, K. *Phytochemistry* **1996**, *42*, 1395.
- (440) Connolly, J. D.; McCrindle, R.; Overton, K. H.; Feeney, J. Tetrahedron 1966, 22, 891.
 - (441) Saxena, E.; Babu, U. V. Fitoterapia 2001, 72, 186.
- (442) Koul, O.; Multani, J. S.; Singh, G.; Daniewski, W. M.; Berlozecki,
- S. J. Agric. Food Chem. 2003, 51, 2937.
 (443) Hay, A. E.; Ioset, J. R.; Ahua, K. M.; Diallo, D.; Brun, R.;
 Hostettmann, K. J. Nat. Prod. 2007, 70, 9.
- (444) Ekong, D. E. U.; Olagbemi, E. O. Tetrahedron Lett. 1967, 8, 3525.
- (445) Mootoo, B. S.; Ali, A.; Motilal, R.; Pingal, R.; Ramlal, A.; Khan, A.; Reynolds, W. F.; McLean, S. J. Nat. Prod. **1999**, *62*, 1514.
- (446) Adesogan, E. K.; Taylor, D. A. H. J. Chem. Soc., C 1970, 12, 1710.
- (447) Abdelgaleil, S. A.; Hashinaga, F.; Nakatani, M. Pest Manage. Sci. 2005, 61, 186.
- (448) Pudhom, K.; Sommit, D.; Nuclear, P.; Ngamrojanavanich, N.; Petsom, A. J. Nat. Prod. **2009**, *72*, 2188.
- (449) Ollis, W. D.; Ward, A. D.; Zelnick, R. Tetrahedron Lett. 1964, 37, 2607.
- (450) Ollis, W. D.; Ward, A. D.; de Oliveira, H. M.; Zelnik, R. *Tetrahedron* **1970**, *26*, 1637.
- (451) Adesogan, E. K.; Taylor, D. A. H. J. Chem. Soc., C 1968, 16, 1974.
- (452) D'Ambrosio, M.; Guerriero, A. *Phytochemistry* 2002, 60, 419.
 (453) Tinto, W. F.; Jagessar, P. K.; Ketwaru, P.; Reynolds, W. F.;
- McLean, S. J. Nat. Prod. 1991, 54, 972.
- (454) Lukacova, V.; Polonsky, J.; Moretti, C.; Pettit, G. R.; Schmidt, J. M. *J. Nat. Prod.* **1982**, *45*, 288.
- (455) Waratchareeyakul, W.; Chantrapromma, S.; Fun, H.-K.; Razak, I. A.; Karalai, C.; Ponglimanont, C. *Acta Crystallogr., Sect. E* 2004, *60*, 01964.
- (456) Lin, B. D.; Zhang, C. R.; Yang, S. P.; Zhang, S.; Wu, Y.; Yue, J. M. J. Nat. Prod. **2009**, 72, 1305.
- (457) Abdelgaleil, S. A. M.; Doe, M.; Morimoto, Y.; Nakatani, M. *Phytochemistry* **2006**, *67*, 452.
- (458) Lin, B. D.; Yuan, T.; Zhang, C. R.; Dong, L.; Zhang, B.; Wu, Y.; Yue, J. M. *J. Nat. Prod.* **2009**, *72*, 2084.

- (459) Adeoye, S. A.; Bekoe, D. A. Chem. Commun. (London) 1965, 14, 301.
- (460) Saxena, M.; Srivastava, S. K. Indian J. Chem., Sect. B 1986, 25, 1087.
- (461) Burke, B. A.; Chan, W. R.; Magnus, K. E.; Taylor, D. R. Tetrahedron 1969, 25, 5007.
- (462) Cespedes, C. L.; Calderon, J. S.; Salazar, R.; King-Diaz, B.; Lotina-Hennsen, B. Bol. Soc. Chil. Quim. **1999**, 44, 173.
- (463) Bevan, C. W. L.; Halsall, T. G.; Nwaji, M. N.; Taylor, D. A. H. J. Chem. Soc. **1962**, 768.
- (464) Adesida, G. A.; Adesogan, E. K.; Taylor, D. A. H. Chem. Commun. 1967, 16, 790.
- (465) Adesogan, E. K.; Powell, J. W.; Taylor, D. A. H. J. Chem. Soc., C 1967, 7, 554.
- (466) Tchimene, M. K.; Ngamga, D.; Tane, P.; Sterner, O.; Connolly, J. D. Bull. Chem. Soc. Ethiopia 2006, 20, 69.
- (467) Govindachari, T. R.; Kumari, G. N. K. Phytochemistry 1998, 47, 1423.
- (468) Govindachari, T. R.; Kumari, G. N. K.; Suresh, G. J. Liq. Chromatogr. Relat. Technol. 1997, 20, 3189.
 - (469) Taylor, D. A. H. J. Chem. Soc., C 1970, 2, 336.
- (470) Zhang, H. P.; VanDerveer, D.; Chen, F.; Wang, X.; Wargovich,
- M. J. In Abstracts of Papers, 236th ACS National Meeting, Philadelphia, PA,
- *United States, August 17–21;* American Chemical Society: Washington, D. C., 2008.
- (471) Zhang, H. P.; VanDerveer, D.; Wang, X.; Chen, F.; Wargovich, M. J. Acta Crystallogr., Sect. E 2007, 63, 04599.
- (472) Abdelgaleil, S. A. M.; Iwagawa, T.; Doe, M.; Nakatani, M. *Fitoterapia* **2004**, *75*, 566.
- (473) Zhang, H. P.; Wang, X.; Chen, F.; Androulakis, X. M.; Wargovich, M. J. *Phytother. Res.* **2007**, *21*, 731.
- (474) Taylor, D. A. H. Chem. Commun. (London) 1968, 19, 1172.
- (475) Housley, J. R.; King, F. E.; King, T. J.; Taylor, P. R. J. Chem. Soc. 1962, 5095.
- (476) Taylor, D. A. H. Chem. Commun. 1967, 10, 500.
- (477) Connolly, J. D.; Taylor, D. A. H. J. Chem. Soc., Perkin Trans. 1 1973, 7, 686.
- (478) Ara, I.; Siddiqui, B. S.; Faizi, S.; Siddiqui, S. *Fitoterapia* **1992**, 63, 118.
- (479) Siddiqui, S.; Faizi, S.; Siddiqui, B. S. *Heterocycles* 1984, 22, 295.
 (480) Sabri, N. N.; Abou-Donia, A. H.; Ghazy, N. A. *Alexandria J.*
- Pharm. Sci. 1987, 1, 28. (481) Gullo, V. P.; Miura, I.; Nakanishi, K.; Cameron, A. F.; Con-
- nolly, J. D.; Duncanson, F. D.; Harding, A. E.; McCrindle, R.; Taylor,
- D. A. H. J. Chem. Soc., Chem. Commun. 1975, 9, 345.
- (482) Cameron, A. F.; Duncanson, F. D. Acta Crystallogr., Sect. B 1976, 32, 1841.
- (483) Luo, X. D.; Wu, S. H.; Yang, X. S.; Teng, R. W.; Ma, Y. B.; Wu, D. G.; Hao, X. J.; Lu, Y.; Liu, X. Y.; Zheng, Q. T. *Heterocycles* **2000**, *53*, 2225.
- (484) Brown, D. A.; Taylor, D. A. H. Phytochemistry 1978, 17, 1995.
- (485) Zhang, H. P.; Chen, F.; Wang, X.; Wu, D. G.; Chen, Q. Magn. Reson. Chem. 2007, 45, 189.
 - (486) King, T. J.; Taylor, D. A. H. Phytochemistry 1983, 22, 307.
- (487) Connolly, J. D.; Okorie, D. A.; de Wit, L. D.; Taylor, D. A. H.
- J. Chem. Soc., Chem. Commun. 1976, 22, 909.
 - (488) Taylor, D. A. H. J. Chem. Res., Synop. 1982, 2, 55.
- (489) Connolly, J. D.; Labbe, C.; Rycroft, D. S.; Okorie, D. A.; Taylor, D. A. H. J. Chem. Res., Synop. **1979**, 8, 256.
- (490) MacLachlan, L. K.; Taylor, D. A. H. Phytochemistry 1982, 21, 2426.
- (491) Daniewski, W. M.; Gumulka, M.; Anczewski, W.; Truszewska, D.; Bloszyk, E.; Drozdz, B. *Pol. J. Chem.* **1996**, *70*, 1265.
- (492) Rodriguez-Hahn, L.; Cardenas, J.; Arenas, C. Phytochemistry 1996, 43, 457.
- (493) Nakatani, M.; Okamoto, M.; Iwashita, T.; Mizukawa, K.; Naoki, H.; Hase, T. *Heterocycles* **1984**, *22*, 2335.
- (494) Koul, O.; Daniewski, W. M.; Multani, J. S.; Gumulka, M.; Singh, G. J. Agric. Food Chem. **2003**, 51, 7271.

(495) Adul, G. O.; Bentley, M. D.; Benson, B. W.; Huang, F. Y.; Gelbaum, L.; Hassanali, A. J. Nat. Prod. 1993, 56, 1414.

- (496) Garcez, F. R.; Nunez, C. V.; Garcez, W. S.; Almeida, R. M.; Roque, N. F. Planta Med. 1998, 64, 79.
- (497) Govindachari, T. R.; Suresh, G.; Krishna Kumari, G. N.; Rajamannar, T.; Partho, P. D. Fitoterapia 1999, 70, 83.
- (498) Sarker, S. D.; Savchenko, T.; Whiting, P.; Sik, V.; Dinan, L. Arch. Insect Biochem. Physiol. 1997, 35, 211.
- (499) Akinniyi, J. A.; Connolly, J. D.; Rycroft, D. S.; Sondengam, B. L.; Ifeadike, N. P. Can. J. Chem. 1980, 58, 1865.
- (500) Bray, D. H.; Warhurst, D. C.; Connolly, J. D.; O'Neill, M. J.; Phillipson, J. D. Phytother. Res. 1990, 4, 29.
- (501) Jolad, S. D.; Hoffmann, J. J.; Schram, K. H.; Cole, J. R.; Tempesta, M. S.; Bates, R. B. J. Org. Chem. 1981, 46, 641.
- (502) Nagakura, Y.; Yamanaka, R.; Hirasawa, Y.; Hosoya, T.; Rahman, A.; Kusumawati, I.; Zaini, N. C.; Morita, H. Heterocycles 2010, 80, 1471.
- (503) Mulholland, D. A.; Taylor, D. A. H. J. Chem. Res., Synop. 1979, 9, 294.
- (504) Musza, L. L.; Killar, L. M.; Speight, P.; McElhiney, S.; Barrow, C. J.; Gillum, A. M.; Copper, R. Tetrahedron 1994, 50, 11369.
- (505) Kraus, W.; Kypke, K.; Bokel, M.; Grimminger, W.; Sawitzki, G.; Schwinger, G. Liebigs Ann. Chem. 1982, 1, 87.
- (506) Qi, S. H.; Chen, L.; Wu, D. G.; Ma, Y. B.; Luo, X. D. Tetrahedron 2003, 59, 4193.
- (507) Luo, X. D.; Wu, S. H.; Wu, D. G.; Ma, Y. B.; Qi, S. H. Tetrahedron 2002, 58, 7797.
- (508) Zhang, H. P.; Wu, S. H.; Luo, X. D.; Ma, Y. B.; Wu, D. G. Chin. Chem. Lett. 2002, 13, 341.
- (509) Fraser, L.-A.; Mulholland, D. A.; Taylor, D. A. H. S. Afr. J. Bot. 1995, 61, 281.
- (510) Kipassa, N. T.; Iwagawa, T.; Okamura, H.; Doe, M.; Morimoto, Y.; Nakatani, M. Phytochemistry 2008, 69, 1782.
- (511) Mitsui, K.; Maejima, M.; Fukaya, H.; Hitotsuyanagi, Y.; Takeya, K. Phytochemistry 2004, 65, 3075.
- (512) Garcez, F. R.; Garcez, W. S.; Roque, N. F.; Castellano, E. E.; Zukerman-Schpector, J. Phytochemistry 2000, 55, 733.
- (513) Ahmed, F. R.; Ng, A. S.; Fallis, A. G. Can. J. Chem. 1978, 56, 1020.
 - (514) Ng, A. S.; Fallis, A. G. Can. J. Chem. 1979, 57, 3088.
- (515) Adesida, G. A.; Taylor, D. A. H. Phytochemistry 1972, 11, 2641.
- (516) Mullholland, D. A.; Monkhe, T. V.; Pegel, K. H.; Taylor, D. A. H. Biochem. Syst. Ecol. 1999, 27, 313.
- (517) Jogia, M. K.; Andersen, R. J. Can. J. Chem. 1989, 67, 257.
- (518) Mulholland, D. A.; Nair, J. J.; Taylor, D. A. H. Phytochemistry 1996, 42, 1667.
- (519) Luo, X. D.; Wu, S. H.; Ma, Y. B.; Wu, D. G. Fitoterapia 2000, 71, 492.
- (520) Garcez, F. R.; Garcez, W. S.; Tsutsumi, M. T.; Roque, N. F. Phytochemistry 1997, 45, 141.
 - (521) Marcelle, G. B.; Mootoo, B. S. Tetrahedron Lett. 1981, 22, 505.
 - (522) Jogia, M. K.; Andersen, R. J. Phytochemistry 1987, 26, 3309.
 - (523) Ekong, D. E. U.; Olagbemi, E. O. J. Chem. Soc. C 1966, 10, 944.
- (524) Bevan, C. W. L.; Powell, J. W.; Taylor, D. A. H.; Halsall, T. G.; Toft, P.; Welford, M. J. Chem. Soc. C 1967, 2, 163.
- (525) Chan, W. R.; Magnus, K. E.; Mootoo, B. S. J. Chem. Soc. C 1967, 2, 171.
- (526) Bevan, C. W. L.; Powell, J. W.; Taylor, D. A. H.; Toft, P.;
- Welford, M.; Chan, W. R.; Mootoo, B. S.; Halsall, T. G. Chem. Ind. (London, U. K.) 1964, 42, 1751.
- (527) Sanni, S. B.; Behm, H.; Beurskens, P. T. Acta Crystallogr., Sect. C 1987, 43, 1398.
- (528) Connolly, J. D.; Thornton, I. M. S.; Taylor, D. A. H. J. Chem. Soc., D 1970, 18, 1205.
- (529) Connolly, J. D.; Thornton, I. M. S.; Taylor, D. A. H. J. Chem. Soc., Perkin Trans. 1 1973, 20, 2407.
 - (530) Adesida, G. A.; Taylor, D. A. H. Phytochemistry 1967, 6, 1429.
- (531) Connolly, J. D.; Okorie, D. A.; Taylor, D. A. H. J. Chem. Soc., Perkin Trans. 1 1972, 9-10, 1145.

- (532) Powell, R. G.; Mikolajczak, K. L.; Zilkowski, B. W.; Mantus, E. K.; Cherry, D.; Clardy, J. J. Nat. Prod. 1991, 54, 241.
- (533) Okorie, D. A.; Taylor, D. A. H. Phytochemistry 1968, 7, 1683. (534) Agnihotri, V. K.; Srivastava, S. D.; Srivastava, S. Planta Med. 1987, 53, 298.
- (535) Agnihotri, V. K.; Srivastava, S. D.; Srivastava, S. K. Curr. Sci. 1987, 56, 770.
- (536) Srivastava, S. K.; Srivastava, S. D.; Srivastava, S. Indian J. Chem., Sect. B 2003, 42, 3155.
- (537) Purushothaman, K. K.; Chandrasekharan, S. Indian J. Chem. 1974, 12, 207.
- (538) Purushothaman, K. K.; Chandrasekharan, S.; Connolly, J. D.; Rycroft, D. S. J. Chem. Soc., Perkin Trans. 1 1977, 16, 1873.
- (539) Agarwal, S. K.; Verma, S.; Singh, S. S.; Kumar, S. Indian J. Chem., Sect. B 2001, 40, 536.
- (540) Chandrasekharan, S.; Kundu, A. B.; Chakraborty, T. Sci. Cult 1968, 34, 362.
- (541) Chakrabortty, T.; Chandrasekharan, S.; Kundu, A. B. Indian J. Med. Res. 1969, 4, 121.
- (542) Chatterjee, A.; Kundu, A. B.; Chakrabortty, T.; Chandrasekharan, S. Tetrahedron 1970, 26, 1859.
- (543) Mulholland, D. A.; Nair, J. J.; Taylor, D. A. H. Phytochemistry 1996, 42, 1239.
- (544) Fang, X.; Zhang, Q.; Tan, C. J.; Mu, S. Z.; Lu, Y.; Lu, Y. B.; Zheng, Q. T.; Di, Y. T.; Hao, X. J. Tetrahedron 2009, 65, 7408.
- (545) Kipassa, N. T.; Okamura, H.; Doe, M.; Morimoto, Y.; Iwagawa, T.; Nakatani, M. Heterocycles 2008, 75, 157.
- (546) Ambaye, R. Y.; Indap, M. A.; Panse, T. B. Curr. Sci. 1971, 40, 158.
- (547) Abdelgaleil, S. A. M.; Okamura, H.; Iwagawa, T.; Doe, M.; Nakatani, M. Heterocycles 2000, 53, 2233.
- (548) Nakatani, M.; Abdelgaleil, S. A. M.; Okamura, H.; Iwagawa, T.; Sato, A.; Doe, M. Tetrahedron Lett. 2000, 41, 6473.
- (549) Abdelgaleil, S. A. M.; Okamura, H.; Iwagawa, T.; Sato, A.; Miyahara, I.; Doe, M.; Nakatani, M. Tetrahedron 2001, 57, 119.
- (550) Abdelgaleil, S. A. M.; Nakatani, M. J. Appl. Entomology 2003, 127.236.
- (551) Nakatani, M.; Abdelgaleil, S. A. M.; Okamura, H.; Iwagawa, T.; Doe, M. Chem. Lett. 2000, 8, 876.
- (552) Tchimene, M. K.; Tane, P.; Ngamga, D.; Connolly, J. D.; Farrugia, L. J. Phytochemistry 2005, 66, 1088.
- (553) Tchuendem, M.-H. K.; Foyere Ayafor, J.; Connolly, J. D.; Sterner, O. Tetrahedron Lett. 1998, 39, 719.
- (554) Zhang, B.; Yang, S. P.; Yin, S.; Zhang, C. R.; Wu, Y.; Yue, J. M. Phytochemistry 2009, 70, 1305.
 - (555) Taylor, D. A. H. Chem. Commun. (London) 1969, 2, 58.
- (556) Mootoo, B. S.; Ramsewak, R.; Khan, A.; Tinto, W. F.; Reynolds, W. F.; McLean, S.; Yu, M. J. Nat. Prod. 1996, 59, 544.
- (557) Naidoo, D.; Mulholland, D. A.; Randrianarivelojosia, M.; Coombes, P. H. Biochem. Syst. Ecol. 2003, 31, 1047.
- (558) Zhang, J.; Yang, S. X.; Yang, X. B.; Li, M. Y.; Feng, G.; Pan, J. Y.; Satyanandamurty, T.; Wu, J. Chem. Pharm. Bull. 2010, 58, 552.
- (559) Abdelgaleil, S. A. M.; Saad, M. M. G.; Nakatani, M. Alex. J. Pharm. Sci. 2005, 19, 141.
- (560) Connolly, J. D.; McCrindle, R.; Overton, K. H.; Warnock, W. D. C. Tetrahedron 1967, 23, 4035.
- (561) Agbedahunsi, J. M.; Elujoba, A. A. Niger. J. Nat. Prod. Med. 1998, 2, 34.
- (562) Pancharoen, O.; Haboonmee, P.; Taylor, W. C. Acta Hortic. 2005, 677, 51.
- (563) Fang, X.; Di, Y. T.; Li, C. S.; Geng, Z. L.; Zhang, Z.; Zhang, Y.;
- Lu, Y.; Zheng, Q. T.; Yang, S. Y.; Hao, X. J. J. Nat. Prod. 2009, 72, 714. (564) Zhang, Z. G.; Yao, K.; Hu, G. L.; Zhang, J. Helv. Chim. Acta 2010, 93, 698.
- (565) Kehrli, A. R. H.; Taylor, D. A. H.; Niven, M. Phytochemistry 1990, 29, 153.
- (566) Taylor, A. R. H.; Taylor, D. A. H. Phytochemistry 1984, 23, 2676.

- (568) Wu, J.; Yang, S. X.; Li, M. Y.; Feng, G.; Pan, J. Y.; Xiao, Q.; Sinkkonen, J.; Satyanandamurty, T. J. Nat. Prod. **2010**, 73, 644.
- (569) Pancharoen, O.; Pipatanapatikarn, A.; Taylor, W. C.; Bansiddhi, J. Nat. Prod. Res., Part A **2009**, 23, 10.
- (570) Segura, R.; Calderon, J.; Toscano, R.; Gutierrez, A.; Mata, R. Tetrahedron Lett. 1994, 35, 3437.
- (571) Cespedes, C. L.; Calderon, J. S.; Salazar, J. R.; Lotina-Hennsen, B.; Segura, R. J. Chem. Ecol. 2001, 27, 137.
- (572) Chen, Y. Y.; Wang, X. N.; Fan, C. Q.; Yin, S.; Yue, J. M. Tetrahedron Lett. 2007, 48, 7480.
- (573) Wang, X. N.; Fan, C. Q.; Yin, S.; Gan, L. S.; Yue, J. M. *Phytochemistry* **2008**, *69*, 1319.
- (574) Nakatani, M.; Abdelgaleil, S. A. M.; Kassem, S. M. I.; Takezaki, K.; Okamura, H.; Iwagawa, T.; Doe, M. *J. Nat. Prod.* **2002**, *65*, 1219.
- (575) Nakatani, M.; Abdelgaleil, S. A. M.; Okamura, H.; Iwagawa, T.; Doe, M.; Hirotsu, K. *Tennen Yuki Kagobutsu Toronkai Koen Yoshishu* **2000**, 42, 37.
- (576) Adesogan, E. K.; Taylor, D. A. H. J. Chem. Soc., D 1969, 15, 889.
- (577) Nishizawa, M.; Nademoto, Y.; Sastrapradja, S.; Shiro, M.; Hayashi, Y. J. Org. Chem. 1985, 50, 5487.
- (578) Nishizawa, M.; Nademoto, Y.; Sastrapradja, S.; Shiro, M.; Hayashi, Y. J. Chem. Soc., Chem. Commun. **1985**, 7, 395.
- (579) Ndung'u, M.; Hassanali, A.; Hooper, A. M.; Chhabra, S.; Miller, T. A.; Paul, R. L.; Torto, B. *Phytochemistry* **2003**, *64*, 817.
- (580) Cameron, A. F.; Connolly, J. D.; Maltz, A.; Taylor, D. A. H. Tetrahedron Lett. 1979, 11, 967.
- (581) Kimbu, S. F.; Ayafor, J. F.; Sondengam, B. L.; Connolly, J. D.; Rycroft, D. S. *Tetrahedron Lett.* **1984**, *25*, 1613.
- (582) Kimbu, S. F.; Ayafor, J. F.; Sondengam, B. L.; Tsamo, E.; Connolly, J. D.; Rycroft, D. S. *Tetrahedron Lett.* **1984**, *25*, 1617.
- (583) Nishizawa, M.; Nademoto, Y.; Sastrapradja, S.; Shiro, M.; Hayashi, Y. *Phytochemistry* **1988**, *27*, 237.
- (584) Fun, H. K.; Chantrapromma, S.; Boonnak, N.; Chaiyadej, K.; Chantrapromma, K.; Yu, X. L. *Acta Crystallogr., Sect. E* **2006**, *62*, 03725.
- (585) Bevan, C. W. L.; Powell, J. W.; Taylor, D. A. H. Chem. Commun. (London) 1965, 13, 281.
- (586) Connolly, J. D.; McCrindle, R.; Overton, K. H. Tetrahedron 1968, 24, 1497.
- (587) Connolly, J. D.; McCrindle, R.; Overton, K. H. Chem. Commun. (London) **1965**, 8, 162.
- (588) Connolly, J. D.; McCrindle, R.; Overton, K. H. Tetrahedron 1968, 24, 1489.
- (589) Sanni, S. B.; Behm, H.; Beurskens, P. T. Acta Crystallogr., Sect. C 1987, 43, 1400.
- (590) Sondengam, B. L.; Kamga, C. S.; Connolly, J. D. *Phytochemistry* **1980**, *19*, 2488.
- (591) Gan, L. S.; Wang, X. N.; Wu, Y.; Yue, J. M. J. Nat. Prod. 2007, 70, 1344.
- (592) Connolly, J. D.; McCrindle, R.; Overton, K. H.; Warnock, W. D. C. *Tetrahedron Lett.* **1965**, *6*, 2937.
- (593) Chakrabartty, T.; Connolly, J. D.; McCrindle, R.; Overton, K. H.; Schwarz, J. C. P. *Tetrahedron* **1968**, *24*, 1503.
- (594) Connolly, J. D.; McCrindle, R.; Overton, K. H.; Warnock, W. D. C. *Tetrahedron* **1968**, *24*, 1507.
- (595) Goh, B. H.; Abdul Kadir, H.; Abdul Malek, S. N.; Ng, S. W. Acta Crystallogr., Sect. E 2010, 66, 01396.
- (596) Zelnik, R.; Rosito, C. M. Tetrahedron Lett. 1966, 52, 6441.
- (597) Lavie, D.; Levy, E. C.; Rosito, C.; Zelnik, R. *Tetrahedron* **1970**, 26, 219.
 - (598) Zelnik, R.; Rosito, C. Phytochemistry 1971, 10, 1166.
 - (599) Taylor, D. A. H. Tetrahedron Lett. 1970, 32, 2797.
- (600) Taylor, D. A. H.; Wehrli, F. W. J. Chem. Soc., Perkin Trans. 1 1973, 15, 1599.
- (601) Khalid, S. A.; Friedrichsen, G. M.; Kharazmi, A.; Theander, T. G.; Olsen, C. E.; Christensen, S. B. *Phytochemistry* **1998**, *49*, 1769.
- (602) Adesogan, E. K.; Taylor, D. A. H. Chem. Commun. 1967, 5, 225.

- (603) Govindachari, T. R.; Suresh, G.; Banumathy, B.; Masilamani,
- S.; Gopalakrishnan, G.; Kumari, G. N. K. J. Chem. Ecol. 1999, 25, 923.
 (604) Wu, J.; Zhang, S.; Xiao, Q.; Li, Q. X.; Huang, J. S.; Xiao, Z. H.;
 Long, L. J. Z. Naturforsch., B 2003, 58, 1216.
- (605) Wu, J.; Zhang, S.; Song, Y.; Xiao, Z. H.; Xiao, Q.; Li, Q. X. Z. *Naturforsch.*, B **2005**, 60, 1291.
- (606) Chakrabartty, T.; Chatterjee, A. J. Indian Chem. Soc. 1957, 34, 117.
 (607) Connolly, J. D.; Henderson, R.; McCrindle, R.; Overton,
- K. H.; Bhacca, N. S. Tetrahedron Lett. 1964, 5, 2593.
- (608) Chakravarty, T.; Chatterjee, A. J. Indian Chem. Soc. 1955, 32, 179.
- (609) Connolly, J. D.; Henderson, R.; McCrindle, R.; Overton, K. H.; Bhacca, N. S. J. Chem. Soc. **1965**, Dec, 6935.
 - (610) McPhail, A. T.; Sim, G. A. Tetrahedron Lett. 1964, 37–38, 2599.
 - (611) McPhail, A. T.; Sim, G. A. J. Chem. Soc., B 1966, 4, 318.
- (612) Solomon, K. A.; Malathi, R.; Rajan, S. S.; Narasimhan, S.; Nethaji, M. Acta Crystallogr., Sect. E 2003, 59, 01519.
- (613) Mulholland, D. A.; Taylor, D. A. H. Phytochemistry 1988, 27, 1741.
- (614) Kojima, K.; Isaka, K.; Ogihara, Y. Chem. Pharm. Bull. 1998, 46, 523.
- (615) Rao, M. M.; Krishna, E. M.; Gupta, P. S.; Singh, P. P. Indian J. Chem., Sect. B 1978, 16, 823.
- (616) Govindachari, T. R.; Banumathy, B.; Gopalakrishnan, G.; Suresh, G. *Fitoterapia* **1999**, *70*, 106.
- (617) Leite, A. C.; Fernandes, J. B.; da Silva, M. F. das G. F.; Vieira, P. C. Z. Naturforsch., B **2005**, 60, 351.
- (618) Marpaung, L.; Nakamura, N.; Kaduda, H.; Hattori, M. Nat. Med. (Tokyo, Jpn.) 2001, 55, 220.
- (619) Okorie, D. A.; Taylor, D. A. H. *Phytochemistry* 1971, 10, 469.
 (620) Daniewski, W. M.; Gumulka, M.; Danikiewicz, W.; Gluzinski,
- P.; Krajewski, J.; Pankowska, E.; Bloszyk, E.; Jacobsson, U.; Norin, T.; Szafranski, F. *Phytochemistry* **1993**, *33*, 1534.

- Szafranski, F. Phytochemistry 1994, 36, 1001.
- (622) Yuan, T.; Yang, S. P.; Zhang, C. R.; Zhang, S.; Yue, J. M. Org. Lett. 2009, 11, 617.
- (623) Yuan, T.; Zhang, C. R.; Yang, S. P.; Yue, J. M. J. Nat. Prod. 2010, 73, 669.
- (624) Roy, A. D.; Kumar, R.; Gupta, P.; Khaliq, T.; Narender, T.; Aggarwal, V.; Roy, R. *Magn. Reson. Chem.* **2006**, *44*, 1054.

(625) Connolly, J. D.; MacLellan, M.; Okorie, D. A.; Taylor, D. A. H. J. Chem. Soc., Perkin Trans. 1 **1976**, 19, 1993.

- (626) Alvi, K. A.; Crews, P.; Aalbersberg, B.; Prasad, R. *Tetrahedron* **1991**, 47, 8943.
- (627) Xiao, Z. H.; Wu, J.; Zhang, S.; Li, Q. X. Chin. J. Magn. Reson. 2005, 22, 315.
- (628) Wu, J.; Xiao, Z. H.; Song, Y.; Zhang, S.; Xiao, Q.; Ma, C.; Ding, H. X.; Li, Q. X. Magn. Reson. Chem. **2006**, 44, 87.
- (629) Segura-Correa, R.; Mata, R.; Anaya, A. L.; Hernandez-Bautista, B.; Villena, R.; Soriano-Garcia, M.; Bye, R.; Linares, E. *J. Nat. Prod.* **1993**,
- 56, 1567.
 (630) Saad, M. M. G.; Iwagawa, T.; Okamura, H.; Doe, M.;
 Nakatani, M. Heterocycles 2004, 63, 389.
- (631) Yuan, X. H.; Li, B. G.; Zhou, M.; Qi, H. Y.; Zhang, G. L. Org. Lett. 2005, 7, 5051.
- (632) Yin, S.; Wang, X. N.; Fan, C. Q.; Lin, L. P.; Ding, J.; Yue, J. M. J. Nat. Prod. **200**7, *70*, 682.
- (633) Cui, J. X.; Wu, J.; Deng, Z. W.; Proksch, P.; Lin, W. H. J. Nat. Prod. 2007, 70, 772.
- (634) Huo, C. H.; Guo, D.; Shen, L. R.; Yin, B. W.; Sauriol, F.; Li,
- L. G.; Zhang, M. L.; Shi, Q. W.; Kiyota, H. Tetrahedron Lett. 2010, 51, 754.
- (635) Wu, J.; Zhang, S.; Long, L. J. CN Patent 1513853, 2004; Chem. Abstr. 2005, 143, 363956.
- (636) Wu, J.; Zhang, S.; Xiao, Q.; Li, Q. X.; Huang, J. S.; Long, L. J.; Huang, L. M. *Tetrahedron Lett.* **2004**, *45*, 591.

⁽⁶²¹⁾ Daniewski, W. M.; Gumulka, M.; Danikiewicz, W.; Gluzinski, P.; Krajewski, J.; Sitkowski, J.; Bloszyk, E.; Drozdz, B.; Jacobsson, U.;

(637) Yin, S.; Fan, C. Q.; Wang, X. N.; Lin, L. P.; Ding, J.; Yue, J. M. Org. Lett. **2006**, *8*, 4935.

- (638) Wu, J.; Zhang, S.; Bruhn, T.; Xiao, Q.; Ding, H.; Bringmann, G. Chem.—Eur. J. 2008, 14, 1129.
- (639) Wu, J.; Zhang, S.; Zhou, Y.; Xiao, Q. Chem. Pharm. Bull. 2006, 54, 1582.
- (640) Yuan, T.; Zhu, R. X.; Zhang, H.; Odeku, O. A.; Yang, S. P.; Liao, S. G.; Yue, J. M. Org. Lett. **2010**, *12*, 252.
- (641) Adesogan, E. K.; Bevan, C. W. L.; Powell, J. W.; Taylor, D. A. H. J. Chem. Soc. C 1966, 23, 2127.
- (642) Zelnik, R.; Rosito, C. Phytochemistry 1971, 10, 1955.
- (643) Leite, A. C.; Neto, A. P.; Ambrozin, A. R. P.; Fernandes, J. B.; Vieira, P. C.; da Silva, M. F. das G. F.; de Albuquerque, S. *Rev. Bras. Farmacogn.* **2010**, *20*, 1.
 - (644) Zelnik, R. Phytochemistry 1972, 11, 1866.
- (645) Chantrapromma, K.; Saewan, N.; Fun, H.-K.; Chantrapromma, S.; Rahman, A. A. *Acta Crystallogr., Sect. E* **2004**, *60*, o312.
- (646) Coombes, P. H.; Mulholland, D. A.; Randrianarivelojosia, M. *Phytochemistry* **2005**, *66*, 1100.
- (647) Fang, X.; Di, Y. T.; Hu, G. W.; Li, S. L.; Hao, X. J. Biochem. Syst. Ecol. 2009, 37, 528.
- (648) Vanucci, C.; Lange, C.; Lhommet, G.; Dupont, B.; Davoust, D.; Vauchot, B.; Clement, J. L.; Brunck, F. *Phytochemistry* **1992**, *31*, 3003.
- (649) Rahman, A. K. M. S.; Chowdhury, A. K. A.; Ali, H.-A.; Raihan, S. Z.; Ali, M. S.; Nahar, L.; Sarker, S. D. J. Nat. Med. **2009**, 63, 41.
- (650) Inada, A.; Konishi, M.; Murata, H.; Nakanishi, T. J. Nat. Prod. 1994, 57, 1446.
- (651) Fang, X.; Di, Y. T.; Geng, Z. L.; Tan, C. J.; Guo, J.; Ning, J.; Hao, X. J. Eur. J. Org. Chem. **2010**, 2010, 1381.
- (652) Kadota, S.; Marpaung, L.; Kikuchi, T.; Ekimoto, H. Tetrahedron Lett. 1989, 30, 1111.
- (653) Chen, J. J.; Huang, S. S.; Liao, C. H.; Wei, D. C.; Sung, P. J.; Wang, T. C.; Cheng, M. J. *Food Chem.* **2010**, *120*, 379.
- (654) Chan, K. C.; Tang, T. S.; Toh, H. T. Phytochemistry 1976, 15, 429.
- (655) Adesogan, E. K.; Bevan, C. W. L.; Powell, J. W.; Taylor, D. A. H. Chem. Commun. (London) **1966**, 1, 27.
- (656) Matos Andreia, P.; Leite Ana, C.; Batista-Pereira Luciane, G.; Vieira Paulo, C.; Fernandes Josao, B.; da Silva, M. F. das G. F. Z. *Naturforsch.*, C **2009**, *64*, 441.
- (657) Luo, X. D.; Wu, S. H.; Ma, Y. B.; Wu, D. G. Phytochemistry 2000, 55, 867.
- (658) Nakatani, M.; Abdelgaleil, S. A. M.; Kurawaki, J.; Okamura, H.; Iwagawa, T.; Doe, M. J. Nat. Prod. **2001**, *64*, 1261.
 - (659) Wu, J.; Xiao, Q.; Li, Q. X. Biochem. Syst. Ecol. 2006, 34, 838.
- (660) Li, M. Y.; Wu, J.; Zhang, S.; Xiao, Q.; Li, Q. X. Magn. Reson. Chem. 2007, 45, 705.
- (661) Guha-Sircar, S. S.; Chakravarty, T. J. Indian Chem. Soc. 1951, 28, 207.
- (662) Dewanjee, S.; Maiti, A.; Das, A. K.; Mandal, S. C.; Dey, S. P. *Fitoterapia* **2009**, *80*, 249.
- (663) Daily, A.; Seligmann, O.; Lotter, H.; Wagner, H. Z. Naturforsch., C 1985, 40, 519.
- (664) Saad, M. M. G.; Iwagawa, T.; Doe, M.; Nakatani, M. *Tetrahedron* **2003**, *59*, 8027.
- (665) Jimenez, A.; Mata, R.; Pereda-Miranda, R.; Calderon, J.; Isman, M. B.; Nicol, R.; Arnason, J. T. *J. Chem. Ecol.* **1997**, *23*, 1225.
- (666) Mikolajczak, K. L.; Weisleder, D.; Parkanyi, L.; Clardy, J. J. Nat. Prod. **1988**, *51*, 606.
- (667) Awang, K.; Lim, C. S.; Mohamad, K.; Morita, H.; Hirasawa, Y.; Takeya, K.; Thoison, O.; Hadi, A. H. A. *Bioorg. Med. Chem.* **2007**, *15*, 5997.
- (668) Kadota, S.; Yanagawa, K.; Kikuchi, T.; Tanaka, K. *Tetrahedron Lett.* **1990**, *31*, 5943.
- (669) Wu, J.; Li, M.; Zhang, S.; Xiao, Q.; Li, Q. Z. Naturforsch., B 2007, 62, 859.
- (670) Arene, E. O.; Bevan, C. W. L.; Powell, J. W.; Taylor, D. A. H. Chem. Commun. (London) **1965**, *14*, 302.

- (671) Leite, A. C.; Bueno, F. C.; Oliveira, C. G.; Fernandes, J. B.; Vieira, P. C.; da Silva, M. F. das G. F.; Bueno, O. C.; Pagnocca, F. C.; Jose,
- M.; Hebling, A.; Bacci, M., Jr. J. Braz. Chem. Soc. 2005, 16, 1391.
- (672) Connolly, J. D.; Handa, K. L. J. Chem. Soc., C 1969, 18, 2435.
 (673) Cheng, F.; Zhoua, Y.; Wub, J.; Zoua, K. Z. Naturforsch, B
 2006. 61. 626.
- (674) Krajewski, J. W.; Gluzinski, P.; Daniewski, W. M.; Gumulka, M.; Kemme, A.; Mishnev, A. Pol. J. Chem. **1994**, 68, 2641.
- (675) Shen, L. R.; Dong, M.; Guo, D.; Yin, B. W.; Zhang, M. L.; Shi,
 Q. W.; Huo, C. H.; Kiyota, H.; Suzuki, N.; Cong, B. Z. Naturforsch., C
 2009, 64, 37.
- (676) Huo, C.; Guo, D.; Shen, L.; Wang, W.; Zhang, Q.; Zhang, M.; Shi, Q. Zhongcaoyao **2010**, *41*, 176.
- (677) Cui, J. X.; Deng, Z. W.; Xu, M. J.; Proksch, P.; Li, Q. S.; Lin, W. H. Helv. Chim. Acta **2009**, 92, 139.
- (678) El-Aswad Ahmed, F.; Abdelgaleil Samir, A. M.; Nakatani, M. Pest Manage. Sci. 2004, 60, 199.
- (679) Zhang, H.; Odeku Oluwatoyin, A.; Wang, X. N.; Yue, J. M. *Phytochemistry* **2008**, *69*, 271.
- (680) Ferreira, I. C. P.; Cortez, D. A. G.; da Silva, M. F. das G. F.; Fo, E. R.; Vieira, P. C.; Fernandes, J. B. J. Nat. Prod. **2005**, 68, 413.
- (681) Veitch, N. C.; Wright, G. A.; Stevenson, P. C. J. Nat. Prod. 1999, 62, 1260.
- (682) Kokpol, U.; Chavasiri, W.; Tip-Pyang, S.; Veerachato, G.;
- Zhao, F. L.; Simpson, J.; Weavers, R. T. Phytochemistry 1996, 41, 903.
- (683) Taylor, D. A. H. Phytochemistry **1983**, 22, 1297.
- (684) Perusquia, M.; Hernandez, R.; Jimenez, M. A.; Pereda-Miranda, R.; Mata, R. *Phytother. Res.* **1997**, *11*, 354.
- (685) Okorie, D. A.; Taylor, D. A. H. J. Chem. Soc., C 1970, 2, 211.
 (686) Mootoo, B. S.; Jativa, C.; Tinto, W. F.; Reynolds, W. F.;
 McLean, S. Can. J. Chem. 1992, 70, 1260.
- (687) Wu, J.; Ding, H.; Li, M.; Zhang, S. Z. Naturforsch., B 2007,
- (007) Wd, J., Ding, H., Di, Wi, Zhang, S. Z. Watarjorsch., D 2007, 62, 569.
 - (688) Taylor, D. A. H. Phytochemistry **1977**, *16*, 1847.
 - (689) Arndt, R. R.; Baarschers, W. H. Tetrahedron 1972, 28, 2333.
- (690) Coetzer, J.; Baxter, W. J.; Gafner, G. Acta Crystallogr., Sect. B 1971, 27, 1434.
- (691) Haenni, R.; Tamm, C. J. Chem. Soc., Chem. Commun. 1972, 22, 1253.
- (692) Haenni, R.; Tamm, C.; Gullo, V.; Nakanishi, K. J. Chem. Soc., Chem. Commun. 1975, 14, 563.
 - (693) Guex, M.; Tamm, C. Helv. Chim. Acta 1984, 67, 885.
 - (694) Taylor, D. A. H. Phytochemistry **1979**, 18, 1574.
 - (695) Niven, M. L.; Taylor, D. A. H. Phytochemistry 1988, 27, 1542.
 - (696) Luo, J.; Wang, J. S.; Wang, X. B.; Huang, X. F.; Luo, J. G.;

Kong, L. Y. Tetrahedron 2009, 65, 3425.

- (697) Zhang, C. R.; Fan, C. Q.; Zhang, L.; Yang, S. P.; Wu, Y.; Lu, Y.; Yue, J. M. Org. Lett. **2008**, *10*, 3183.
- (698) Harrison, H. R.; Hodder, O. J. R.; Bevan, C. W. L.; Taylor, D. A. H.; Halsall, T. G. J. Chem. Soc. D 1970, 21, 1388.
- (699) Wu, J.; Xiao, Q.; Huang, J. S.; Xiao, Z. H.; Qi, S. H.; Li, Q. X.; Zhang, S. Org. Lett. **2004**, *6*, 1841.
- (700) Wu, J.; Xiao, Q.; Zhang, S.; Li, X.; Xiao, Z. H.; Ding, H. X.; Li, Q. X. *Tetrahedron* **2005**, *61*, 8382.
- (701) Cui, J. X.; Deng, Z. W.; Li, J.; Fu, H. Z.; Proksch, P.; Lin, W. H. *Phytochemistry* **2005**, *66*, 2334.
- (702) Connolly, J. D.; Labbe, C.; Rycroft, D. S. J. Chem. Soc., Perkin Trans. 1 1978, 3, 285.
- (703) Ansell, S. M.; Taylor, D. A. H. Phytochemistry 1988, 27, 1218.
- (704) Coombes, P. H.; Mulholland, D. A.; Randrianarivelojosia, M. J. Nat. Prod. **2003**, *66*, 735.
- (705) Mallavarapu, G. R.; Muralikrishna, E.; Connolly, J. D. *Phytochemistry* **1985**, *24*, 305.
- (706) Nakatani, M.; Abdelgaleil, S. A. M.; Saad, M. M. G.; Huang, R. C.; Doe, M.; Iwagawa, T. *Phytochemistry* **2004**, *65*, 2833.
- (707) Zhang, C. R.; Yang, S. P.; Chen, X. Q.; Wu, Y.; Zhen, X. C.; Yue, J. M. *Helv. Chim. Acta* **2008**, *91*, 2338.

(708) Rao, M. M.; Gupta, P. S.; Singh, P. P.; Krishna, E. M. Indian J. Chem., Sect. B 1979, 17, 158.

(709) Randrianarivelojosia, M.; Kotsos, M. P.; Mulholland, D. A. *Phytochemistry* **1999**, *52*, 1141.

(710) Connolly, J. D.; Phillips, W. R.; Mulholland, D. A.; Taylor, D. A. H. *Phytochemistry* **1981**, *20*, 2596.

(711) Ragettli, T.; Tamm, C. Helv. Chim. Acta 1978, 61, 1814.

(712) Zhang, C. R.; Yang, S. P.; Zhu, Q.; Liao, S. G.; Wu, Y.; Yue, J. M. J. Nat. Prod. **2007**, 70, 1616.

- (713) Fan, C. Q.; Wang, X. N.; Yin, S.; Zhang, C. R.; Wang, F. D.; Yue, J. M. *Tetrahedron* **2007**, *63*, 6741.
- (714) Halsall, T. G.; Wragg, K.; Connolly, J. D.; McLellan, M. A.; Bredell, L. D.; Taylor, D. A. H. J. Chem. Res., Synop. **1977**, *6*, 154.

(715) Taylor, D. A. H. J. Chem. Soc., Perkin Trans. 1 1974, 4, 437.

- (716) Nascimento da Silva, M.; Arruda, M. S. P.; Castro, K. C. F.; da Silva, M. F. das G. F.; Fernandes, J. B.; Vieira, P. C. J. Nat. Prod. 2008,
- (717) Ten S. K. Ormen H. Wang K. C. Boor, D. L. Food Chart

(717) Tan, S.-K.; Osman, H.; Wong, K.-C.; Boey, P.-L. Food Chem. 2009, 115, 1279.

- (718) Wangensteen, H.; Duong, G. M.; Alamgir, M.; Sarder, M.; Samuelsen, A. B.; Malterud, K. E. *Nat. Prod. Commun.* **2006**, *1*, 985.
- (719) Tchouankeu, J. C.; Tsamo, E.; Sondengam, B. L.; Connolly, J. D. *Phytochemistry* **1989**, *28*, 2855.
- (720) Olmo, L. R. V.; da Silva, M. F. das G. F.; Rodrigues, Fo, E.; Vieira, P. C.; Fernandes, J. B.; Pinheiro, A. L.; Vilela, E. F. *Phytochemistry* **1997**, 44, 1157.

(721) Olmo, L. R. V.; da Silva, M. F. das G. F.; Rodrigues, Fo, E.; Vieira, P. C.; Fernandes, J. B.; Marsaioli, A. J.; Pinheiro, A. L.; Vilela, E. F. *Phytochemistry* **1996**, *42*, 831.

(722) Zhang, H. P.; Tan, J. J.; VanDerveer, D.; Wang, X.; Wargovich, M. J.; Chen, F. *Phytochemistry* **2009**, *70*, 294.

(723) Pudhom, K.; Sommit, D.; Nuclear, P.; Ngamrojanavanich, N.; Petsom, A. J. Nat. Prod. **2010**, 73, 263.

(724) Brown, D. A.; Taylor, D. A. H. J. Chem. Res., Synop. 1978, 1, 20.

(725) Tchouankeu, J. C.; Tsamo, E.; Sondengam, B. L.; Connolly, J. D. *Phytochemistry* **1990**, *29*, 3999.

(726) Cui, J. X.; Ou, Y. J.; Deng, Z. W.; Lin, W. H. Magn. Reson. Chem. 2008, 46, 894.

- (727) Zhou, Y.; Cheng, F.; Wu, J.; Zou, K. J. Nat. Prod. 2006, 69, 1083.
- (728) Fall, A. B.; Vanhaelen-Fastre, R.; Vanhaelen, M.; Lo, I.; Toppet, M.; Ferster, A.; Fondu, P. *Planta Med.* **1999**, *65*, 209.
- (729) Purushothaman, K. K.; Venkatanarasimham, M.; Sarada, A.; Connolly, J. D.; Rycroft, D. S. *Can. J. Chem.* **1987**, *65*, 35.
- (730) Mulholland, D. A.; Iourine, S. E. *Phytochemistry* **1998**, *47*, 1357.
 (731) Geng, Z. L.; Fang, X.; Di, Y. T.; Zhang, Q.; Zeng, Y.; Shen,
- Y. M.; Hao, X. J. Tetrahedron Lett. 2009, 50, 2132.

(732) Hill, R. A.; Sutherland, A. Nat. Prod. Rep. 2009, 26, 725.

(733) Mulholland, D. A.; Schwikkard, S. L.; Randrianarivelojosia, M. *Phytochemistry* **1999**, *52*, 705.

(734) Venkatanarasimhan, M.; Kundu, A. B. Indian J. Chem., Sect. B 1990, 29, 970.

- (735) Di, Y. T.; He, H. P.; Liu, H. Y.; Yi, P.; Zhang, Z.; Ren, Y. L.; Wang, J. S.; Sun, Q. Y.; Yang, F. M.; Fang, X.; Li, S. L.; Zhu, H. J.; Hao,
- X. J. J. Nat. Prod. 2007, 70, 1352.

(736) Ismail, I. S.; Ito, H.; Hatano, T.; Taniguchi, S.; Yoshida, T. *Phytochemistry* **2003**, *64*, 1345.

(737) Yoshida, T.; Ismail, I. S.; Ito, H. In *Abstracts of Papers*, 228th ACS National Meeting, Philadelphia, PA, United States, August 22–26, 2004; American Chemical Society: Washington, D. C, 2004.

(738) Ismail, I. S.; Ito, H.; Hatano, T.; Taniguchi, S.; Yoshida, T. Chem. Pharm. Bull. 2004, 52, 1145.

(739) Yin, S.; Wang, X. N.; Fan, C. Q.; Liao, S. G.; Yue, J. M. Org. Lett. 2007, 9, 2353.

(740) Fang, X.; Di, Y. T.; He, H. P.; Liu, H. Y.; Zhang, Z.; Ren, Y. L.; Gao, Z. L.; Gao, S.; Hao, X. J. Org. Lett. **2008**, *10*, 1905.

(741) Fang, X.; Di, Y. T.; He, H. P.; Liu, H. Y.; Zhang, Z.; Ren, Y. L.; Gao, Z. L.; Gao, S.; Hao, X. J. Org. Lett. **2008**, *10*, 3169.

- (742) Bruhn, A.; Bokel, M.; Kraus, W. Tetrahedron Lett. 1984, 25, 3691.
- (743) Nakatani, M.; Zhou, J. B.; Tadera, K.; Naoki, H. *Chem. Lett.* **1998**, *12*, 1279.
- (744) Rogers, L. L.; Zeng, L.; McLaughlin, J. L. Tetrahedron Lett. 1998, 39, 4623.
- (745) Kashiwada, Y.; Fujioka, T.; Chang, J. J.; Chen, I. S.; Mihashi, K.; Lee, K. H. J. Org. Chem. **1992**, *57*, 6946.
- (746) Kalinowski, H.-O.; Ermel, K.; Schmutterer, H. Liebigs Ann. Chem. 1993, 31, 1033.
- (747) Rojatkar, S. R.; Nagasampagi, B. A. Nat. Prod. Lett. 1994, 5, 69.
- (748) Ramji, N.; Venkatakrishnan, K.; Madyastha, K. M. Phytochemistry 1996, 42, 561.

(749) Malathi, R.; Kabaleeswaran, V.; Rajan, S. S.; Gopalakrishnan, G.; Govindachari, T. R. J. Chem. Crystallogr. **2003**, 33, 229.

- (750) Zhang, C. R.; Yang, S. P.; Liao, S. G.; Fan, C. Q.; Wu, Y.; Yue, J. M. Org. Lett. **200**7, *9*, 3383.
- (751) Luo, J.; Wang, J. S.; Luo, J. G.; Wang, X. B.; Kong, L. Y. Org. Lett. 2009, 11, 2281.
- (752) Luo, J.; Wang, J. S.; Wang, X. B.; Luo, J. G.; Kong, L. Y. J. Nat. Prod. 2010, 73, 835.
- (753) Siddiqui, B. S.; Ghiasuddin; Faizi, S.; Siddiqui, S. *Phytochemistry* **1992**, *31*, 4275.

(754) Mulholland, D. A.; Randrianarivelojosia, M.; Lavaud, C.; Nuzillard, J.-M.; Schwikkard, S. L. *Phytochemistry* **2000**, *53*, 115.

- (755) Govindachari, T. R.; Geetha, G.; Rajan, S. S.; Kabaleeswaran, V.; Lessinger, L. Acta Crystallogr, Sect. B **1996**, *52*, 145.
- (756) Govindachari, T. R.; Gopalakrishnan, G.; Malathi, R.; Singh, N. D. P. Nat. Prod. Lett. **1999**, 13, 157.
- (757) Cortez, D. A. G.; Fernandes, J. B.; Vieira, P. C.; da Silva, M. F. das G. F.; Ferreira, A. G. *Phytochemistry* **2000**, *55*, 711.

(758) Kraus, W.; Cramer, R. Chem. Ber. 1981, 114, 2375.

- (759) Zhang, H. P.; Wu, S. H.; Shen, Y. M.; Ma, Y. B.; Wu, D. G.; Qi,
 S. H.; Luo, X. D. Can. J. Chem. 2003, 81, 253.
- (760) Tchouankeu, J. C.; Tsamo, E.; Sondengam, B. L.; Connolly, J. D.; Rycroft, D. S. *Tetrahedron Lett.* **1990**, *31*, 4505.
- (761) Daniewski, W. M.; Gumulka, M.; Pankowska, E.; Bloszyk, E.; Szafranski, F.; Jacobsson, U.; Norin, T. *Pol. J. Chem.* **1994**, *68*, 499.

(762) Daniewski, W. M.; Gumulka, M.; Danikiewicz, W.; Sitkowski, J.; Jacobsson, U.; Norin, T. *Phytochemistry* **1995**, *40*, 903.

(763) Coggon, P.; McPhail, A. T. J. Chem. Soc. B 1970, 8, 1521.

- (764) Xie, B. J.; Yang, S. P.; Yue, J. M. Phytochemistry 2008, 69, 2993.
- (765) Qi, S. H.; Wu, D. G.; Chen, L.; Ma, Y. B.; Luo, X. D. J. Agric. Food Chem. **2003**, 51, 6949.
- (766) Kraus, W.; Klenk, A.; Bokel, M.; Vogler, B. Liebigs Ann. Chem. 1987, 4, 337.
- (767) Adesida, G. A.; Taylor, D. A. H. *Phytochemistry* **1972**, *11*, 1520.

(768) da Silva, M. F. das G. F.; Agostinho, S. M. M.; de Paula, J. R.;

- Oiano Neto, J.; Castro-Gamboa, L.; Rodrigues Filho, E.; Fernandes, J. B.; Vieira, P. C. *Pure Appl. Chem.* **1999**, *71*, 1083.
- (769) Pennington, T. D.; Styles, B. T. Blumea 1975, 22, 419.

(770) Veitch, G. E.; Beckmann, E.; Burke, B. J.; Boyer, A.; Maslen, S. L.; Ley, S. V. Angew. Chem., Int. Ed. **200**7, 46, 7629.

(771) Denholm, A. A.; Jennens, L.; Ley, S. V.; Wood, A. Tetrahedron 1995, 51, 6591.

(772) Kolb, H. C.; Ley, S. V. Tetrahedron Lett. 1991, 32, 6187.

(773) Kolb, H. C.; Ley, S. V.; Slawin, A. M. Z.; Williams, D. J. J. Chem. Soc., Perkin Trans. 1 1992, 21, 2735.

(774) Ley, S. V. Pure Appl. Chem. 1994, 66, 2099.

(775) Ley, S. V.; Lovell, P. J.; Smith, S. C.; Wood, A. Tetrahedron Lett. **1991**, 32, 6183.

- (776) Ley, S. V.; Lovell, P. J.; Slawin, A. M. Z.; Smith, S. C.; Williams, D. J.; Wood, A. *Tetrahedron* **1993**, *49*, 1675.
- (777) Koot, W. J.; Ley, S. V. Tetrahedron 1995, 51, 2077.
- (778) Kanoh, N.; Ishihara, J.; Murai, A. Synlett 1995, 9, 895.

(779) Haag, D.; Chen, X.-T.; Fraser-Reid, B. Chem. Commun. (Cambridge) 1998, 23, 2577.

(780) Goldenstein, K.; Nerenz, F.; Winterfeldt, E. Pol. J. Chem. 1999, 73, 3.

(781) Ishihara, J.; Yamamoto, Y.; Kanoh, N.; Murai, A. *Tetrahedron Lett.* **1999**, *40*, 4387.

(782) Yamamoto, Y.; Ishihara, J.; Kanoh, N.; Murai, A. Synthesis 2000, 13, 1894.

(783) Ley, S. V.; Abad Somovilla, A.; Broughton, H. B.; Craig, D.; Slawin, A. M. Z.; Toogood, P. L.; Williams, D. J. *Tetrahedron* **1989**, *45*, 2143.

(784) Brasca, M. G.; Broughton, H. B.; Craig, D.; Ley, S. V.; Somovilla, A. A.; Toogood, P. L. *Tetrahedron Lett.* **1988**, *29*, 1853.

- (785) Kanoh, N.; Ishihara, J.; Yamamoto, Y.; Murai, A. Synthesis 2000, 13, 1878.
- (786) Kanoh, N.; Ishihara, J.; Murai, A. Synlett 1997, 6, 737.

(787) Ley, S. V.; Gutteridge, C. E.; Pape, A. R.; Spilling, C. D.; Zumbrunn, C. Synlett **1999**, *8*, 1295.

(788) Nicolaou, K. C.; Sasmal, P. K.; Koftis, T. V.; Converso, A.;

Loizidou, E.; Kaiser, F.; Roecker, A. J.; Dellios, C. C.; Sun, X. W.; Petrovic, G. Angew. Chem., Int. Ed. 2005, 44, 3447.

(789) Nicolaou, K. C.; Sasmal, P. K.; Roecker, A. J.; Sun, X. W.; Mandal, S.; Converso, A. Angew. Chem., Int. Ed. **2005**, 44, 3443.

(790) Watanabe, H.; Mori, N.; Itoh, D.; Kitahara, T.; Mori, K. Angew. Chem., Int. Ed. 2007, 46, 1512.

(791) Watanabe, H.; Watanabe, T.; Mori, K.; Kitahara, T. *Tetrahedron Lett.* **1997**, *38*, 4429.

(792) Ley, S. V.; Santafianos, D.; Blaney, W. M.; Simmonds, M. S. J. Tetrahedron Lett. **198**7, 28, 221.

(793) Anderson, J. C.; Ley, S. V. Tetrahedron Lett. **1990**, *31*, 3437.

(794) Anderson, J. C.; Ley, S. V.; Santafianos, D.; Sheppard, R. N. *Tetrahedron* 1991, 47, 6813.

(795) Grossman, R. B.; Ley, S. V. Tetrahedron 1994, 50, 11553.

- (796) Nishikimi, Y.; Iimori, T.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. **1989**, *54*, 3354.
 - (797) Schlesiger, H.; Winterfeldt, E. Chirality 1997, 9, 454.
 - (798) Schlesiger, H.; Winterfeldt, E. Chirality 1998, 10, 190.

(799) de la Puente, M. L.; Ley, S. V.; Simmonds, M. S.; Blaney, W. M.

J. Chem. Soc., Perkin Trans. 1 1996, 13, 1523.
 (800) Pflieger, D.; Muckensturm, B.; Robert, P. C.; Simonis, M. T.;
 Kienlen, J. C. Tetrahedron Lett. 1987, 28, 1519.

(801) Henry, K. J., Jr.; Fraser-Reid, B. J. Org. Chem. **1994**, 59, 5128.

(802) Ishihara, J.; Fukuzaki, T.; Murai, A. Tetrahedron Lett. **1999**, 40, 1907.

- (803) de la Puente, M. L.; Grossman, R. B.; Ley, S. V.; Simmonds, M. S. J.; Blaney, W. M. J. Chem. Soc., Perkin Trans. 1 **1996**, *13*, 1517.
- (804) Watanabe, H.; Watanabe, T.; Mon, K. Tetrahedron 1996, 52, 13939.

(805) Anderson, J. C.; Ley, S. V. Tetrahedron Lett. 1990, 31, 431.

(806) Ley, S. V.; Durand-Reville, T.; Gobbi, L. In *Abstracts of Papers*, 222nd ACS National Meeting, Chicago, IL, United States, August 26–30;

American Chemical Society: Washington, D.C., 2001.

(807) Durand-Reville, T.; Gobbi, L. B.; Gray, B. L.; Ley, S. V.; Scott, J. S. Org. Lett. **2002**, *4*, 3847.

(808) Fukuzaki, T.; Kobayashi, S.; Hibi, T.; Ikuma, Y.; Ishihara, J.; Kanoh, N.; Murai, A. *Org. Lett.* **2002**, *4*, 2877.

(809) Murai, A. Toxin Rev. 2003, 22, 617.

(810) Nicolaou, K. C.; Roecker, A. J.; Follmann, M.; Baati, R. *Angew. Chem., Int. Ed.* **2002**, *41*, 2107.

(811) Nicolaou, K. C.; Roecker, A. J.; Monenschein, H.; Guntupalli, P.; Follmann, M. Angew. Chem., Int. Ed. 2003, 42, 3637.

(812) Nicolaou, K. C.; Follmann, M.; Roecker, A. J.; Hunt, K. W. Angew. Chem., Int. Ed. **2002**, 41, 2103.

(813) Veitch, G. E.; Beckmann, E.; Burke, B. J.; Boyer, A.; Ayats, C.; Ley, S. V. Angew. Chem., Int. Ed. **2007**, *46*, 7633.

(814) Jauch, J. Angew. Chem., Int. Ed. 2008, 47, 34.

(815) Veitch, G. E.; Pinto, A.; Boyer, A.; Beckmann, E.; Anderson, J. C.; Ley, S. V. Org. Lett. **2008**, *10*, 569.

(816) Bilton, J. N.; Jones, P. S.; Ley, S. V.; Robinson, N. G.; Sheppard, R. N. Tetrahedron Lett. 1988, 29, 1849.

(817) Grossman, R. B.; Ley, S. V. Tetrahedron 1994, 50, 8871.

(818) Fernandez Mateos, A.; Lopez Barba, A. M. J. Org. Chem. 1995, 60, 3580.

(819) Corey, E. J.; Hahl, R. W. Tetrahedron Lett. 1989, 30, 3023.

(820) Sastry, B. S.; Babu, K. S.; Babu, T. H.; Chandrasekhar, S.; Srinivas, P. V.; Saxena, A. K.; Rao, J. M. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 4391.

(821) Fernández-Mateos, A.; Ramos Silvo, A. I.; Rubio González, R.; Simmonds, M. S. J. *Tetrahedron* **2006**, *62*, 7809.

(822) Buchanan, J. G. S. C.; Halsall, T. G. Chem. Commun. 1969, 5, 242.

(823) Buchanan, J. G. S. C.; Halsall, T. G. J. Chem. Soc. D 1969, 2, 48.
(824) Fukuyama, Y.; Tokoroyama, T.; Kubota, T. Tetrahedron Lett.

1972, *33*, 3401.

(825) Tokoroyama, T.; Fukuyama, Y.; Kubota, T.; Yokotani, K. J. Chem. Soc., Perkin Trans. 1 1981, 5, 1557.

(826) Okamura, H.; Yamauchi, K.; Miyawaki, K.; Iwagawa, T.; Nakatani, M. *Tetrahedron Lett.* **1997**, 38, 263.

(827) Trudeau, S.; Morken, J. P. Org. Lett. 2005, 7, 5465.

- (828) Corey, E. J.; Reid, J. G.; Myers, A. G.; Hahl, R. W. J. Am. Chem. Soc. 1987, 109, 918.
 - (829) Lavie, D.; Levy, E. C. Tetrahedron 1971, 27, 3941.
- (830) Connolly, J. D.; Labbe, C. J. Chem. Soc., Perkin Trans. 1 1980, 2, 529.
- (831) Buchanan, J. G. S. C.; Halsall, T. G. J. Chem. Soc., D 1969, 24, 1493.
- (832) Obasi, M. E.; Okogun, J. I.; Ekong, D. E. U. J. Chem. Soc., D 1971, 14, 727.
- (833) Obasi, M. E.; Okogun, J. I.; Ekong, D. E. U. J. Chem. Soc., Perkin Trans. 1 1972, 15, 1943.

(834) Connolly, J. D.; Thornton, I. M. S.; Taylor, D. A. H. J. Chem. Soc., D 1971, 1, 17.

(835) Kehrli, A. R. H.; Taylor, D. A. H. J. Chem. Soc., Perkin Trans. 1 1990, 7, 2067.

(836) Ohochuku, N. S.; Taylor, D. A. H. J. Chem. Soc. C 1970, 3, 421.

(837) Adesogan, E. K.; MacLachlan, L. K.; Taylor, D. A. H. S. Afr. J. Chem. 1987, 40, 25.

(838) Madyastha, K. M.; Venkatakrishnan, K. Perkin 1 2000, 18, 3055.

(839) Ley, S. V.; Gray, B. L.; Durand-Reville, T.; Gobbi, L. B. In *Abstracts of Papers, 224th ACS National Meeting, Boston, MA, United States, August 18–22*; American Chemical Society: Washington, D.C., 2002.

(840) Rembold, H.; Puhlmann, I. Recent Adv. Phytochem. 1993, 27, 153.

(841) Kraus, W. Stud. Org. Chem. (Amsterdam) 1984, 17, 331.

(842) Suresh, G. Biotechnol. Perspect. Chem. Ecol. Insects 1996, 63.

(843) Kubo, I.; Klocke, J. ACS Symp. Ser. 1986, 296, 206.

(844) Isman, M. B.; Arnason, J. T.; Towers, G. H. N. Other Meliaceous Plants Containing Ingredients for Integrated Pest Management and Further Purposes. Chemistry and Biological Activity of Ingredients of Other Species of Meliaceae; VCH: Weinheim, Germany, 1995; p 652.

(845) Pettit, G. R.; Barton, D. H. R.; Herald, C. L.; Polonsky, J.; Schmidt, J. M.; Connolly, J. D. J. Nat. Prod. **1983**, 46, 379.

(846) Mulla, M. S.; Su, T. J. Am. Mosq. Control Assoc. 1999, 15, 133.

(847) Kraus, W. Biologically Active Ingredients: Azadirachtin and

Other Triterpenoids; VCH: Weinheim, Germany, 1995; p 35.

(848) Immaraju, J. A. Pestic. Sci. 1998, 54, 285.

(849) Raizada, R. B.; Srivastava, M. K.; Kaushal, R. A.; Singh, R. P. Food Chem. Toxicol. 2001, 39, 477.

(850) Glinsukon, T.; Somjaree, R.; Piyachaturawat, P.; Thebtaranonth,Y. Toxicol. Lett. 1986, 30, 159.

(851) Redfern, R. E.; Warthen, J. D., Jr.; Uebel, E. C.; Mills, G. D., Jr. The Antifeedant and Growth-Disrupting Effects of Azadirachtin on Spodoptera Frugiperda and Oncopeltus Fasciatus; Ger. Agency Tech. Coop.: Eschborn, Germany, 1981; p 129.

(852) Nasiruddin, M.; Mordue, A. J. Tissue Cell 1993, 25, 875.

(853) Reed, D. K.; Warthen, J. D., Jr.; Uebel, E. C.; Reed, G. L. J. Econ. Entomol. **1982**, 75, 1109.

(854) Stokes, J. B.; Redfern, R. E. J. Environ. Sci. Health, Part A 1982, 17, 57.

- (855) Fagoonee, I. Effect of Azadirachtin and of a Neem Extract on Food Utilization by Crocidolomia Binotalis; Deutsche Gesellschaft fur
- Technische Zusammenarbeit: Eschborn, Germany, 1984; p 211. (856) West, A. J.; Mordue, A. J. Entomol. Exp. Appl. 1992, 62, 75.

(857) Meisner, J.; Ascher, K. R. S.; Aly, R.; Warthen, J. D. *Phytoparasitica* **1981**, *9*, 27.

- (858) Murugan, K.; Jeyabalan, D.; Kumar, N. S.; Babu, R.; Sivaramakrishnan, S.; Nathan, S. S. Insect Sci. Appl. **1998**, 18, 157.
- (859) Senthil Nathan, S.; Kalaivani, K.; Murugan, K. Acta Trop. 2005, 96, 47.
- (860) Nasiruddin, M.; Mordue, A. J. Entomol. Exp. Appl. 1994, 70, 247.
 (861) Senthil Nathan, S.; Kalaivani, K.; Murugan, K.; Chung, P. G.

Pestic. Biochem. Physiol. 2005, 81, 113.

- (862) Senthil Nathan, S.; Kalaivani, K.; Murugan, K.; Gene Chung, P. *Crop Prot.* **2005**, *24*, 760.
 - (863) Jeyabalan, D.; Murugan, K. Entomon 1997, 22, 15.
- (864) Schoonhoven, L. M.; Luo, L.-E. J. Comp. Physiol., A 1994, 175, 519.

(865) Koul, O.; Multani, J. S.; Singh, G.; Wahab, S. *Curr. Sci.* **2002**, 83, 1387.

- (866) Lin-Er, L.; Van Loon, J. J. A.; Schoonhoven, L. M. Physiol. Entomol. 1995, 20, 134.
- (867) Ortego, F.; Lopez-Olguin, J.; Ruiz, M.; Castanera, P. Pestic. Biochem. Physiol. **1999**, 63, 76.
- (868) Koul, O.; Shankar, J. S.; Kapil, R. S. Entomol. Exp. Appl. 1996, 79, 43.
- (869) Govindachari, T. R.; Narasimhan, N. S.; Suresh, G.; Partho, P. D.; Gopalakrishnan, G.; Krishna Kumari, G. N. J. Chem. Ecol. **1995**,
- 21, 1585.
- (870) Suresh, G.; Gopalakrishnan, G.; Wesley, S. D.; Singh, N. D. P.; Malathi, R.; Rajan, S. S. *J. Agric. Food Chem.* **2002**, *50*, 4484.
- (871) Ley, S. V.; Anderson, J. C.; Blaney, W. M.; Morgan, E. D.; Sheppard, R. N.; Simmonds, M. S. J.; Slawin, A. M. Z.; Smith, S. C.; Williams, D. J.; Wood, A. *Tetrahedron* **1991**, *47*, 9231.

(872) Mordue, A. J.; Simmonds, M. S. J.; Ley, S. V.; Blaney, W. M.; Mordue, W.; Nasiruddin, M.; Nisbet, A. J. *Pestic. Sci.* **1998**, *54*, 277.

- (873) Ley, S. V.; Anderson, J. C.; Blaney, W. M.; Jones, P. S.; Lidert, Z.; Morgan, E. D.; Robinson, N. G.; Santafianos, D.; Simmonds, M. S. J.; Toogood, P. L. *Tetrahedron* **1989**, *45*, 5175.
- (874) Blaney, W. M.; Simmonds, M. S. J.; Ley, S. V.; Anderson, J. C.; Toogood, P. L. *Entomol. Exp. Appl.* **1990**, *55*, 149.
- (875) Simmonds, M. S. J.; Blaney, W. M.; Ley, S. V.; Anderson, J. C.; Toogood, P. L. *Entomol. Exp. Appl.* **1990**, *55*, 169.

(876) Yamasaki, R. B.; Klocke, J. A. J. Agric. Food Chem. 1987, 35, 467.

(877) Simmonds, M. S. J.; Blaney, W. M.; Ley, S. V.; Anderson, J. C.; Banteli, R.; Denholm, A. A.; Green, P. C. W.; Grossman, R. B.; Gutteridge, C.; Jennens, L.; Smith, S. C.; Toogood, P. L.; Wood, A.

Entomol. Exp. Appl. 1995, 77, 69.(878) MacLeod, J. K.; Moeller, P. D. R.; Molinski, T. F.; Koul, O.

- J. Chem. Ecol. **1990**, 16, 2511. (879) Yamasaki, R. B.; Klocke, J. A. J. Agric. Food Chem. **1989**, 37,
- (8/9) Tamasaki, K. B.; Klocke, J. A. J. Agril. Food Chem. 1989, 5/, 1118.
- (880) Carpinella, M. C.; Defago, M. T.; Valladares, G.; Palacios, S. M. J. Agric. Food Chem. 2003, 51, 369.
 - (881) Mordue, A. J.; Nasiruddin, M. Ser. Entomol. 1992, 49, 176.
- (882) Mordue, A. J.; Nisbet, A. J.; Nasiruddin, M.; Walker, E. *Entomol. Exp. Appl.* **1996**, *80*, 69.
- (883) Arnason, J. T.; Philogene, B. J. R.; Donskov, N.; Hudon, M.; McDougall, C.; Fortier, G.; Morand, P.; Gardner, D.; Lambert, J.; Morris, C.; Nozzolillo, C. *Entomol. Exp. Appl.* **1985**, *38*, 29.
 - (884) Koul, O.; Isman, M. B. J. Insect Physiol. 1991, 37, 591.
- (885) Meisner, J.; Mitchell, B. K. Z. Pflanzenkr. Pflanzenschutz 1982, 89, 463.
- (886) Serit, M.; Ishida, M.; Hagiwara, N.; Kim, M.; Yamamoto, T.; Takahashi, S. J. Chem. Ecol. **1992**, *18*, 593.

- (887) de Souza Garcia, E.; Rembold, H. J. Insect Physiol. 1984, 30, 939.
- (888) Garcia, E. S.; de Azambuja, P.; Forster, H.; Rembold, H. Z. Naturforsch., C 1984, 39, 1155.
 - (889) Ruscoe, C. N. E. Nat., New Biol. 1972, 236, 159.
 - (890) Koul, O. Indian J. Exp. Biol. **1985**, 23, 160.
 - (891) Schlueter, U. Entomol. Exp. Appl. 1985, 39, 191.
 - (892) Koul, O. Entomol. Exp. Appl. 1984, 36, 85.
 - (893) George, J.; Potter, D. A. Acta Hortic. 2008, 783, 499.
- (894) Al-rajhy, D. H.; Alahmed, A. M.; Hussein, H. I.; Kheir, S. M. Pest Manag. Sci. 2003, 59, 1250.
- (895) Gaaboub, I. A.; Hayes, D. K. Environ. Entomol. 1984, 13, 803.
- (896) Garcia, E. S.; Gonzalez, M. S.; Azambuja, P.; Rembold, H. Z.
- Naturforsch., C 1989, 44, 317.

(897) Malczewska, M.; Gelman, D. B.; Cymborowski, B. J. Insect Physiol. 1988, 34, 725.

(898) Sieber, K. P.; Rembold, H. J. Insect Physiol. 1983, 29, 523.

- (899) Koolman, J.; Bidmon, H. J.; Lehmann, M.; Kauser, G. Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wroclaw. **1988**, 33, 55.
- (900) Adel, M. M.; Sehnal, F. J. Insect Physiol. 2000, 46, 267.
- (901) Mordue, A. J.; Evans, K. A.; Charlet, M. Comp. Biochem. Physiol., C 1986, 85, 297.
- (902) Josephrajkumar, A.; Subrahmanyam, B.; Srinivasan *Eur. J.* Entomol. **1999**, *96*, 347.
- (903) Schlueter, U.; Bidmon, H. J.; Grewe, S. J. Insect Physiol. 1985, 31, 773.
- (904) Dorn, A.; Rademacher, J. M.; Sehn, E. J. Insect Physiol. 1986, 32, 231.
- (905) Barnby, M. A.; Klocke, J. A. J. Insect Physiol. 1990, 36, 125.
- (906) Rembold, H.; Subrahmanyam, B.; Mueller, T. *Experientia* **1989**, *45*, 361.
- (907) Rembold, H.; Sharma, G. K.; Czoppelt, C.; Schmutterer, H. Z. Angew. Entomol. **1982**, 93, 12.
- (908) Gonzalez, M. S.; Nogueira, N. F. S.; Mello, C. B.; De Souza, W.; Schaub, G. A.; Azambuja, P.; Garcia, E. S. *Exp. Parasitol.* **1999**, 92, 100.
 - (909) Rembold, H. Mem. Inst. Oswaldo Cruz 1987, 82, 61.
- (910) Smith, S. L.; Mitchell, M. J. Biochem. Biophys. Res. Commun. 1988, 154, 559.
 - (911) Lowery, D. T.; Isman, M. B. J. Econ. Entomol. 1996, 89, 602.
 - (912) Dorn, A. J. Appl. Entomol. 1986, 102, 313.
 - (913) Rembold, H.; Sieber, K. P. Z. Naturforsch., C 1981, 36, 466.
- (914) Steets, R.; Schmutterer, H. Z. Pflanzenkr. Pflanzenschutz 1975, 82, 176.
- (915) Ludlum, C. T.; Sieber, K. P. Physiol. Entomol. 1988, 13, 177.
- (916) Sayah, F.; Fayet, C.; Idaomar, M.; Karlinsky, A. *Tissue Cell* **1996**, 28, 741.
- (917) Sayah, F. Tissue Cell 2002, 34, 53.
- (918) Sayah, F.; Idaomar, M.; Soranzo, L.; Karlinsky, A. *Tissue Cell* **1998**, *30*, 86.
 - (919) Shimizu, T. Entomol. Exp. Appl. 1988, 46, 197.
- (920) Nisbet, A. J.; Mordue, A. J.; Williams, L. M.; Hannah, L.; Jennens, L.; Ley, S. V.; Mordue, W. *Tissue Cell* **1996**, 28, 725.
 - (921) Subrahmanyam, B.; Rao, P. J. Curr. Sci. 1986, 55, 534.
- (922) Subrahmanyam, B.; Mueller, T.; Rembold, H. J. Insect Physiol. 1989, 35, 493.
- (923) Subrahmanyam, B.; Rembold, H. Cell Tissue Res. 1989, 256, 513.
- (924) Rembold, H.; Forster, H.; Czoppelt, C.; Rao, P. J.; Sieber, K. P. Schriftenr. GTZ 1984, 161, 153.
- (925) Simmonds, M. S. J.; Blaney, W. M. Some Neurophysiological Effects of Azadirachtin on Lepidopterous Larvae and Their Feeding Response; Deutsche Gesellschaft fur Technische Zusammenarbeit: Eschborn, Germany, 1984; p 163.
- (926) Mordue, A. J.; Cottee, P. K.; Evans, K. A. Physiol. Entomol. 1985, 10, 431.
- (927) Timmins, W. A.; Reynolds, S. E. Entomol. Exp. Appl. 1992, 63, 47.

(928) Senthil Nathan, S.; Kalaivani, K.; Chung, P. G. Pestic. Biochem. Physiol. 2005, 83, 46.

- (929) Anuradha, A.; Annadurai, R. S.; Shashidhara, L. S. Insect Biochem. Mol. Biol. 2007, 37, 627.
- (930) Pravin Kumar, R.; Manoj, M. N.; Kush, A.; Annadurai, R. S. Insect Biochem. Mol. Biol. 2007, 37, 635.
- (931) Mitchell, M. J.; Smith, S. L.; Johnson, S.; Morgan, E. D. Arch. Insect Biochem. Physiol. 1997, 35, 199.
- (932) Senthil Nathan, S.; Kalaivani, K.; Chung, P. G.; Murugan, K. *Chemosphere* **2006**, *62*, 1388.
- (933) Senthil Nathan, S.; Kalaivani, K.; Sehoon, K.; Murugan, K. Chemosphere 2006, 62, 1381.
- (934) Govindachari, T. R.; Narashimhan, N. S.; Suresh, G.; Partho,
- P. D.; Gopalakrishnan, G. J. Chem. Ecol. 1996, 22, 1453.
 - (935) Koul, O.; Isman, M. B. Entomol. Exp. Appl. 1992, 64, 281.
 - (936) Kubo, I.; Klocke, J. A. Agric. Biol. Chem. 1982, 46, 1951.
- (937) Govindachari, T. R.; Gopalakrishnan, G. J. Indian Chem. Soc. 1998, 75, 655.
 - (938) Lowery, D. T.; Isman, M. B. Entomol. Exp. Appl. 1994, 72, 77.
- (939) Miller, J. A.; Chamberlain, W. F. J. Econ. Entomol. 1989, 82, 1375.
 - (940) Rembold, H.; Annadurai, R. S. Z. Naturforsch., C 1993, 48, 495.
- (941) Cohen, E.; Quistad, G. B.; Casida, J. E. Life Sci. 1996, 58, 1075.
- (942) Salehzadeh, A.; Akhkha, A.; Cushley, W.; Adams, R. L. P.; Kusel, J. R.; Strang, R. H. C. Insect Biochem. Mol. Biol. 2003, 33, 681.
- (943) Rembold, H.; Puhlmann, I. In Neem Tree, Azadirachta Indica A. Juss. Other Meliaceous Plants; Schmutterer, H., Ed.; VCH: Weinheim, Germany, 1995.
- (944) Gurulingappa, H.; Tare, V.; Pawar, P.; Tungikar, V.; Jorapur Yogesh, R.; Madhavi, S.; Bhat Sujata, V. Chem. Biodiversity **2009**, *6*, 897.
- (945) Govindachari, T. R.; Suresh, G.; Gopalakrishnan, G.; Masilamani, S.; Banumathi, B. *Fitoterapia* **2000**, *71*, 317.
- (946) Verma, V. S. Acta Microbiol. Pol., Ser. B 1974, 6, 9.
- (947) Chiruvella, K. K.; Mohammed, A.; Dampuri, G.; Ghanta, R. G.; Raghavan, S. C. Int. J. Biomed. Sci. 2007, 3, 269.
 - (948) Cherry, R.; Nuessly, G. Fla. Entomol. 2010, 93, 52.
- (949) Cespedes, C. L.; Calderon, J. S.; Gomez-Garibay, F.; Segura, R.; King-Diaz, B.; Lotina-Hennsen, B. J. Chem. Ecol. **1999**, 25, 2665.
 - (950) Akudugu, J.; Gade, G.; Bohm, L. Life Sci. 2001, 68, 1153.
 - (950) Akudugu, J.; Gade, G.; Dollill, L. Life Sci. 2001, 08, 1155.
- (951) Harish Kumar, G.; Vidya Priyadarsini, R.; Vinothini, G.;
- Vidjaya Letchoumy, P.; Nagini, S. *Invest. New Drugs* **2010**, *28*, 392. (952) Priyadarsini, R. V.; Manikandan, P.; Harish Kumar, G.; Nagini,
- S. Free Radical Res. 2009, 43, 492.
 (953) Priyadarsini, R. V.; Murugan, R. S.; Sripriya, P.; Karunagaran, D.; Nagini, S. Free Radical Res. 2010, 44, 624.
- (954) Harish Kumar, G.; Chandra Mohan, K. V. P.; Jagannadha Rao, A.; Nagini, S. Invest. New Drugs **2009**, 27, 246.
- (955) Kumar, G. H.; Mohan, K. V. P. C.; Rao, A. J.; Nagini, S. Invest. New Drugs **2009**, *27*, 236.
- (956) Roy, M. K.; Kobori, M.; Takenaka, M.; Nakahara, K.; Shinmoto, H.; Isobe, S.; Tsushida, T. *Phytother. Res.* **2007**, *21*, 245.
- (957) Roy, M. K.; Kobori, M.; Takenaka, M.; Nakahara, K.; Shinmoto, H.; Tsushida, T. *Planta Med.* **2006**, *72*, 917.
- (958) Chiruvella, K. K.; Kari, V.; Choudhary, B.; Nambiar, M.; Ghanta, R. G.; Raghavan, S. C. *FEBS Lett.* **2008**, *582*, 4066.
- (959) Brandt, G. E. L.; Schmidt, M. D.; Prisinzano, T. E.; Blagg, B. S. J. *J. Med. Chem.* **2008**, *51*, 6495.
- (960) Zhang, B.; Wang, Z. F.; Tang, M. Z.; Shi, Y. L. Invest. New Drugs 2005, 23, 547.
- (961) Cohen, E.; Quistad, G. B.; Jefferies, P. R.; Casida, J. E. Pestic. Sci. **1996**, 48, 135.
- (962) Rojanapo, W.; Suwanno, S.; Somjaree, R.; Glinsukon, T.; Thebtaranont, Y. J. Sci. Soc. Thailand **1985**, 11, 177.
- (963) Kim, M.; Kim, S. K.; Park, B. N.; Lee, K. H.; Min, G. H.; Seoh, J. Y.; Park, C. G.; Hwang, E. S.; Cha, C. Y.; Kook, Y. H. *Antiviral Res.* **1999**, 43, 103.
- (964) Barquero, A. A.; Alche, L. E.; Coto, C. E. J. Gen. Virol. 2004, 85, 483.

- (965) Bueno, C. A.; Barquero, A. A.; Di Consoli, H.; Maier, M. S.; Alche, L. E. *Virus Res.* **2009**, *141*, 47.
- (966) Bueno, C. A.; Alche, L. E.; Barquero, A. A. Biochem. Biophys. Res. Commun. 2010, 393, 32.
- (967) Omar, S.; Zhang, J.; MacKinnon, S.; Leaman, D.; Durst, T.; Philogene, B. J. R.; Arnason, J. T.; Sanchez-Vindas, P. E.; Poveda, L.; Tamez, P. A.; Pezzuto, J. M. *Curr. Top. Med. Chem. (Hilversum, Neth.)* **2003**, *3*, 133.
- (968) Lee, S. E.; Kim, M. R.; Kim, J. H.; Takeoka, G. R.; Kim, T. W.; Park, B. S. *Phytomedicine* **2008**, *15*, 533.
- (969) Omar, S.; Godard, K.; Ingham, A.; Hussain, H.; Wongpanich, V.; Pezzuto, J.; Durst, T.; Eklu, C.; Gbeassor, M.; Sanchez-Vindas, P.; Poveda, L.; Philogene, B. J. R.; Arnason, J. T. *Ann. Appl. Biol.* **2003**, *143*, 135.
- (970) Garcia, E. S.; Gonzales, M. S.; Azambuja, P. Mem. Inst. Oswaldo Cruz **1991**, 86 (Suppl 2), 107.
- (971) Gonzalez, M. S.; Garcia, E. S. J. Invertebr. Pathol. 1992, 60, 201.
- (972) Jones, I. W.; Denholm, A. A.; Ley, S. V.; Lovell, H.; Wood, A.; Sinden, R. E. *FEMS Microbiol. Lett.* **1994**, *120*, 267.
- (973) Billker, O.; Shaw, M. K.; Jones, I. W.; Ley, S. V.; Mordue, A. J.; Sinden, R. E. J. Eukaryotic Microbiol. **2002**, 49, 489.
- (974) Rochanakij, S.; Thebtaranonth, Y.; Yenjai, C.; Yuthavong, Y. Southeast Asian J. Trop. Med. Public Health **1985**, *16*, 66.
- (975) Penido, C.; Costa, K. A.; Pennaforte, R. J.; Costa, M. F. S.; Pereira, J. F. G.; Siani, A. C.; Henriques, M. G. M. O. *Inflammation Res.* **2005**, 54, 295.
- (976) Penido, C.; Conte, F. P.; Chagas, M. S. S.; Rodrigues, C. A. B.; Pereira, J. F. G.; Henriques, M. G. M. O. *Inflammation Res.* **2006**, *55*, 457.
- (977) Thoh, M.; Kumar, P.; Nagarajaram, H. A.; Manna, S. K. J. Biol. Chem. 2010, 285, 5888.
- (978) Shi, Y. L.; Kishio, F.; Wang, W. P.; Susumu, T.; Xu, K.; Shunichi, Y. Chin. Sci. Bull. **1993**, 38, 1489.
 - (979) Ding, J.; Xu, T. H.; Shi, Y. L. Neurosci. Res. 2001, 41, 243.
 - (980) Wang, Z. F.; Shi, Y. L. Neurosci. Res. 2001, 40, 211.
 - (981) Wang, Z. F.; Shi, Y. L. Neurosci. Lett. 2001, 303, 13.
- (982) Chen, W. Y.; Yin, P. B.; Ye, W. L.; Shi, Y. L. Chin. Sci. Bull. 1999, 44, 1106.
 - (983) Madhu, D. C.; Nair, G. R. N. Indian Drugs 2001, 38, 629.
 - (984) Njar, V. C.; Adesanwo, J. K.; Raji, Y. Planta Med. 1995, 61, 91.
 - (985) Orisadipe, A.; Amos, S.; Adesomoju, A.; Binda, L.; Emeje, M.;
- Okogun, J.; Wambebe, C.; Gamaniel, K. Biol. Pharm. Bull. 2001, 24, 364. (986) Amos, S.; Orisadipe, A.; Binda, L.; Emeje, M.; Adesomoju, A.;
- Okogun, J.; Akah, P.; Wambebe, C.; Gamaniel, K. Pharmacol. Toxicol. 2002, 91, 71.
- (987) Ekimoto, H.; Irie, Y.; Araki, Y.; Han, G.; Kadota, S.; Kikuchi, T. *Planta Med.* **1991**, *57*, 56.
- (988) Penido, C.; Costa, K. A.; Costa, M. F. de S.; Pereira, J. de F. G.; Siani, A. C.; Henriques, M. das G. M. de O. *Int. Immunopharmacol.* **2006**, *6*, 109.