¹³C NMR Spectroscopy of Lignan and Neolignan Derivatives*

P. K. Agrawal[†] and R. S. Thakur

Central Institute of Medicinal and Aromatic Plants, Lucknow 226016, India

¹³C NMR shielding data for about 300 compounds are tabulated, and critical spectral features are discussed as a guide to the use of the technique in structure elucidation and stereochemical allocations of lignan, neolignan and their derivatives. Unanalysed reported data have been analysed and, wherever necessary, ¹³C signal assignments have been revised on the basis of more recent evidence and to obtain consistency throughout the series.

The term lignan was introduced by Haworth² around 1940 for a category of plant products having a common constitutional feature of two C₆-C₃ (npropylbenzene) residues linked by a bond connecting the central (β) carbon atoms of each side-chain. In 1969, McCredie et al.³ proposed that the definition of lignans should be extended to cover all natural products of low molecular weight that arise primarily from the oxidative coupling of p-hydroxyphenylpropane units. The term neolignan was introduced to designate compounds in which the two C_6 - C_3 units are not linked by a $\beta - \beta'$ bond.⁴ According to the most recent definition, lignans are formed by oxidative coupling of cinnamyl alcohols and/or cinnamic acids, whereas neolignans are formed by oxidative coupling of 1-propenylphenols and/or allylphenols.⁵ Lignans and neolignans have attracted much interest over the years, both on account of their widespread occurrence in nature⁶ and their broad range of biological activities⁷ (anti-tumour substances, hypertensive, sedative and anti-bacterial activity, plant germination inhibitors, growth inhibitors and antifungal agents). Of possibly even greater importance is the recent isolation of lignans from animals, including humans.⁸ As a consequence, various reviews⁹ have appeared, includ-ing a book,⁶ covering the literature up to 1976 and dealing with various aspects of this class of natural products. The most recent review deals with the synthesis of these compounds.10

From a survey of the literature it is evident that, after the appearance of the first report¹⁹ in 1974, ¹³C NMR spectroscopy has played a distinctive role in structure elucidation and assignment of stereochemistry, and has also contributed to the revision of some structures which were derived from limited information gained from ¹H NMR and MS data. ¹³C shielding data, however, are still scattered in the literature and so far there is no systematic compilation. This may be one of the reasons why most publications dealing with

* ¹³C NMR spectral Investigations, Part 9. For Part 8, see Ref. 1; for Part 5, see Ref. 63.

the isolation and chemical investigation of such compounds ignore ¹³C NMR spectral analysis, despite its potential. A review of the available ¹³C NMR literature for this important class of natural products was therefore considered to be timely. The assignments in some cases have been revised in the light of more recent evidence. Similarly, based on various facts, the stereochemistry of some of the compounds has been assigned and/or revised.

Instrumental and theoretical aspects of the ¹³C NMR technique are not discussed here because detailed information is already available.¹¹⁻¹⁵ In general, ¹³C NMR spectra are recorded with proton-noise (broad band) decoupling, which leads to loss of splitting owing to ¹³C,¹H interactions and, hence, the ¹³C signals appear as narrow singlets. Information regarding the number of attached H atoms to each C atom can be obtained by single frequency off-resonance decoupling (SFORD), where all CH couplings are reduced to such an extent that only the largest coupling constants $[^{1}J(CH)]$ give rise to small residual splittings. (J, r) with gated decoupling, each C exhibited splitting due to one- and multiple-bond interactions. In some cases, both techniques lead to signal overlap. New techniques, such as the recording of J-coupled spin echoes,¹⁶ attached proton polarization transfer (INEPT) and distortionless enhancement by polarization transfer (DEPT), have therefore been developed, where information on the number of attached hydrogens to an individual C atom can be inferred from the signal phases and intensities.¹⁷

Lanthanide shift reagents (LSR) have been increasingly used to simplify NMR spectra and for the purpose of ¹³C signal assignments; however, their application to lignans is limited owing to their multifunctional behaviour. Recently, we have shown that Yb(fod)₃ is a very suitable ¹³C NMR shift reagent with many advantages over other LSRs, and is of wide applicability owing to its definitive pattern of normalized shift values (RS values). For podophyllotoxin¹⁸ it complexed preferentially to the trimethoxy grouping (C- $4/C-\alpha$) rather than to the lactone carbonyl and hydroxyl groups (Fig. 1).

[†]Author to whom correspondence should be addressed.

Figure 1. Yb(fod)₃-induced ¹³C NMR shifts [C- α (C-4) in ppm, S; other carbons in %, RS] in podophyllotoxin.

All the ¹³C shielding data for over 300 compounds, reported up to 1982, have been classified into different groups for convenience of discussion.⁶ The term miscellaneous lignan has been used for those dimeric molecules formed from coupling of one C_6 - C_3 unit with some member of another category of natural products such as flavonoids, xanthones and coumarins. These could be classified further according to the name of the adjoining non-lignan moiety.

The whole of the representation has been divided into three major parts. The first part (Sections 1–6) deals with a general discussion, divided into subcategories for lignan and neolignan derivatives. The second part (Section 7) discusses the effect of derivatization, such as acetylation, methylation and glycosylation, on the chemical shifts for spectral assignments purposes, and the ¹³C chemical shift data of all the compounds are tabulated in the last part (Section 8, Table 1).

The classification of lignan and neolignan derivatives in Sections 1-6 is as follows.

- 1. Lignan
 - 1.1. Derivatives of butane
 - 1.2. Derivatives of butanolide
 - 1.3. Derivatives of tetrahydrofuran
 - 1.4. Derivatives of 3,7-dioxabicyclo[3.3.0]octane
- 2. Cyclolignans
 - 2.1. Derivatives of tetrahydronaphthalene
 - 2.2. Derivatives of tetrahydronaphthalene lactone
 - 2.3. Derivatives of naphthalene lactone
- 3. Isolignan and benzofuran types of neolignan
 - 3.1. Derivatives of dihydrobenzofuran
 - 3.2. Derivatives of benzofuran
- 4. Dibenzocyclooctadiene lignan
 - 4.1. R-Biphenyl configuration
 - 4.2. S-Biphenyl configuration
- 5. Neolignan
 - 5.1. Hydrobenzofuranoid type
 - 5.2. Benzodioxane type
 - 5.3. Bicyclo[3.2.1]octane type
 - 5.4. Carinatane type
 - 5.5. Heterotropanone type
 - 5.6. Asatone type
 - 5.7. Other types
- 6. Miscellaneous lignans
 - 6.1. Flavonolignan
 - 6.2. Xanthonolignan
 - 6.3. Coumarinolignan

1. LIGNAN

This category is characterized by its typical $\beta -\beta'$ or C-8–C-8' coupling of two C₆–C₃ units, which may undergo additional couplings to generate various skeletal types. These have therefore been grouped into the following sections.

1.1. Derivatives of butane

The C-8–C-8' coupling of the two C_6-C_3 units results in the formation of disubstituted (methyl or hydroxymethyl) diarylbutane derivatives in which, commonly, vicinal substituents possess a *trans*-stereochemical relationship. In a few cases the hydroxymethyl grouping is modified to a methoxymethyl grouping, as in phyllanthin (**8**), which introduces into the spectrum a distinctive signal at *ca* 58 ppm, corresponding to the aliphatic OCH₃ function.²²

An additional $\alpha - \alpha'$ or C-7-C-7' coupling gives rise to cyclobutane types of lignans in which the relative stereochemistry could be deduced by comparison with the ¹³C shielding data reported for cyclobutane derivatives.^{25c} Thus, the appearance of the 9,9'-CH₃ signal at 19.3 ppm in acoradin²⁴ (12) suggests a *trans* orientation of the methyl groups; hence, the stereochemistry

* See footnote to Table 1 for abbreviations used in formulae.

of acoradin could be depicted as shown in **12**. By analogy, the 13 C spectral data 25a for heterotropan (**13**) could be analysed.

1.2. Derivatives of butanolide

Usually, benzyl substituents on a butyrolactone moiety possess a trans relationship, and the ¹³C resonances for C-7 and C-7' were observed at 38.3 ± 0.7 and 34.5 ± 0.3 ppm, respectively, while these were shielded by about 4-5 ppm in cis compounds,^{28a} e.g. isoarctigenin monoacetate (34), owing to γ -steric interactions between the methylenic hydrogen atoms. Hence, the relative configuration of the diarylbutyrolactone lignans could be determined. ¹³C NMR spectral data reported^{28c} for vatein (19b) indicate the chemical shift of 3"-OMe at 65.1 ppm, which is unusually downfield even in the presence of one free ortho-position; moreover, it should be equivalent in its shielding pattern to 5"-OMe (56.1 ppm) (this may be a printing error and, hence, we have reported it as 56.1 instead of 65.1 ppm).

The comparison of the shifts for methylarctigenin (23) with 7-hydroxymatairesinol dimethyl ether (30) provided the SIS (substituent-induced shifts), i.e. 37.0, 3.2 and 2.6 ppm downfield for C-7, C-1' and C-8, and upfield shifts of 2.8 and 1.5 ppm for the C-9 and C-8' signals, respectively, due to the introduction of the hydroxy group at C-7.^{28a}

Introduction of a hydroxy group on the adjacent position (C-8') to the butyrolactone carbonyl [arctigenin (25) to trachelogenin (36)] causes a 30 ppm downfield shift of C-8', an unsymmetrical β -effect of +7.4 ppm for the 7'-methylene and +2.8 ppm for the 8-methine, and a negligible effect on the carbonyl shift. An interesting upfield shift (*ca* 4 ppm) for the signal of C-1', even in the absence of a γ -hydrogen atom, provided a means of differentiating the C-1 and C-1' signals, and hence definitive assignments for these carbons could be achieved.

The assignment of the signals of 109.04 and 121.87 ppm to an oxyaryl carbon (C-5') and to an arylmethine (C-6'), respectively, of the 3',4',5'-trimethoxybenzylidene unit of nemerosin (**43b**), reported by Turabelidze *et al.*,^{28b} seems to be untenable since C-3', C-5' and C-2', C-6' should be magnetically equivalent as observed in other similar cases; therefore, the assignments have been revised for the carbon atoms of the piperonyl and trimethoxyphenyl moieties.

1.3. Derivatives of tetrahydrofuran

These compounds can be grouped into the following three types.

1.3.1. 7,7'-Monoepoxy lignan. In general, an axial orientation of an aryl ring leads to a 5.5 ± 0.6 ppm shielding of the functional α -carbon in comparison to its equatorially substituted equivalent carbon. The benzyloxy carbons were observed at 82 ± 0.8 ppm in the case of an axially oriented aryl ring and at 87.2 ± 0.7 ppm for equatorial substitution. Thus, the chemical shifts of these carbon atoms is sensitive to the orientation of the aryl rings and could be of

diagnostic importance for the conformational analysis of such systems.^{32a} The C-9 and C-9' carbon atoms, either as methyl or hydroxymethyl groups, substituted on the tetrahydrofuran nucleus also show shielding dependence on the mutual stereochemical relationship and, hence, trans-oriented vicinal substituents exhibit higher α -effects than the *cis*-epimer. The C-8,8' signals were observed^{32a} at 50.9 ppm in galbacin (44), 44.3 ppm in galgravin (45) and 41.2 in di-Omethyltetrahydrofuroguaicin B (48). This shielding variation could be correlated to the mutual cis or trans vicinal interactions as well as to the disposition of the hydrogen on these carbons with respect to the aryl substituent. A higher shielding has been observed if the hydrogen on C-8 has a trans relationship with respect to the aromatic ring.

The proposed configurational assignments for synthetic lignans **50** and **51** which were reported to possess symmetrical *trans-meso* structures,^{35a} have been revised based on these observations. The chemical shift of the oxybenzylic carbon suggests a pseudo-axial orientation of the aryl rings, thus the *r*-2, 3*t*, 4*c*, 5*t* forms ${}^{3}T_{4}$ and V_{4} of the cycle of pseudo-rotation (CYCLOPS)^{35b} represents the most probable conformations. Similarly, the unsymmetrical pattern of the tetrahydrofuran ring signals led to the proposal of the *r*-2, 3*c*, 4*t*, 5*t* form for **51a**.

1.3.2. 7,9'-Monoepoxy lignan. In this category, the ¹³C resonance for C-7 was found at 82.6 ± 0.3 ppm. Probably, this reflects a preferred axial orientation of the aromatic ring owing to the resemblance of the shift to those of 7,7'-monoepoxy lignans (see above). The hydroxy substitution at 7' and/or 8' shows the expected shift change.

1.3.3. 9,9'-Monoepoxy lignan. The ¹³C shifts for C-7,7', C-8,8' and C-9,9' vary significantly depending on the stereochemical relationship between the benzyl substituents, and are indicative of the stereochemical assignments. In *cis*- (**60**) and *trans*-burseran (**61**) these carbon signals were downfield in the *trans* compared

with the *cis* isomer owing to steric interactions in the latter.^{36a} The epimeric shift difference (**61**-**60**) was $5.9\pm0.1, 2.7\pm0.3$ and 1.2 ± 0.1 ppm for C-7,7', C-8,8' and C-9,9', respectively. Hence, with the consistency of the shielding of these signals,¹⁹ a *trans* stereochemistry could be proposed for **58**, **59** and **62**, which is in agreement with the similar behaviour reported for *cis*- and *trans*-2,3-dimethyltetrahydrofuran.^{36b}

1.4. Derivatives of 3,7-dioxabicyclo[3.3.0] octane

¹³C NMR spectrometry has proved to be very useful for determining the structure and stereochemistry of these lignans. The values of the chemical shifts for C-1 and C-1', in particular, are characteristic of the stereochemistry of the attachment to the basic skeleton.⁴¹ Thus, the chemical shift of C-1 of equatorial 3,4-dimethoxyphenyl, 3,4-methylenedioxyphenyl and 3,4,5-trimethoxyphenyl groups are in the ranges 133.4–134.1, 134.9–135.6 and 136.6–137.6 ppm, respectively, whereas for a similar axial substituent they appear at 130.8–131.4, 132.6 and 134.1 ppm, respectively. This indicates an average shielding increase of 2.3–3.0 ppm for C-1 in going from an equatorial to an

axial aryl substituent. The same is true for the epi series, in which, when any of the aryl groups change from an equatorial to an axial position, there is an average upfield shift of 2.5–2.7 ppm for the C-1 signal. These criteria, therefore, could be used to establish the stereochemistry of both the aryl groups in the molecule.

The chemical shifts for C-7,7', C-8,8' and C-9,9' are also dependent on the stereochemistry of the molecule. In compounds **64–75** with both aryl groups equatorially oriented, these carbon atoms appeared in the ranges 85.3-85.9, 53.7-54.4 and 71.3-72.0 ppm, respectively. On the other hand, these signals were observed at 83.9, 49.5 and 68.7 ppm, respectively, in dieudesmin (**126**), which is the only example with both aryl groups axially oriented.⁴¹ These shifts remain unaltered on the acetylation of the phenolic hydroxyl groups.

The hydroxy group in 9- or 9'-monohydroxylated or 9,9'-dihydroxylated compounds,^{42,51} such as in some of the **76-86** series, causes downfield shifts of 29.0±0.5 and 7.3±0.6 ppm of the α - and β -carbons, respectively, while C-1 shows a downfield shift of 1.5 ± 0.7 ppm. In 8-hydroxy compounds, as in paulow-nin⁴³ (87), the hydroxy group causes downfield shifts of 37.5, 1.9 and 6.4 ppm for C-8, -7 and -8', respectively, and an upfield shift of *ca* 5.5 ppm for C-1, with no significant effect on the remaining carbons. Introduction of a further hydroxy group at C-7, which

acquires a pseudo-axial orientation as in isoarboreol³⁷ (89), leads to downfield shifts of 15.2, 3.3, 5.2 and 5.6 ppm for C-7, -8, -9 and -1, respectively. Chiba *et al.*^{48a} isolated phillyrin (125), a 4'-O-

Chiba et al.^{48a} isolated phillyrin (**125**), a 4'-Oglucoside of phillygenin, from *Forsythia suspensa* and assigned structure **120** to phillygenin. Banerji and Pal^{48c} later isolated an identical compound from *Piper* sylvaticum, and named it as sylvatesmin (**121**). A close examination of the spectral data proved that these two compounds are identical in all respects.

Pelter et $al.^{51}$ assigned a signal at 108.8 or 108.5 ppm to C-5 in pinoresinol (65), which is in contrast to the assignments for pinoresinol at 114 ppm reported by Fonseca et $al.^{21}$ The latter signal at ca 114 ppm is characteristic of guaicyl-containing lignans. The acetylation-induced shifts supported the assignment at 114.4 ppm, as if the 108 ppm assignment were correct then the ortho-downfield effect on C-5 due to acetylation is 13.7 ppm, which is too high. Therefore, the assignments reported in Ref. 21 are regarded as standard for C-5.

A distinction between the two isomeric forms, A and B, of 3,7-dioxabicyclo[3.3.0]octane lignans can be deduced on the basis of the chemical shifts of C-7 and C-7', as these are 1 ppm to lower field in B in comparison with similar carbon atoms in the A series. In general, C-7, 7' resonances appear at 85.8 ± 0.1 ppm in the A series, and at 87.0 ± 0.2 ppm in the B series.^{49,52}

2. CYCLOLIGNANS

The usual C-8,8' coupling and, in addition, coupling of an aromatic ring carbon atom of one C_6-C_3 unit with C-7 of the other C_6-C_3 unit generates a tetrahydronaphthalene or naphthalene type of skeleton, which constitute this category of lignans. These could be classified into the following three types.

2.1. Derivatives of tetrahydronaphthalene

The C-9 atoms in this category may be methyl or hydroxymethyl, which commonly possess a *trans* relationship with their vicinal substituent. A comparison of the shifts for galbulin^{22a} (135) with isolariciresinol

4,4'-dimethyl ether²⁰ (139) leads to the shifts induced by hydroxy substitution at the 9,9'-methyl groups. This indicated the usual α - and β -effects and significant shielding, 6.2 ± 0.3 ppm, of the γ -carbon atoms C-7,7', which could be valuable in evaluating a preferred conformation. Consideration of the phenyl substituent-induced shifts resulting from the comparison of the ¹³C data for **135** with *trans*-2,3-dimethyl-tetralin,^{22b} in conjunction with the shielding (-2.4 ppm) of 3-CH₃, leads to the prediction that 135 exists in a preferred conformer in which the aryl ring and the methyl group acquire a pseudo-equatorial or equatorial orientation, which is again in line with the preferred equatorial orientation of the methyl groups in trans-2,3-dimethyltetralin.^{22b} The occurrence of severe 1,3-diaxial interaction between the substituents will certainly destabilize a conformer with axial substituents. An upfield shift (5.9-6.4 ppm) of C-7,7' due to substitution of one of the methyl group hydrogens by a hydroxy group (as in 139 compared with 135)

gives information about the preferred rotamer population of the CH_2OH group. The most populated form is one in which the hydroxy groups of the CH_2OH moieties acquire such a position in space that they have a *gauche* relationship with C-7,7' and reduced methylenic interactions between the vicinal CH_2OH groups.

The alcoholic methoxy group absorbed distinctively at 58.0 ± 0.4 ppm and, therefore, could be readily distinguished from the aryl methoxy groups (see below).

The structure of hypophyllanthin (149), based on ¹³C NMR spectral analysis,^{23a} was revised to 149a; however, x-ray analysis^{23b} and synthetic studies^{23c} supported the alternative proposed structure 149.

2.2. Derivatives of tetrahydronaphthalene lactone

The cyclization of hydroxymethyl and carboxylic group moieties at C-8,8' leads to the formation of a lactone ring. The fusion of the lactone ring to the tetrahydronaphthalene ring is normally *trans*, but in some cases it may be *cis*. A distinction between the two could be made on the basis of the ¹³C shifts, as the carbonyl signal exhibits a 3–4 ppm deshielding in the case of the *cis*-epimer compared with that for the *trans*-epimer.⁵⁸ Introduction of a 7'-OH group causes a chemical shift variation depending on the orientation of the substituent. In epipodophyllotoxin (**159**) there is a downfield shift of C-8',9' compared with podophyllotoxin (**157**), which shows that the 7'-OH group acquires a pseudo-axial orientation in **159** compared with a pseudo-equatorial orientation in **157**.⁵⁸

In some cases the lactone carbonyl, C-9', becomes modified to a hydroxy or alkoxy group whose orientation could be determined on the basis of the chemical shift of the dioxygenated C-9' methine. This gives rise to a signal at ca 103 ppm in the case of a pseudoequatorial orientation, but absorbs at ca 101 ppm for

a pseudo-axial orientation.^{59,60a} The chemical shift of the γ -C-7' exhibits shielding in the case of a gauche relationship with the substituent at C-9' and, hence, is indicative of the stereochemistry at the C-9' substituent.

2.3. Derivatives of naphthalene lactone

The signal at 169.4 ± 1.0 ppm of the lactone carbonyl is very characteristic of this type of lignan, while the oxymethylene of the lactone ring gives rise to a signal in the range 66.6-69.8 ppm.^{60c} Based on the chemical shifts of the aryl methoxy groups, the structure of a new lignan, (**171d**), has been revised to **171b** (see below).

3. ISOLIGNAN AND BENZOFURAN TYPES OF NEOLIGNAN

The coupling of C-8 of one of the C_6-C_3 units with the aryl carbon (C-5') of the other C_6-C_3 unit, in addition to the coupling of C-7 of the first with C-4' of the second unit through oxygen, produces a benzofuran nucleus, which is a common structural feature for this category. This could be subdivided into the following two types.

3.1. Derivatives of dihydrobenzofuran

The ¹³C NMR data reported so far are for those dihydrobenzofuran derivatives which have been shown to have a *trans* mutual relationship between the 9-CH₃ or 9-CH₂OH group and the C-7 aryl ring. The compounds containing a 9-CH₃ group exhibit characteristic shifts of 93.8 \pm 0.8, 45.9 \pm 0.7 and 17.5 \pm 0.3 ppm for C-7, C-8 and C-9, respectively, whereas these shifts are 87.7 \pm 0.7, 55.5 \pm 1.0 and 65.0 \pm 0.5 ppm, respectively, in compounds containing a 9-CH₂OH grouping. The benzofuran types of neolignan also exhibit a similar chemical shift pattern to that discussed above.

Taking a half-chair conformation for the dihydrobenzofuran moiety into consideration, the conformer with both the aryl and CH₃ or CH₂OH groups

in an equatorial orientation is preferred over the conformer in which these are axially oriented.

A typical chemical shift for C-7 at ca 88 ppm in lignans containing a 9-CH₂OH group led to the prediction of a *trans* stereochemistry for the sesquilignans **190–193** and the dilignan **194**.^{65,66}

3.2. Derivatives of benzofuran

So far, the only examples known in this category possess a CH₃ group linked to the benzofuran nucleus; this absorbs at 9.5 ± 0.2 ppm. As the introduction of an OMe into the aryl ring (Ar¹) will not have a remarkable effect on the chemical shift of C-7, the C-7 signal assignment in carinatin (**195b**)^{83a} has been revised in the light of the assignments reported⁶⁷ for ratanhiaphenol II (**189a**).

4. BENZOCYCLOOCTADIENE

The coupling of the aryl carbon atoms (C-6,6'), adjacent to the side-chain of both C_6-C_3 units, together with the usual C-8,8' coupling, leads to a benzocyclooctadiene skeleton. This series could be classified into two groups:

- 4.1. With an *R*-biphenyl configuration.
- 4.2. With an S-biphenyl configuration.

4.1. **R**-Biphenyl configuration

These can be divided into the following subgroups, depending on the substitution on the cyclo-octane

ring:

- 4.1.1. (+)-Deoxyschizandrin group.
- 4.1.2. Schizandrin group with a hydroxy group at C-8.
- 4.1.3. Schizandrin group with a keto function at C-7.

4.1.1. (+)-Deoxyschizandrin group. The methyl signals observed at 12.7 ± 0.2 and 21.8 ± 0.2 ppm can be assigned to an axial and equatorial methyl, respectively.^{70,74} The benzylic methylene at $\delta 35.7 \pm 0.2$ ppm was assigned to the C-7 methylene carbon of the

equatorial 9-methyl side, whereas the remaining methylene (C-7') resonates at 33.6 ± 0.2 ppm, (the 9'axial methyl side). The methine carbon (C-8') carrying an axial methyl group appeared at $\delta 38.9\pm0.3$ ppm while the methine carbon (C-8) carrying an equatorial methyl absorbed at $\delta 40.8\pm0.3$ ppm.

MAGNETIC RESONANCE IN CHEMISTRY, VOL. 23, NO. 6, 1985 397

4.1.2. Schizandrin group with a hydroxy group at C-8. The introduction of a hydroxy group (axial) at C-8 as in 201-203 causes a downfield shift of 30 ppm for C-8, shifts the axial 9'-methyl 3 ppm downfield in spite of the γ -trans position, thus appearing at $\delta 15.8 \pm 0.1$ ppm, while the equatorial tertiary methyl (C-9) shifts to 29.8 ± 0.1 ppm due to the β -effect of the hydroxy group.

4.1.3. Schizandrin group with a keto function at C-7. This is described in Section 4.2.5 (see below).

4.2. S-Biphenyl configuration

These compounds can be divided into the following sub-groups:

- 4.2.1. Gomisin J group.
- 4.2.2. Gomisin O group with a hydroxy group at C-7.
- 4.2.3. Gomisin B group with two hydroxy groups at C-7 and C-8.
- 4.2.4. Derivatives of benzocyclooctadiene lactone.
- 4.2.5. Gomisin group with a keto function at C-7.

4.2.1. Gomisin J group. The chemical shift pattern for the methyl groups and benzylic methylenes was found to be similar to that discussed in Section 4.1.1.

4.2.2. Gomisin O group with a hydroxy group at C-7. The chemical shifts of both methyls differed significantly from those of the other lignans possessing the twist-boat-chair (TBC) conformation, and the ¹³C data support a boat conformation. In epigomisin O,

the equatorial 9'-methyl was observed at $\delta 22.0$ while the axial methyl (C-9) absorbed at $\delta 7.8$ ppm.

4.2.3. Gomisin B group with two hydroxy groups at C-7 and C-8. The methyl carbon at $\delta 18.8$ and 16.0 ppm of Gomisin P (214) were assigned to the 9'-methyl (equatorial) and 9-methyl (axial), respectively. The methyl signals at around $\delta 18.8$ and 28.6 ppm in

212 $R^1 = R^2 = R^{5'} = Me$, $R^3 = R^6 = OH$, $R^4 = H$, $R^7 + R^8 = CH_2$ **212a** $R^1 + R^2 = R^7 + R^8 = CH_2$, $R^3 = OH$, $R^4 = H$, $R^6 = OH$, $R^5 = Me$ **213** $R^1 + R^2 = R^7 + R^8 = CH_2$, $R^3 = R^6 = OH$, $R^4 = H$, $R^5 = Me$ **214** $R^1 = R^2 = R^6 = Me$, $R^3 = H$, $R^4 = R^5 = OH$, $R^7 + R^8 = CH_2$ **215** $R^1 = R^2 = R^5 = R^7 = R^8 = Me$, $R^3 = R^6 = OH$, $R^4 = H$

deangeloylgomisin B (212) and deangeloylgomisin F (213) were assigned to C-9' and C-9, respectively, in comparison with the data for 214 and with the lignans in Section 4.1.2.

4.2.4. Derivatives of benzocyclooctadiene lactone. The ¹³C NMR spectral analysis has been reported for only one compound (**216**) of this category; the lactone carbonyl (C-9) resonates at 176.5 ppm, and the oxymethylene (C-9') at 70.5 ppm.⁷³

4.2.5. (and 4.1.3.) With a keto function at C-7 and/or C-7'. The carbonyl absorption at 209.6 and 201.1 ± 0.8 ppm can be attributed to the conjugated and non-conjugated carbonyl groups, respectively. A conjugated carbonyl implies a TB conformation and a non-conjugated carbonyl a TBC conformation. The chemical shifts of C-2,2' are strongly dependent on the substitution of the adjacent benzyl carbon, and appear at ca 7 ppm upfield when the function is a nonconjugated carbonyl compared with the conjugated compound. It appears, therefore, that a nonconjugated ketone imparts a stronger γ -effect on protonated aromatic carbon atoms, whereas with a nearly coplanar carbonyl group this effect is almost completely balanced by the deshielding caused by electron withdrawal from the ring.

Four predictions were made for the chemical shifts of the protonated aromatic carbons of lignans possessing the partial structure A and the twist-boat-chair conformation of the cyclooctadiene ring. (a) When the methyl group is in an axial orientation, the protonated aromatic carbon appears at $\delta 110 \pm 0.3$ ppm, and when the methyl group is equatorial, it appears at δ 107.3±0.3 ppm. (b) The replacement of OMe (x) by a hydroxy or acetoxy group produces a downfield shift of ca 3 ppm or ca 10 ppm, respectively, for the protonated C-2' aromatic carbon. (c) The replacement of OMe (z) by a hydroxy or acetoxy group produces an upfield shift of ca 3 ppm for the protonated aromatic carbon or a downfield shift for C-2'. (d) the replacement of OMe (x and y) by the methylenedioxy moiety produces an upfield of ca 4 ppm for the protonated C-2' aromatic carbon.

Among the above lignans, gomisin O possesses a TB conformation of the cyclooctadiene ring whereas the others possess a TBC conformation.⁷⁰

5. NEOLIGNAN

The oxidative coupling of the propenyl and/or allyl phenols occurs in several ways to produce a variety of skeletal types, which are discussed in the following sections.

5.1. Hydrobenzofuranoid type

In these cases, the aromatic ring of one of the C_6-C_3 units becomes modified to a cyclohexadienone or cyclohexenone ring and is coupled with another C_6-C_3 unit to form a furan ring. These may be of three types, as follows.

5.1.1. Angularly methoxylated hydrobenzofuranoid type. These usually possess a *trans* relationship between the aryl ring and the 9-CH₃, while the angular OCH₃ group may be *cis* or *trans* with respect to the 9-CH₃. The chemical shift of the 9-CH₃ can be utilized for the determination of the stereochemical relationship between the OCH₃ and 9-CH₃. Thus, in mirandin B (**218**), the 9-CH₃ absorbed at 6.9 ppm owing to the *cis*

relationship between these two substituents, whereas this absorption was at 16.1 ppm in mirandin A (**217**), which possesses a *trans* relationship.²⁶ The chemical shift of the OCH₃ remains unaffected by the stereochemistry, and its signal was observed at 50.3–51.1 ppm.

5.1.2. Angularly allylated hydrobenzofuranoid type. The chemical shifts of C-9 (9-CH₃) and the methylene (C-7') of the allyl side-chain exhibit a strong dependence on their mutual relationship and, thus, are conclusive for the configurational analysis.²⁶ The allylic methylene C-7' and C-9 were found to be shifted approximately 7.00 and 3.00 ppm, respectively, upfield in the *cis* compounds **220–222** compared with the

trans compounds **223–225**. Similarly, the mutual relationship between the 9-CH₃ and the C-7 aryl ring determines the chemical shift of C-7 and, therefore, it absorbs at 91.2 ± 0.3 ppm in *cis* compounds and at 87.1 ± 0.1 ppm in the *trans* isomers. The introduction of an additional conjugated double bond to the cyclohexanone type (where the carbonyl absorbs around 192 ppm) results in an upfield shift by about 10 ppm, which thus appears at around 181 ppm in the cyclohexadienone type.^{80,81}

5.1.3. Linearly allylated and methoxylated hydrobenzofuranoid type. The allyl and methoxy groups are substituted on the same position, C-1', which usually absorbs at 80.7 ± 0.1 ppm. The carbonyl exhibits extended conjugation with two double bonds and, therefore, absorbs at 199.2 ppm.²⁶ The stereochemical relationship between the 7-aryl and the 9-CH₃ could be

established by analogy with the compounds in Section 5.1.1 and as described for derivatives of benzofuran in Section 3.1.

5.2. Benzodioxane type

When C-7 and C-8 of one C_6-C_3 unit are linked with the aryl ring carbon atoms of the other C_6-C_3 unit through two oxygen atoms, a benzodioxane type of skeleton is generated. This may be substituted with either a methyl or a hydroxymethyl substituent. In the former case, where C-9 is a methyl carbon, it can be *cis* or *trans* to the C-7 aryl substituent. The chemical shifts of C-7, C-8 and C-9 are of diagnostic importance for depicting the stereochemistry, as they are shielded by 3–5 ppm in the *cis* compounds^{75a,78} as in **232** and **233** compared with the *trans* isomers **230** and

231. Where C-9 is part of a CH_2OH group, both C-7 and C-8 absorb in the range of 75–78 ppm; the downfield signal is due to C-8 and the other to C-7.

5.3. Bicyclo[3.2.1]octane type

In these cases the aromatic ring of one of the C_6-C_3 units is involved in cyclization with C-7 and C-8 of the other C_6-C_3 unit in such a way that it leads to the formation of a cyclopentane ring system. This could be one of the following two types, depending on the location of the side-chain on the modified cyclohexane ring system:

5.3.1. Guianin type. Here the side-chain is located at the ring junction, and the chemical shift of the C-1' quaternary carbon is diagnostic for this category (see below). The shift of the methoxy-substituted C-3' was reported to be dependent on the relative dispositions of the rings, absorbing at 90.5 ± 0.3 ppm in the series in which C-2' is α -oriented and at 64.9 ppm, an unusually higher field, when C-2' is β -oriented.^{80a}

5.3.2. Macrophyllin type. The side-chain in this class is not located at the ring junction but is substituted on the olefinic bond, thus giving rise to the signal due to C-1' at 140.3 ± 0.3 ppm as a singlet.⁸¹ The C-6' signal

appears around 126 ppm in the absence of a 2'-carbonyl, as in **242**, while the presence of the 2'-carbonyl shifts this signal 15-20 ppm downfield owing to the conjugation effect.

5.4. Carinatane type

These are formed by the coupling of C-8 of one C_6-C_3 unit with the aryl carbon of the other C_6-C_3 unit, resulting in the formation of an open-chain system. This may also be regarded as the product formed as a

result of benzofuran ring opening of the benzofuran type of lignans, hence C-7 may bear a hydroxy or an oxo function. Its chemical shift differentiates between the 7-hydroxy (78.9 ppm) and 7-oxo (199.4 \pm 0.3 ppm) types.^{83a,d}

5.5. Heterotropanone type

C-8 and C-9 of one of the C_6-C_3 units couples with the modified aromatic ring of the other C_6-C_3 unit to produce a [2.2.2]octane skeleton. The signals at

 94.5 ± 0.3 and 201.4 + 0.4 ppm, assignable to the dimethoxylated C-3' and 4'-carbonyl functionalities, respectively, distinguish this category from other categories of lignans and neolignans.^{25a,b}

5.6. Asatone type

This type belongs to a unique skeleton in which the aromatic rings of both of the C₆-C₃ units become modified and couple together to generate a tricyclic skeleton of the **249** type containing two keto functions. The α,β -unsaturated carbonyl absorbs at approximately 188.0 ± 0.7 ppm, while the signal of the

other carbonyl group is at 201.4 ± 0.2 ppm. The reported data for these compounds^{83b} have been analysed and tabulated.^{25b}

5.7. Other types

Various other types of skeletons, not widely distributed, are included in this group and can be categorized into the following sub-groups:

5.7.1. Aurein type. This is an unusual type of lignan in which C-8 of one of the C_6-C_3 unit forms a bond with the aryl ring of the other C_6-O-C_3 unit. The chemical shifts of C-7, C-8 and C-9 are of diagnostic importance for the characterization of this category as they absorb at 45.2, 41.9 and 20.8 ppm, respectively.²⁶

5.7.2. Surinamensin type. The C-8 of one of the C_6 - C_3 units is linked with an aryl carbon of the other C_6 - C_3 unit through an ether linkage, forming an openchain system.⁷⁶ The oxygenated C-8 absorbs at 78.0 ppm and the hydroxylated C-7 at 83.6 ppm in **253**.

5.7.3. Biphenyl type. Carbon-carbon coupling between the aromatic rings of the two C_6-C_3 units produces such a type of neolignan. The substitution pattern of the aromatic rings determines the chemical shift of the aryl carbons involved in the biphenyl linkage formation.^{82a,b} Representatives of this series are magnolol (254) and honokiol (255).

5.7.4. Biphenyl ether type. The aromatic rings of the two C_6-C_3 units are linked via an ethereal bond to generate such neolignans. Only one example, obovatol (**255a**), has been recently reported.^{82b}

5.7.5. Spiro[5.5]undecanoid type. The modification of one of the aryl rings to cyclohexadienone and its involvement in cyclization with the side-chain of the other C_6 - C_3 unit generate such a skeleton, present in futoenone (**255b**) and denudatone (**256**). The signals of C-8 at 81.9 ppm and of the carbonyl (C-4) at 183.1 ppm facilitate their characterization.^{81b}

6. MISCELLANEOUS LIGNANS

The flavonolignans, xanthonolignan and coumarinolignans constitute this category. The ¹³C signals due to the non-lignan moiety could be assigned by comparison with the standard values for flavonoids,⁹⁴ coumarins⁹⁵ and xanthones (e.g. Ref. 96). These may possess three types of linkages; (a) through an oxygen and an aromatic ring carbon to form a furan ring; (b) through two oxygens to form a dioxane ring system; and (c) other types.

6.1. Flavonolignan

These may exhibit all three types of linkages, and are therefore categorized as above.

6.1.1. Furan type. The stereochemical assignments for silychristin (**257**) could be achieved on the basis of the ¹³C shielding data which could be compared with the lignans described in Section 3, and are supported by mild dehydrogenation results.^{86b} Analogously, the resemblance of the chemical shift for C-7", C-8" and C-9" in isohydnocarpin (**261**) and **257** leads to the prediction of similar stereochemical assignments.⁸⁷

6.1.2. Dioxane type. In these cases, C-7", C-8" and C-9" resonate at 75.7 ± 0.4 , 78.0 ± 0.4 and 59.5 ± 0.3 ppm, respectively, and indicate an equatorial orientation of both of the substituents possessing a *trans* relationship.

6.1.3. Other types. There is only one compound of its specific type, neohydnocarpin (**267**), belonging to this category which has been analysed by ¹³C NMR spectroscopy. The signals of C-7", C-8" and C-9" were observed at 40.9, 35.2 and 69.2 ppm, respectively.

MAGNETIC RESONANCE IN CHEMISTRY, VOL. 23, NO. 6, 1985 403

The aromatic ring B of the flavonoid nucleus becomes modified and couples with a C_6-C_3 unit to produce a new structural type such as in silymonin (**268**) and silandrin (**269**). In these cases, the ¹³C signal resonances due to C-7", C-8" and C-9" are observed at 53.2 ± 0.1 , 46.0 ± 0.1 and 72.7 ppm, respectively.

Thus, from the above discussion, it is evident that the chemical shifts for C-7", C-8" and C-9" are informative enough for the characterization of various structural variants.

6.2. Xanthonolignan

When isolated, these were found to be of the (b) type, i.e. a xanthone and a C_6 - C_3 unit are linked through a dioxane ring system. These exhibited similar spectral behaviour for C-7', C-8' and C-9' as described for C-7", C-8" and C-9" in flavonolignans of this type (see Section 6.1.2). So far, ¹³C shielding data have been reported⁹⁰ for kielcorin, (**271**).

6.3. Coumarinolignan

Several compounds belonging to this class have been reported, and ¹³C NMR spectral analysis has proved

to be very useful in determining their structures. All of these so far reported are of the (b) type, i.e. the dioxane type, and exhibit analogous shielding behaviour to flavonolignans and xanthonolignans.

In miscellaneous dioxane-type lignans, the C-7' and C-8' of the lignan moiety give rise to the signals in the 75–78 ppm region. C-8', bearing a CH₂OH group, resonates approximately 1.5 ppm downfield of C-7', bearing an aryl substituent.

7. DERIVATIZATION-INDUCED SHIFTS

This section deals with the shifts associated with derivatization of the hydroxy group. For convenience, the subject is discussed under the following subheadings:

- 7.1. Glycosidation-induced shifts.
- 7.2. Acetylation-induced shifts.
- 7.3. Methylation-induced shifts.

7.1. Glycosylation-induced shifts

In O-glycosides, C-1 of the monosaccharide is linked via a hemiacetal bond to the aglycone moiety, which produces a shift in the C-1 resonance to lower field. Apart from a much smaller shift for the C-2 resonance, the remainder of the sugar spectrum is largely unaffected. The signal assignments of the sugar carbons can be made by comparison and best fit matching with the reported data for monosaccharides⁹⁷ and methyl glycosides.⁹⁸

The effect on the signals of the lignan nucleus itself is more diagnostic than the glycosylation effect on the sugar carbon signals. In general terms, the carbon at the site of glycosylation is shifted to higher field, whereas ortho- and para-carbons shift downfield.^{94,95} Usually, shifts of *ipso-* and ortho-carbon atoms are in the range of only 0.7–2 ppm. Significantly, the most reliable indication of glycosylation appears to be the downfield shift of the para-carbon signal, which is invariably larger than the other shifts and generally in the range 1.7–4 ppm.

Furanose sugars are readily distinguished from their pyranose isomers owing to the difference in their chemical shifts. The signals for C-1, C-2 and C-4 are shifted downfield (4–14 ppm) and C-5 is upfield (4–7 ppm) in the furanose form compared with their respective pyranose isomer.^{97–99}

The chemical shift of the anomeric carbon atom is strongly dependent on the anomeric configuration and can be of use in elucidating this configuration. The best method for determining the anomeric configuration of pyranose is from the one-bond coupling for the anomeric carbon $[{}^{1}J(CH)].{}^{100}$ The ${}^{1}J$ value for the other carbons (C-2 to C-6) of the sugar varies in range 143–148 Hz, whereas the anomeric carbon exhibits a larger value of 160–175 Hz. The difference in couplings for the two anomeric configurations is generally about 10 Hz, with the value for the equatorial ${}^{13}C$ -H coupling being larger. For example, in methyl- β -Dglucopyranoside, ${}^{1}J(CH)$ for C-1 is 160 Hz, whereas for methyl- α -D-glucopyranoside it is 170 Hz. The onebond coupling is solvent dependent, 101 so comparison has to be made in the same solvent.

The above discussion deals with the lignan glycosides having a sugar linked with a phenolic hydroxy group. However, there are several lignan glycosides in which the sugar is linked to an alcoholic hydroxy group. The effect on the sugar moiety due to the aglycone is similar to that described above; however, the shift changes of the aglycone nucleus due to glycosylation, i.e. a downfield shift of the α -carbon and an upfield shift of the β -carbon atoms, are of diagnostic importance in recognizing the site of glycosylation. Thus, a comparison of the chemical shifts of the lignan glycoside with the appropriate sugar and lignan, together with the consideration of the glycosylation-induced shifts, provides a reliable method for structure elucidation.

7.2. Acetylation-induced shifts

Acetylation of free phenolic hydroxy groups¹⁰² produces marked changes in ¹³C NMR spectrum of the compounds, and can be used to detect the location of hydroxy groups on the aromatic rings. On acetylation the signal of the hydroxylated carbon moves upfield by 5.3-6.5 ppm, the ortho- and para-carbon signals are moved downfield by 4.1-8.2 ppm and the meta-carbon signals are only slightly affected. If the ortho position is substituted by a methoxy group as in the guaicyl unit, the methoxy-substituted aryl carbon exhibits a higher downfield shift (6.3-8.2 ppm) than that for the unsubstituted aryl carbon, which shifts by only 4.0-5.0 ppm. Where a 4-hydroxy group has two orthosubstituents as in the 3,5-dimethoxy-4-hydroxyphenyl ring, the ortho effect (4-5 ppm) is identical for both ortho positions.

Acetylation of an alcoholic hydroxy group¹⁰³ causes deshielding of the α -carbon (0.7–4.0 ppm) with subsequent shielding of the β -carbon atoms (3–5 ppm). In cases where the α -effect is small, the β -upfield shift helps in unambiguously determining the site of acetylation.

Acetylation introduces two more signals, due to the acetyl carbonyl and the methyl group, into the spectrum of the original compound, but these do not interfere with the assignments owing to their narrow ranges, 168–172 and 18–21 ppm, respectively.

7.3. Methylation-induced shifts

Methylation of a free phenolic hydroxy group shifts the hydroxylated carbon downfield by 1.0-4.7 ppm, and

the signal of the *ortho*-carbon upfield by 0.8-3.6 ppm. The methylation of an alcoholic hydroxy group produces a downfield shift of the hydroxylated carbon by 8.8-12.9 ppm and an upfield shift of 3.0-3.5 ppm for the β -carbon atoms.

The methoxy signals are in the range 55–63 ppm and the chemical shift provides information about their behaviour. Aromatic methoxy signals having at least one unsubstituted *ortho* position appear at 55– 56.8 ppm, whereas this absorption is at 59.5–63 ppm for these methoxyl groups with both *ortho* positions substituted.¹⁰⁴ The alcoholic methoxy group usually appears in a narrow range (58.6–58.8 ppm) between the two types of aromatic methoxy group.

Thus the chemical shifts of the methoxy carbons give sufficient information for the assignment of the methoxy groups in the molecule. Based on the fact that a signal at 55.9 ppm possess at least one free *ortho* position, the structure of a new arylnaphthalide lignan,^{60c} identified as orosunol (**171d**), has been revised to **171b**, as the ¹³C NMR spectrum has signals at 59.5 and 55.9 ppm, instead of two signals around 60 ppm which would be expected in the case of structure **171d**.

8. LIST OF ¹³C CHEMICAL SHIFTS

The ¹³C chemical shifts of all lignan and neolignan derivatives available from the literature (until 1982) are listed in Table 1. In order to avoid excessive data, the shifts for the sugar carbon atoms are not included, and Table 1 is restricted to the carbon atoms of the lignan and neolignan nuclei only, except for miscellaneous lignans where the shifts for the nonlignan moiety are also incorporated. The chemical shifts of all other atoms can be taken from the original papers or requested from the present authors. The numbering is uniform (C-1 to C-9 for the first C₆-C₃ unit and C-1' to C-9' for the second C₆-C₃ unit), and is given on every key molecule where it is different from the systematic numbering.

The tabulated ¹³C chemical shift data (Table 1) are divided into several sub-headings according to the classification shown above. Trivial names are given in the second column and the solvent (A = CDCl₃, B = DMSO- d_6 , C=CD₃OD, D = CD₃COCD₃, E = D₂O+CD₃COCD₃F = D₂O, G = C₅D₅N) is shown in the third column.

Structures are given for all the compounds, and also the various symbols (see footnotes to Table 1) used for the representation of the substitution pattern on the aromatic ring. For a given entry, references containing data for the particular compound are quoted in the last column.

Acknowledgements

We are grateful to Dr Akhtar Husain for his constant encouragment. P.K.A. thanks Professor Dr H. J. Schneider, Universität des Saarlandes, Saarbrücken, FRG, for helpful discussions and to Alexander-von-Humboldt Stiftung for a stipend. We are also grateful to Mr Bikram Singh for his consistent help.

Table 1. ¹³ C chemical shift	s (ppm)) of li	ignan	and n	eolign:	an der	ivative	a Se													
Substance	0	2	C-2	с. З	0.4 4	C-5	0-6 C	C-7	8 0	6.0	o X	č Ķ	ر م	ٽ ح	č 'n	s C-7	80 0	C-9	OCH ₃ , OCH ₂ O or others	ococH _a	Ref.
1.1. Derivatives of butane:	•	1		6	e I	0							[č	č				é
1 meso-Dihydroguaiarctic acid dimethyl ether	A 15	34.5	12.4	48.8	147.2	111.2	121.0	38.9	39.2	16.3 1:	11 .5	2.4 148	147	LIL 2.	.2 121	o. 89		2 16.3	55.8, 55.9	ł	22a
2 Secoisolariciresinol3 Secoisolariciresinoltetraacetate	A A 15	32.4 1 37.9 1	111.7	50.8	143.7 138.4	114.3 120.8	121.5 122.4	35.8 35.2	43.7 (39.5	30.5 13 34.1 13	82.4 11 37.9 11	1.7 146 2.7 150	5.6 143 1.8 138	.7 114	121 121 122	.5 .4 .35.	8 43.7 2 39.1	60.E	55.7 55.7		2 2
4 Secoisolariciresinol 4'-	۲	32.2 1	11.4 1	46.3	143.6	114.0	121.4	35.8	43.8	30.4 1:	33.0 11	1.0 145	3.6 147	11 0.	0 120	.8 35.	8 43.	3 60.4	1 55.7	1	21
methyl ether 5 Secoisolariciresinol 4'-	A	38.5 1	12.8 1	50.8	38.0	122.8	120.9	35.4	39.7	34.2 13	8.5 11	2.8 150	.8 138	.0 122	4 120	.95. 35.	4 39.7	64.2	55.7, 55.8	170.7, 21.0,	21
methyl ether triacetate 6 Secoisolariciresinol 4,4'-	A 13	12.9 1	10.0	48.7 1	147.0 1	112.0	120.8	35.7	43.8	30.3 15	82.9 11	0.0 148	.7 147	.0 112	.0 120	.8 35.	7 43.6	3 60.3	1 55.7	168.8, 20.7 —	21
dimethyl ether 7 Secoisolariciresionol-4,4'-	A 13	1.9 1	10.0	48.7 1	47.2	111.8	120.7	34.8	39.6	34.2 13	31.9 11	1.0 148	147	.2 111	.8 120	.7 34	8 39.6	64.2	55.7	170.6, 20.9	21
uimemyi emer diacetate 8 Phyllanthin	A 13	3.7 1	11.2 1	48.8 1	47.2	112.4	121.2	35.0	40.8	72.7 13	11 11	1.2 148	.8 147	.2 112	.8 121	.2 35.	0 40.8	3 72.7	55.7, 55.9, 50.7	-	22a
 9 Dihydrocubebin 10 Dihydrocubebin dimethyl 	A 13 A 13	5.2 1 5.2	07.9 1 08.2 1	47.3 1 47.8 1	145.5 1 45.9 1	109.2	121.7	35.7 34.9	44.1	59.8 15 72.7 13	10. 10. 10. 10.	7.9 147 8.2 147	.3 145 .8 145	.5 109 .9 109	-2 121 -6 122	. 7 34: 34:	7 44.1 9 41.1	59.8 72.7	58.8, 100.9		23a 23a
ether 11 Dihydrocubebin diacetate 12 Acoradin	A 13 A 12	42 1 1 1	08.0 1 12.7 1	47.5 1 43.3 1	45.7 1 47.8	98.2	121.7 151.9	34.8 45.5	39.9 43.5	34.2 13 19.3 13	33.2 10 24.2 11	8.0 147 2.7 143	.5 145 3.3 147	.7 8.98	10 121 151 151	.7 34. 9	5 39.9 13.1	64.2	2 100.7 1 56.3, 56.6,	170.8, 20.9 	23a 24
13 Heterotropan	A 12	2.1 1	12.4 1	42.3 1	47.2	97.7	51.6	34.0	42.5	15.1 12	22.1 11	2.4 142	.3 147	2 97	.1 151	.6 34.	0 42.5	5 15.1	56.1, 56.3,	ł	25a,b
1.2. Derivatives of butanolide:											:								56.7		
14 Matairesinol	A 12	0.4 0.4 0.4 1.4	10.8	46.4 1	44.2 1	113.9	21.2 20 a	38.3	40.9	ο. Γ. Γ.	29.5 11 29.3 11	1.3 146 1.6 146	5.5 144 144	211 E.	121 121	5 7	2 4 <u>6.</u>	178.6	55.7 55.5	1	20
15 Matairesinol diacetate	A 13	 6.8 7	12.7 1	51.1 1	38.5	20.6	22.8		40.8	1.0	96.5 11	3.3 151	.138	5 121	.3 122	.6	46.2	178.2	55.7	168.8, 20.5	ខ្ល
16 HPMF {trans-(主)3,4-bis	۔ ۲	÷	16.3	-	13.9 1	30.0	21.7	I	1	,	-	5.7 -	- 114	.0 130	.0 121	 - .	I	Ι	I	I	27
[(3-hydroxyphenyl)methyl]- dihydro-2(3H)-furanone}																					
17 Pluviatolide	A 13	1.1	09.2	47.5 1	46.4 1	07.9	22.0	38.1	41.2 7	0.1	9.5 11	0.9 146	144	2 114	3 121	0.1	6 46.3	178.2	55.7, 100.8		26
18 Pluviatolide acetate	A 13		09.3	47.7	46.3 1	08.1	22.1	38.5	1.0	01	10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		0.138 141	120 120	4. 122 122	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	46.5	1/8.0	55.7, 100.9	168.7, 20.6	92.20
19. HINOKININ 10a (_)-Hinokinin	× √		1 2 2 2 2		40.0	0.7.0	3 1 0	20.2	0.14		10.4	8.2 147	146	<u>)</u> 0	2121	4	8 40 ⁻⁷	178.2	100.9	l	239
19b Yatein	A 13	3.2	06.2	53.2	36.8	53.2	06.2	35.2	46.4 17	8.5	11.6 10	8.8 147	9 146	4 108	2 121	5 35.	5 4 6.4	178.5	56.1, 60.8, 101.0		28c
20 (See Scheme)	A 13	3.6 1(05.5 1!	53.2 1	36.7 1	53.2 1	05.5	38.8	40.9 7	1.2 12	9.4 11	1.6 146	144	6 114	.1 121	97. 19	4 46.E	178.7	60.7, 55.9	ļ	29
21 (See Scheme)	A 13	3.7 1	05.7 1	53.5 1	36.9 1	53.5	05.7	38.9	1.1	1.2	0.3 11:	2.5 149	148 148	1111	.2 121	1 34.	6 46.6	178.7	60.9, 55.9, 56.1	1	53
22 (See Scheme)	A 13	3.6 3.6	05.7 1 12 0 1/	53.5 10 A	37.0 1 ABE 1	53.5	05.7 20.0	5.86	11.1	51 - C - F	20.7 11:7 11:1	101 47 23 149	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ы 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	4 C	2	197 197 197	178.5 78.5	56.7 56.7	168.9, 20.6	<u>5</u> 7 00
24 Di-O-methylthujaplicatin	A 130	- - -	11.7 1	18.8 18.8	47.7	11.2	20.2	. . .	11.0	11	3.1 10	6.2 152	.9 136	8 152	9 106	2 35.0	46.4	178.1	55.8, 56.0, 60.7	1	73 G
methyl ether																					
25 (-)-Arctigenin	A 12	9.5	11:2	47.8 1	46.7 1	11.7 1	20.5	38.1	10.9	1.3 13	0.4 11	1.4 146	6. 14 14 14	5 114	.1 122	0.34.6	5 46.5	178.7	55.8, 55.9	I	28a
25a (+)-Arctigenin	А 13	80	14.5	48.1	47.1 1	11.8	20.8	97.0	1.1	4 C C	3.6	2.3 149	τ. 14- 14- 14- 14- 14- 14- 14- 14- 14- 14-	Z11 2		88	7 46.7	1/9.0	55.9 EE 0	I	32b
26 /-Allonyaroxymataresinol dimethyl ether§	<u>↑</u> ≺			- 0.0	- n. / +	5.4	10.3	2.2	C.24	2.2	2	2	Ņ		Z	ž t	7.04	1.9.1	0'00	I	807
27 7-Alloacetoxymataresinol dimethyl ether ^b	A 12	9.5 1(1, 1,	49.1 1	48.0 1	11.2 1	18.2	75.4	14.0	7.9 13	0.0 11:	2.4 149	.0 148	0	121	4	8 44.0	178.0	55.9	169.8, 20.9	28a

P. K. AGRAWAL AND R. S. THAKUR

¹³CNMR SPECTROSCOPY OF LIGNAN AND NEOLIGNAN DERIVATIVES

ଚ୍ଚ	888		28a	28a	289	282	28a 28a	28a	28a	28a	28a	28a	28a	28a	28a	я	28b	28b			32a	328	ន ន	32a 32a	2	5	35a	35a	35a	32a		8 8	3	20	21
I	 168.7, 168.9,	169.7, 20.5, 20.5, 20.9	1	169.8, 21.1	1	169 8 20 9	169.1. 20.7	168.9, 20.6, 169.8, 21.0	2.1.4	168.9, 170.3, 20.5	1	168.9, 169.3, 170.3, 20.7, 20.9	-	I	1]	ļ]			1	I	I			168.6, 1/0.4, 20.6	1	İ	1	ļ			20.6	I	170.6, 20.8
					101 6	101 4									55.9	101.1	, 104.0	60.9, 101.1										13.6	61.3, 5141						
55.9	55.8 55.8		55.9	55.9	100.8	101.0	55.9	56.3	55.9	55.9	56.1	55.9	55.9	55.9	55.8,	56.0,	101.8	56.3,			100.7	20.00 10.00	55.9 1	55.6	1	50.4	I	60.3,	60.8,0	55.5		55.1 55.8	0.00	55.9	55.8
178.9	179.4 178.0		179.2	178.2	178.7	178.0	177.8	177.1	178.6	174.9	178.7	174.0	177.8	1	181.3	172.5	172.5	172.3			13.7	12.9	12.9	11.6		03.4	60.8	169.5	172.1	9.6		72.1		72.9	72.6
43.8	43.6 43.5		45.2	44.0	AE 1	- 0 67	45.4	43.5	76.5	80.2	79.2	80.4	75.4	78.6	79.0	131.5	131.5	131.3			50.9	14 2 2 2	44.0	4/ 0 41.2	, i	50.4	48.1	52.5	55.2	117.4		42.1 42.1	- 	42.4	42.3
35.2	35.0 34.9		35.0	34.8	2E 1	35.1	30.8	30.7	42.0	43.2	42.9	41.5	76.9	37.8	37.1	137.4	137.2	137.6			88	1.78	87.2	82.4	6	87.0	81.2	81.5	83.8	146.4		32.3	t S	33.2	33.1
122.6	122.6 123.2		121.8	121.7	1007	1220	122.9	123.2	123.2	122.9	123.2	122.8	111.9	122.5	123.3	123.0	125.9	107.4			119.5	118.4	119.3	118.2		118.0	126.1	127.4	127.0	117.9		120.6	1.02	120.4	120.2
114.5	114.0 121.7		112.9	112.7	100 B	109.8	120.4	118.1	114.4	114.9	114.4	119.1	111.7	113.4	114.7	113.0	109.2	153.4			107.7	110.8	110.1	110.6		17/71	128.4	127.8	128.5	110.9		114.6 122.6	0.77	111.9	111.8
146.8	144.4 138.8		149.4		148.0	1481	137.7	137.5	147.9	139.5	149.2	139.5	149.6	148.9	150.6	148.0	148.0	157.4			146.7	148.2	145.1	147.4		140.0	127.5	127.8	128.1	147.5		146.9 138.7		147.3	147.3
144.6	146.8 151.1		149.0	149.2	117 E		151.3	151.7	145.1	151.2	146.8	151.2	148.7	149.1	149.3	150.8	149.2	153.4			147.5	148.7	145.1	148.2		Z.161	128.4	127.8	128.5	148.4		145.1 160 o	2.001	148.2	148.3
112.0	111.9 113.7		109.1	109.7	108.1	108.1	112.0	112.2	112.3	111.6	111.4	111.2	110.7	111.2	111.7	109.1	108.7	107.4			106.4	109.6	109.4	109.5		1.10.0	126.1	127.4	126.8	108.7		111.6 112.6		111.0	111.2
129.5	129.5 136.1		130.2	129.6	1211	1310	138.5	139.1	126.2	132.7	126.2	131.9	130.9	126.6	135.4	126.9	128.2	129.4			136.1	134.6	134.9	132.8		139.4	138.9	137.6	137.4	124.7		131.6	0.001	135.4	132.3
68.5	68.6 67.7		68.4	67.9	68.4		69.5	66.7	70.2	71.8	79.2	67.8	70.1	74.1	74.2	69.5	69.5	69.7			13.7	6.21	12.9	11.6 11.6		03.4	60.8	169.5	171.2	9.6		59.1 67 6	0.20	60.7	62.6
45.2	45.2 43.4		43.9	43.4	127	43.5	40.0	43.3	43.8	42.7	48.1	45.5	47.5	78.1	77.0	39.6	39.9	39.4			50.9	2.4 2.0	44.3 2.4	40.3 41.2		50.4	48.1	52.5	54.6	117.4		52.2 Ag 0	0.01	52.5	48.8
75.4	75.2 75.4		75.4	76.1	75.4	26.37	32.7	72.1	31.6	33.5	70.0	73.1	31.8	39.1	37.6	37.5	37.6	37.8			88.1	6/.1	87.2	82.4	0.00	97.6	81.2	81.5	82.8	146.4		82.3 82.3	1.70	82.7	82.9
118.0	118.8 118.5		118.3	118.9	110.2	1201	120.9	120.5	120.9	120.5	117.6	122.8	120.6	122.2	122.3	121.9	122.1	121.9			119.5	118.4	118.6	118.2		118.0	126.1	127.4	127.0	117.9		118.1 117 e	0.	117.9	117.9
114.0	114.0 122.8		111.2	111.2	108.2	108.01	112.8	113.6	112.8	111.8	112.9	114.5	111.4	111.4	113.6	111.4	108.8	109.0			107.7	8.011	110.7	110.6		121.1	128.4	127.8	128.4	110.9		114.4 122 E	0.77	111.3	110.9
145.8	145.5 139.9		149.1	148.1	147.6		149.2	149.8	149.2	149.2	148.6	151.2	149.2	149.1	150.2	146.6	146.6	146.6			146.7	148.2	145.1	147.4		140.0	127.5	127.8	128.1	147.5		146.8 141 A	ţ	148.8	148.3
146.9	146.9 151.4		149.0	149.1	146.2	146.6	147.9	149.8	146.6	148.0	145.2	149.2	147.9	148.9	148.1	149.2	148.4	148.0			147.5	148.1	145.1	148.2		Z.161	128.4	127.8	128.4	148.4		145.1 160 o	6.00	148.9	148.8
108.3	108.3 110.7		109.1	109.7	106.1	106.6	111.5	109.5	111.6	111.6	109.0	109.9	110.7	111.2	111.3	108.4	108.5	108.4			106.4	109.6	109.3	109.5		110.0	126.1	127.4	126.8	108.7		108.7 109.5	0.001	108.9	108.8
133.6	133.5 136.1		134.1	129.6	135.3	130.7	130.9	130.1	131.1	130.3	133.9	130.4	130.1	125.5	132.9	125.7	126.1	127.1			136.1	134.0	134.9	132.8		139.4	138.9	137.6	137.4	124.7		133.7 138.7	1.00	132.9	134.7
∢	۷ ۷		۷	٩	٥	(⊲	(∢	٩	٩	٨	۲	۷	٩	۷	۷	۷	۷	۷	Ċ.		∢ •	4 •	4 •	∢ ∢		4	٩	< ₹	∢	٩		ວ ▼	c	A+C	<
8 7-Hydroxymatairesinol ^b	 8 7-Hydroxymatairesinol^b 9 7-Acetoxymatairesinol 	olacetate	0 7-Hydroxymatairesinol dimentyl ether ^b	1 7-Acetoxymatairesinol	dimethyl ether ^b 2 Parahanzlantone	2 1 al abenziacione 2 Parabenziacione acetate	 I soarctigenin monoacetate 	5 7-Acetoxyisoarctigenin	5 Trachelogenin	7 Trachelogenin acetate	8 7-Hydroxytrachelogenin ^b	9 7-Acetoxytrachelogenin diacetate ^b	0 7'-Hydroxyisomethyl- trachelogenin	1 Isomethyl arctigenin	2 Di-O-methylthujastandin	3 Kaerophyllin	3a (-)-Hibalactone	3b Nemerosin	Derivatives of tetrahydrofural	7,7'-Monoepoxy lignan:	4 Galbacin	o Galgravin	6 Nectandrin	/ veraguensin 3 Tetrahydrofuroguaicin B	dimethy! ether	9 Neo-olivil tetraacetate) See Scheme	1 See Scheme	1a See Scheme	2 Di-O-methylferaguaiacin	7,9'-Monoepoxy lignan:	3 Lariciresinot	+ Lanciresinul macetate	5 Lariciresinol dimethyl	ether Sa Lariciresinol dimethyl ether monoacetate
CN.	~ ~		m	e	ň	, ,	იკ	M	ಹ	'n	õ	б	4	4	4	4	4	4	1.3. L	1.3.1.	4	4,	4	4 4	:	4	ъ С	ດ່	â	ðí	1.3.2.	හි ම	ð	λί	55

(cont'd)

Table 1.	(continued)																			OCH2, OCH20		
	Substrate		5	C-7	с. С	4	C-5	0-6	C-7	6-8-	ရပ	0 -1,	о Ņ	ن م	ن خ	ن وز	е, С-	8 0	C-9	or others	ococH3	Ref.
55b Lai	riciresinol 4'-mono-	۷	134.5	108.2	146.4	144.7	114.0	118.4	82.6	52.4	60.5 1	32.7 11	1.0 14	8.6 14	7.1 11	1.8 12	0.3 33	0 42.	2 72.	6 55.7	I	21
55c Lar	stnyl etner iciresinol 4'-methyl	۷	141.3	109.4	150.7	138.7	122.3	117.5	82.7	48.8	62.5 1	32.2 11	1.1 14	8.7 14	7.3 11	1.6 12	0.1 33	0 42.	2 72.	6 55.7	168.7, 170.5, 20.5, 20.7	21
55d Lar	riciresinol 4-mono-	۷	135.2	108.8	148.2	148.2	111.0	117.8	82.6	52.4	60.8 1	32.0 11	0.9 14	6.4 14	3.8 11	4.2 12	.9 33	2 42	3 72.	7 55.8	102 1002	21
55e Dia	struyt etner acetate of 55d	٩	134.6	108.7	148.8	148.3	110.8	117.9	82.8	48.9	62.5 1	38.8 11	2.6 15	0.7 13	8.0 12	2.6 12	0.4 33	4 42.	1 72.	6 55.8	168.8, 170.6, 20.6, 20.8	21
55f (-)	I-Olivil	۵ •	110.4 -	-123.0		ļ	129.4 -	147.1	83.7	61.2	60.0	10.4 - 12	3.0 12	9.4 - 14	7.1		9 93 2	9 81.	E F	57.8 100.0	1	56
57 Acet	Scheme tate of 56	∢ ∢	134.5	106.6	140.9 147.3	147.8 147.8	107.9	120.0	83.4	53.4	61.0 1	29.4 10	7.8 14	7.6 14	7.8	8.3 12	2.4 75	58 88	73.0	9 100.9, 101.2	170.5, 169.4,	42
																					169.2, 20.7, 21.0, 22.2	
1.3.3. 9,9-A	Monoepoxy lignan:	L	0.001				0	0101	000	Ę	, 10 10		, , ,	, , ,	7 7 1	4	6	Ç	cr.			0
55 See	Scheme	чш	139.8	106.0	152.9	127.7	152.9	106.0	8.00 30.8	47.1	73.5 1	39.8 10	3.2 14 15 15	2.9 12 2.9 12	7.7	2.9 10	8 0.0 8 0.0	0 00 4 4 7 4	2.52			<u>6</u> 6
60 cis-l	Burseran	۷							33.9	43.6	72.0						33	4 43.8	3 71.9		1	36a
61 tran	is-Burseran	٩ -		ļ	1	!			39.9	43.6	73.2		-	1	1		88	2 46.	2 F	700	I	ş Ş
62 See	Scheme wil acetate	4 م	133.9	107.9	147.5 151 2	145.7 130.8	108.8	121.3 120.9	39.2 76.6	46.5 48.2	/3.2	33.9 10 37.8 11	07.9 14 12	5.7 14 3.0 13	7.5 9.8 15 15	3.8 13 12		7 7	0 102 102	2 100./ 9 56.0	169.2.20.7	30 23
		τ	1.10	2		0.00	0.02	6.02	200		-	0.10	t in		2	2	3					3
1.4.1. Deriv.	atives of 3,7-dioxabi	cyclo(3.	3.0)octa	ne												:	1	:				:
64 See	Scheme	ш	133.8	128.3	116.1	157.7	116.1	128.3	86.7	55.0	64.5	33.8 12	8.3 11	6.1 15	7.7 116	5.1 12 	80 13 13 13 13 13 13 13 13 13 13 13 13 13	7 55.0			ļ	19
65 Pino	oresinol	۷	132.0	108.8	146.8	145.2	114.4	118.5	85.7	53.7	71.3	32.0 10	8.8	6.8 14	5.2 112	11	3.5 85	7 53.7		3 55.6	1	21
65 (±)- 20 D:	Pinoresinol	٩ •	133.0	108.5	145.4	146.8	108.8	119.0	85.9 of o	54.2		33.0 10	8.5 14	5.4 14	8.0	3.8 11: 11: 11:	0.0 20 20	575 57 57		7 56.0 EF 8	169.0.00	55
Ce Ding	presinol diacetate	< <	20.00	110.0	151.4	140.3	122.5	118.0	85.6 85.6	24.4		33.0 10	0.0 0.0 1 0.0	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	2 C C C C			5 1 5 1		0.00	169.0, 20.0	25a 35a
	Pinoresinol diacetate	(∢	139.2	110.0	151.3	140.2	122.7	111.9	85.5	54.4	72.0	39.2 11	0.0 15	1.0	12.12		58 6.	24.6	1 72.0	55.9	169.0. 20.6	51
67 Pino	resinol 4-methyl eth	er A	133.3	109.0	148.9	148.4	110.8	118.0	85.6	54.0	71.5 1	32.6 10	8.4 14	6.5 14	5.0 112	1.1 11	8.7 85	6 54.0	71.5	5 55.8	. 1	21
68 Pino	presinol 4-methyl	٩	133.2	109.1	149.0	148.4	110.9	118.1	85.6	54.0	71.7 1	40.0 10	9.7 15	1.0 134	3.9 123	2.5 11	.7 85	4 54.3	21.7	7 55.8	168.8, 20.5	21
ethe	ir acetate																					
69 Pino	presinol dimethyl eth	er A	134.0	109.7	149.5	148.8	111.4	118.4	85.8	54.3	71.7 1	34.0 10	9.7 14	9.5 14	3.8 11.	11	3.4 85	8 54.5	71.7	7 55.6, 55.9	1	37
70 (±)-	Eudesmin	۷	134.0	109.1	148.8	149.5	111.4	118.4	85.8	54.3	71.7	34.0	9.1	8.8	9.5 11'	11	.4 85	8 7	21.7	7 55.6, 55.9	ļ	41, 51, 54
71 (∓)	Sesamin	٩	134.9	106.3	146.8	147.7	107.9	119.1	85.6	54.2	71.5 1:	34.9 10	6.3 14	6.8 14	105 105	3.0 11	1 85	6 54.2	2.17.	i 100.9	I	41
71 (±)∹	Sesamin	٩	134.9	106.3	146.9	147.7	108.0	119.1	85.6	54.2	71.6 1	34.9 10	6.3 14	6.9 14	108	3.0 119	0.1 85.	6 54.2	21.6	3 100.9	ł	51
72 Meth	hylpiperitol	۷	134.9	106.3	146.9	147.7	107.9	119.1	85.6	54.2	71.6 1:	33.4 10	9.1 14	8.4 149	9.0 110	.9 118	82°	7 54.1	71.6	5 55.8, 100.9	ł	80
73 Yan	gambin	۷	136.6	102.8	153.3	137.5	153.3	102.8	85.9	54.4	71.9 1	36.6 10	2.8 15	3.3 13	7.5 15:	3.3 10	2.8 85	9 54.	4 71.9	9 56.2, 60.8	Versener	ĝ
74 See	Scheme	ш	133.1	104.5	148.8	136.1	148.8	104.5	86.7	55.0	64.5	33.1 10	4.5 14	8.8 13	5.1 <u>14</u>	3.8	1.5 86	7 55.0	8	1	1	19
74 (+)-	-Syringaresinol	B ·	132.1	102.7	147.1	134.3	147.1	102.7	86.1	54.3	71.8 1	32.1 10	2.7 14	7.1 13	1.3		2.7 86 2.7				ł	46b
75 Asc	hantin	∢ ∙	134.9	106.4	146.4	147.8	108.1	119.2	85.7	54.3	71.6	36.7 10	2.8	3.3	7.4 15.	3.3 10	8.8	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 56.1, 60.8, 101.0	I	
16 9H	ydroxysesamin	< <	135.4	106.3	147.2	148.1	1.08.1	2.611	0.22	1.10		30.1 10 25.5 10	6 - 14 6 6 - 14	4- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-		2.2		- 000		101.1		4 5
10-0 0L	Vuruxysesarriin avera Dibudrowninoraeino	۲ ۲ ۲	124.5		145.0	147.5	114.9	118.9	272	50.9	00.0	34.0 11 34.0 11	141	F 8 14	75 112	11 61	38	000	1001	66.5	2	51
- 6 6 6.	Dihvdroxvoinoresino	ם נ ד ד	139.3	110.9	151.4	141.1	122.8	118.3	85.0	58.5 1 .	01.1	39.3 11	0.9 15	1.4 14	1 12:	11	33 85	0 58.5	101.	- cc.c	169.1, 170.1,	51.
tetra	acetate	1																			20.3, 20.9	
-6'6 08-	Dimethoxypinoresine	ol B	133.4	110.5	146.3	147.8	115.2	119.3	84.8	59.2 1	07.1 1	33.4 11	0.5 14	6.3 14	7.8 11	5.2 11	3 84	8 59.2	107.	i 54.3, 55.4	ł	51
81 9,9'-	Dimethoxypinoresinu	о В	139.1	111.1	151.1	141.5	122.8	118.5	84.2	59.1	07.5 1	39.1 11	1.1 15	1.1 14	1.5 122	118	3.5 84	2 59.1	107.	54.5, 55.9	168.4, 20.3	51
diac 8799.	etate Dihudrowseeamin	٩	136 F	107.3	147 2	147.9	107.9	119.0	85.3 25	60.4 1	1.2 1:	36.5 10	7.3 14	7.9 14	101 67	11 67	0 85 10	3 60.4	1 101.5	101.0	1	42
- 0'0 30	Initian vyseaan in the	C	2.00	2	1	2	2.22	200	2				2	2	2	2	}	3		~ ~ ~ ~ ~ ~		ł

P. K. AGRAWAL AND R. S. THAKUR

¹³C NMR SPECTROSCOPY OF LIGNAN AND NEOLIGNAN DERIVATIVES

51 42	51	ត្ត។	51	5	រន	ខ្ល	37	42	38, 42	38, 42	22 3	3 8	2 2	រន	4	t 3		4	45	46a	Ω Ω	43		4 3	4 3	с р		1 3		4 3	cont'd)
21.2	21.2	21.0				0.9		•		169.7, 21.2			0			159.4, i	10-02-1 M				50.6	20.5				170.3,	<i>(</i>)	3.7, 3, 170.1,	_	39.0, , 1, 170.2,	Ĵ
169.7,	169.8, 2	169.4, 2	1		1	169.2, 2	. 1	ł		169.U, 20.7,		1	160.0	10.000	1	169.1,	20.7	I	1	ł	168.8,	168.7, 3		I	ł	169.4,	170.6	20.5, 2(169.3	170.4	20.5, 16 169.3 170 F	
		9.9	i.3, 55.6	01.0	101.2	01.0	01.5	01.6	101.2							3.2		9.6			8.	5.7		5.6	6.0	3.2		1.		5.1	
101.0 101.0	101.2	55.4, 55 55.3, 55	54.3, 55	101 1	101.1,1	100.9, 1	101.3, 1	100.9, 1	101.0, 1	0.101	101.2	1.101	100.9	55.5	55.6	56.0, 56		55.4, 55	57 1	56.4	55.6, 55	55.4, 55		2	55.7, 55	55.9, 56		55.9, 56		55.9, 56	
101.2 100.3	100.3	100.4 100.4	107.1	75.0	75.0	75.1	68.6	69.0	75.1	8.01	76.4	4.0/	9.6/ C V C	74.5	70.9	72.0		71.0	70.1	71.3	69.7	60.7		70.3	70.3	85.8		85.6		85.4	
60.4 58.5	58.5	60.9 58.2	59.2	60 6	60.6	58.9	60.3	59.6	92.0	34.6	87.6	9. 1 9. 1	8/./8	87.5	53.5	54.5		53.5	54.0	53.6	58.2	58.2		60.8	60.8	60.3		58.7		58.9	
85.3 85.9	85.9	84.2 85.1	84.7	85.0	85.9	85.7	90.1	87.7	88.0	89 87 87	86.9	5.02 5.02	8/:7 80 00	6.98	84.8	85.6		84.8	86.5	85.1	84.5	84.3		85.4	85.1	71.7		72.5		72.5	
119.0 119.8	119.8	118.6 118.5	118.9	119.8	119.8	119.7	119.6	111.6	120.1	123.4	120.3	2.021	120.6	120.1	118.1	117.9		118.6	104.6	104.3	121.1	121.0		119.7	119.7	120.3		120.5		122.9	
107.9 108.2	108.2	111.5 111.6	111.6	107 F	107.5	107.8	107.2	112.0	108.4	5.801	108.3	108.3	108.3	114.5	115.1	122.1		111.6	153.4	152.7	115.3	112.9		115.1	114.6	111.4		118.6		119.7	
147.9 148.2	148.2	148.9 148.9	149.1	148.2	148.2	147.9	148.3	147.6	148.0	d./41	147.9	9.141	147.0	146.8	148.9	139.2		148.1	138.8	137.2	148.2	148.7		148.3	148.7	148.9		150.3		139.4	
147.2 147.6	147.6	148.2 148.5	148.5	147 9	147.3	147.4	147.9	147.4	147.7	147.3	147.7	6.141	14/.1 147 E	145.8	145.9	150.9		145.8	153.4	152.7	147.5	148.1		147.4	148.3	149.3		148.9		151.3	
107.3 106.3	106.4	110.4 109.7	110.1	106.9	106.9	106.7	106.8	107.5	108.1	108.1	107.6	6.70L	10/.6	112.2	110.4	110.0		109.9	104.6	104.3	113.0	111.6		112.5	111.6	111.2		111.0		113.7	
136.5 134.7	134.7	135.9 133.8	135.0	134 8	134.8	133.9	135.0	134.8	135.1	133.9	129.3	129.5	130.9	128.4	132.1	140.2		133.8	133.7	133.9	131.2	131.7		132.3	133.9	132.2		132.4		139.1	
101.2 100.3	100.3	100.4 100.4	107.1	716	71.6	69.8	76.8	76.3	101.0	100.2	76.4	76.4	74.9	74.5	70.9	72.0		71.0	101	71.3	73.8	73.7		74.7	74.7	74.9		74.9		74.9	
60.4 58.5	58.5	60.9 58.2	59.2	017	91.7	97.1	95.0	94.1	66.0	64.7	87.6	87.5	1.18	87.5	53.5	54.3		53.5	540	53.6	97.0	6'96'		91.2	91.2	91.9		97.2		97.1	
85.3 85.9	85.9	84.2 85.1	84.7	87 E	87.5	86.7	102.7	101.5	83.4	83.7	86.9	86.9	87.2 oc o	6.98 8.98	85.1	85.6		84.8	26 F	85.1	86.1	86.0		86.9	86.9	87.5		86.8		86.7	
119.0 119.8	119.8	118.6 118.5	118.9	120.1	120.1	122.2	120.1	119.5	119.2	119.5	120.3	120.2	120.6	120.1	120.3	120.3		118.6	1046	104.3	119.0	118.5		118.8	118.4	119.0		119.7		120.6	
107.9 108.2	108.1	111.5 111.6	111.6	108.6	108.6	108.7	108.3	107.8	107.5	107.6	108.3	108.3	108.3	114.5	110.4	118.8		110.5	162.4	152.7	114.6	114.6		114.6	112.5	111.4		113.8		118.2	
147.9 148.2	148.2	148.9 148.9	149.1	148.2	148.2	147.9	148.3	147.5	147.7	147.9	147.9	147.9	147.3	146.8	148.9	151.3		148.9	138.8	137.2	148.2	148.3		147.4	148.7	151.1		148.9		150.3	
147.2 147.6	147.6	148.2 148.5	148.5	147.0	147.3	147.2	147.9	147.1	147.2	147.1	147.7	147.9	147.1	145.8	145.9	145.7		148.9	152 /	152.7	146.3	146.2		145.9	145.9	146.2		146.0		146.1	
107.3 106.3	106.4	110.4 109.7	110.1	108.2	108.2	108.1	108.2	106.8	106.2	106.3	107.6	107.5	107.6	112.2	110.4	110.7		110.5	104.6	104.3	110.7	110.1		110.7	110.2	109.9		109.6		110.1	
136.5 134.7	134.7	135.9 133.8	135.0	129.4	129.4	130.1	135.0	133.8	129.7	129.9	129.3	129.5	130.9	128.4	135.2	137.8		135.2	1327	133.9	130.3	130.2		131.1	131.1	133.1		133.1		133.1	
۹ ۹	۷	ح ح ٩	۷	٩	< ∢	۷	۷	۷	∢ .	٩	٩ (٩ ،	< <	τ	8	۹		8	ц	. 00	8	œ -≟		8	B -	4- H		∢ +		I-4-A ate	
samin ^b samin	samin	desmin desmin	desmin			e		reol		etate			9	Ŋ	-8-	coside		/-(methy	phien		oresino	oresino	4 2 2 2	ioresino	ioresina 4-0-β-	ioresino	4-0- β -	oresino 4-0-β-		oresinol	
droxyse droxyse	° droxyse	roxyeu droxyeu	, Iroxyeu	ether"		n aceta	0	isoarbo		iol diac		-	 	ם מרפוס	esinol-4 de	ol-4-glu	n	esinol-4	r-p-guu	<u>.</u>	toxypin	toxypin	erner)-	roxypir coside	roxypir ether)-	roxypin	ether)-	toxypin ether)-	te	toxypin side pe	
9'-Dihyc 9'-Dihyc	9'-Dihyc	acetate 9'-Dihyc 9'-Dihyc	acetate 9'-Dihyc	methyl	iuwolut	ulownii	oarbore	-Bromo	ummad	ummad	geliol	odeshic	odeshic	inseniol	-)-Pinor alucosic	noresin	יו מרכומו	-)-Pinor	ipdeboi:	iodendi	-)-8-Ace)-8-Ace	Icoside	D-8-Hyd)-8-Hyd (methyl	J-8-Hyd	(methyl icoside)-8-Ace (methyl	ucoside raacetai)-8-Ace β-gluco	
0 0 0 0 0 0 0 0 0 0	9 8 8	828 826 826 82 82 82 82 82 82 82 82 82 82 82 82 82	19 0 80 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87 Pa	88 Pa	89 Ist	.'9 06	91 G	82 87	93 Ki	8 8	8 8 8 8	20 Pri	+) 16	98 Pi	ž	+) 66		100 Lir	101 (+ A-4	102 + <u>+</u>	- 4 Blu	103 (+ 4-(104 (+ -'4'-	glt 105 (+	- 4 -	106 (+ + 4′-	glt tet	107 (+)	

able 1. (continued)																					
Substance		5	5	т С	5	а С	9 2	5 2	e e	ې م	,	Ċ Z	с м	ں لا	C -5	ن ن م	ប៊	6 0 2	ocH ₃ , OCH ₂	0 0 0 0 0 0 0 0	Ref.
108 See Scheme 109 (+)-Epieudesmin 110 Phillygenin 4-0-methy	A+B A	131.4 133.8 133.1	107.8 108.9 109.1	147.2 148.5 146.8	147.3 148.7 145.4	108.5 110.9 111.2	121.5 118.3 119.2	82.3 87.5 87.8	94.9 54.4 54.5	38.6 1 39.6 1 59.6 1 71.1 1	31.4 1(30.8 1(31.0 1(07.8 14 09.0 14 08.6 14	7.2 10 7.8 1/ 8.9 1/	8.5 12 9.0 11 8.1 11	21.5 8 10.9 11 14.3 11	7.03 7.05 7.05 7.05 7.05 7.05 7.05 7.05 7.05	5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3.6 3.1 70 3.2 69	- 100.9 .9 55.8 .7 55.9	111	23 39, 54 48a
ether																					
111 Horstieldin	<	30.4	108.5	14.8	146.5	114.4	119.5	87.7	9.0 27.0		35.3 10	06.5 14	8.0	101	08.2 0 0 1 1	80 10 10 10 10 10		0.2	.7 56.0, 101.0	1	46c
112 (+)-tpisesamin	۷ •	135.6	106.6	147.4	148.2	108.3	119.6	8/./	8.45 8.4	1 1 20	32.6 10	J6. / 14	8.9	01.9	1	8 6 7 8		5.1	1.101 0.	ļ	e 19
112a Asarının	< <	135.3	108.1	147.2	147.6	106.3	119.5	8/.6	9 8. [09.00	32.3 10	06.5 14 00.0	6.5	01 67	8.1		5 0 0 0		.9 101.0	ł	8 8
114 Neodmelinol	(4	132.0	109.7	149.5	140.4	0 F	118.7	85.0	47 C9		20.1	2.5.C	200 21 21	100	 	75 0	5 6 7 7	6/ 07	19 50.0	1 1	6 6
115 Arboreot	۲	33.7	106.7	148.0	148.3	108.2	119.6	102.8	94.8	76.8 1	35.3 10	7.1 14	8.0 14	8.3	8.2	0.7 0	5 0 0 0		E 101.3.101.4		36
116 Methylarboreol	₹ ₹	130.0	107.2	147.6	148.3	108.1	120.0	105.2	. 9.36	76.6 1	35.2 10	07.4 14	7.9 14	8.1 10	8.2	0.5 9(0.0	.4 68	.5 101.2, 101.3		37
117 Ethylarboreol	۷	130.6	107.1	147.5	148.2	108.2	120.0	105.0	95.5	76.6 1:	35.2 10	07.2 14	7.8 14	8.0 10	8.2 12	0.3	0.0	.5 68	49.0 .5 101.1,101.3 15 27 4	I	37
118 Epiaschantin	4	35.2	106.6	147.3	148.0	08.2	119.5	87.7	54.6	1.1 1:1	34.1	02.8 15	3.3 13	7.1 15	3.3 10	2.8	0.2 5(1.0	.8 56.2, 60.9, 1(47
119 Enimagnolin	. ⊲	33.7	109.3	148.8	49.3	11.2	118.5	87.6	54.5	1.1 1	34.2 10	02.8 15	3.3 13	7.1 15	3.3 10	2.8	50	0.1 69	7 56.2.56.0.6	-	47
120 Phillvaenin	< ◄	33.1	1.09.1	148.9	148.1	11.2	119.2	87.8	54.5	1.1 1.17	31.0 10	08.6 14	6.8 14	5.4 11	4.3 11	7.8 8.7	1	0.2 69	.7 55.9	1	48a, 54
120 Phillygenin	4	132.8			·	10.9		87.5	54.4	70.9 1	30.7			5	4.0	ώ	.9 5	.1 59	ō	ł	48b
121 Svlvatesmin	A	32.6	108.4	146.5 '	145.1 '	14.0 `	118.7	87.3	54.0	39.1 1:	30.7 10	8.9 14	7.7 14	8.6 11	0.9 11	7.4 8'	.6	17 70	.6 55.5	1	48c
122 Sylvatesmin acetate	4	38.9	109.7	150.9	140.1	17.7	122.3	87.0	54.2	39.4 1:	30.7 10	8.6 14	7.8 14	8.6 11	1.0 11	7.5 8'	.7 4	9.8 70	.9 55.6	168.8, 20.4	48c
123 Phillygenin acetate	A	40.3	110.0	151.3	39.2	122.7	118.1	87.4	54.6	1.1 1;	31.0 10	9.1 14	8.9 14	8.1 11	1.2 11	7.8 82	1.1 50	.2 69	.8 55.9	169.1, 20.7	48a
124 (+)-Epipinoresinol-	<	32.4	110.5	145.9	45.9	115.2	118.5	81.1	49.2	38.7	32.6 11	0.5 14	5.9 14	5.9 11	5.3 11	7.7 86	8.	1.6 70	4 55.7, 55.8	l	4
4-15-D-giucosiae 125 Phillyrin	m	131.2	109.5	146.0	147.7	115.3 `	118.2	81.3	49.3 (39.0 1;	35.4 11	10.5 14	8.5 14	9.0 11	6.0 11	7.7 86	5	1.0 70	.4 55.7	ł	4
126 Dieudesmin		131.4	109.6	147.0	148.7	. 10.9	118.4	83.9	49.5	38.7 1:	31.4 10	9.6 14	7.0 14	8.7 11	0.9 11	8.4 8	1.9 49	.5 68	.7 55.8	ł	41 .
127 Gmelanone	4	27.4	108.3	147.7	148.6	. 9.80	119.6	81.4	77.2 20	¥.7	30.6 10	6.9 14	7.9 14	8.6 10	7.1 12	0.2 85	20	0.0	.5 101.2, 101.4	1	37
1.4.2. Derivatives of 3,7-dioxa 128 See Scheme	bicyclo[3.3 A	0]octar 131.2	107.9	146.8	145.5	114.5	118.1	83.5	50.0 1	38.0 13	32.4 10	8.2 14	7.0 14	6.2 11	4.8 11	8.5 72	8	14 84	.6 56.1	1	35a
129 Hydroxysesamin y-lact	one A	132.8	105.6	147.1	148.2	108.2	118.6	84.3	49.9 1	76.4 13	34.2 10	5.8 14	7.8 14	8.2 10	8.4 11	8.9	22	12 72	.6 101.0, 101.3	ł	42
130 Gummadiol y-lactone	Ø	128.9	106.6	146.8	147.2	107.9	119.7	82.6	58.8	74.9 13	34.6 10	7.6 14	6.9 14	7.4 10	8.0 12	1:2	.6 8	2	2 101.0	1	42
1.4.3. Derivatives of 3,7-dioxa 131 9,9-Dihydroxysesamin	bicyclo[3.3. A	0]octan I31.7	-4,8-dic 105.6	ne: 148.3	148.4	. 9.80	119.0	81.9	48.2 1	74.9 13	31.7 10	5.6 14	8.3 14	8.4 10	8.6 11	9.0 81	6. 34	12 74	.9 101.5	I	42
dilactone 132 9.9'-Dihydroxypinoresir	B	29.0	110.6	147.4	47.9	15.5	119.1	82.1	48.1	75.4 12	29.0	0.6 14	7.4 14	7.9 11	5.5 11	9.1 82	4	175	4 55.8	1	51
dilactone	I																				ļ
133 9,9'-Dihydroxyeudesmi	19 10	30.5	110.0	146.3	49.4		18.8	81.7	48.1	75.3 13	30.5 11	0.0	6.3 14	9.4 11	1.7	8.8	₩ *	175	3 55.6, 55.7		51
ullactorie 134 9,9'-Dihydroxypinoresit diaretate dilactore	B lo	37.2	110.8	151.3	39.8	23.3	118.3	81.2	47.9 17	5.1 13	37.2 11	0.8 15	1.3 13	9.8 12	3.3 11	8.3 81	.2 47	.9 175	1 56.0	168.4, 20.3	51
2. Cyclolignans. 2. Damotines of tetrahudror	anhthalan																				
135 Galbulin	A	32.5	112.3	149.0	147.0	10.8	122.0	54.4	43.9	17.2 12	11 11	0.8 14	7.2 14	7.4 11	3.0 13	9.1 30	-1 36	.6 20	0 55.9, 55.8	[22
136 Galcatin	4	33.4	112.0	147.3	147.3 1	10.7	121.6	54.1	43.6	12 6.9	29.8 10	9.4 14	4.3 14	4.3 10	7.5 13	8.9 30	.4 3E	5 20	3 54.5, 55.8, 10	0.3	21
136a Isogalcatin	∢ ∘	32.1	112.7	147.5	47.3	110.5	122.6	54.2	44.0	17.1	32.1 10	17.5 14	5.6 14	5.6 10	9.1 14	0.4 39	.0 99	4 20	0 54.2, 55.8, 10	0.8	21
137 (+)-Isolariciresinol	∢ <	32.6	112.0	145.2	43.5	14.5	[21.9	47.4 4.7	47.5 1.5	27 7 7 7 7 7 7 7	27.2 11	0.6 14	7.1 14	4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4	5.8 13	8.8	8 8	.5 8.9	7 55.6 2 FF 0		8 %
tetraacetate	٤	30.4	13.1	0.16	47.1	1.77	C 7	4/14	- 	2		2	9.Z	ית	3.0 13	2 2	5	8 N	R-00 7	1/0.8, 1/0.6, 169.0, 168,	₹ 8
																				ZU.8	

P. K. AGRAWAL AND R. S. THAKUR

ţ

$^{13}\mathrm{CNMR}$ SPECTROSCOPY OF LIGNAN AND NEOLIGNAN DERIVATIVES

139 (+)-Isolariciresinol	۷	131.7	112.8	148.9	146.9	110.8	121.7	48.0	48.2	62.6 12	8.1 11	0.7 147	7.3 147	111 0.'	.9 137	.6 33	2 39.	99 66.	2 55.7	I	20
4,4'-dimethyl ether	<	1010	110 E	0.011	1 241	1110	9101	с Г	r cv	1 1 03	н 1 1				č		ł	č ,			â
4.4'-dimethyl etherdiaceta	te A	0.101	0.211	6.01		2	0'171	5 ?		1.00	0.7	1.1	0. 1	=	יע זי	22	ດີ	5 0 0	50.0	20.9 20.9	R
141 (+)-Isolariciresinol	A	132.8	112.5	149.1	145.8	111.5	122.1	47.7	48.0	62.4 12	11 1.1	1.0 147	7.6 14/	116 116	3.3 136	1.4 33	2 39.	9 66.	0 56.0		20
4-monometryl ether 42 (+)-Isolariciresinol 4-monomethyl ether-	۲	131.7	111.9	149.1	147.8	111.1	121.7	47.0	43.4	63.1 13	11.	1.7 149	9.1 137	.8 123	3.5 131		.1 35.	3 66.	3 56.4	171.4, 171.2, 169.5, 21.4,	20
triacetate 143 (+)-Isolariciresinol M-monomethul ather	٩	131.9	112.6	146.4	144.1	114.3	121.6	47.0	47.0	61.3 12	8.3 110	0.6 147	7.0 146		.8 13(15 32	4 38.	9 65.(J 55.1	-	20
144 (+)-Isolaricitesinol 4-monomethyl ether-	٩	138.4	113.1	150.9	143.4	122.7	121.5	47.6	43.8	63.4 12	11 22	0.8 147	7.4 147	3 112	.6 13(.4 32	7 35.	2 99:	4 55.9	170.9, 170.7, 168.4, 20.9	20
triacetate 145 Isolariciresinol tetra- methyl ether	٩	132.1	112.4	148.9	147.4	,111:0	121.8	47.3	44.9	71.4 12	8.9 11	1.1 147	7.2 147	.5 112	2.9 13	.1 33	.1 36.	4 75.	4 55.8, 58.9	ł	22
146 Lyonyresinol	в	137.6	106.0	147.4	133.3	147.4	106.0		46.6	62.3 12	8.5 10	3.6 146	3.3 137	.1 146	3.8 12	19 32	2	8	5 55.6, 56.1, 56.1, 58.9		55
147 Lyonyresinol tetraacetate 148 Nirtetralin	٩ ٩	144.9 132.0	105.0 112.1	151.9 148.6	127.3 146.8	151.9 110.9	105.0 119.9	43.0 45.3	44.4 41.4	63.1 13 73.6 13	5.2 10	6.9 151 2.9 147	1.3 131 7.5 139	7 150 8 141	.9 12 .9 12	53 13 13 13	6 35. 4 37.	5 66. 76.	3 56.0, 56.2, 60.1 1 55.8, 55.9, 59.0,	11	55 22
149 Hypophyllanthin	٩	131.8	112.0	148.6	147.1	110.8	120.5	45.4	41.9	71.9 11	5.1 100	5.7 147	7.2 133	8,4 142	.1 13	.1 33	36.	7 75.1	55.8, 55.9, 56.4, 58.9, 101 1	ł	22
150 Lintetralin	٩	131.9	109.4	145.9	147.8	107.7	122.7	47.3	45.1	71.2 12	9.0 11	1.2 147	.1 147	.3 113	r.1 139	.7 33	2 36.	3 75.	3 55.8, 55.9, 58.9, 100.8	I	22
151 (+)-Cycloolivil 152 (+)-Isolariciresinol- 9α - β - xylopyranoside penta- acetate	4 م	117.4 - 138.6	-122.9 113.1	151.3	143.0	129.4 - 122.7	142.1 121.7	44.8 46.8	47.6 44.1	60.5 11 67.1 13	7,4 - 12 4.3 11 ⁻	2.9 1.9 149	9.3 137	126	14 - 142 15 131	5 5 3 3 6 6		69. 65.	4 56.0 9 56.1		57
153 Lyoniside 154 Lyoniside hexaacetate 155 9-β-Xylopyranosyl-(-)-5-	∞ ≺ ∞	137.4 145.1 135.5	106.0 105.0 106.4	147.4 151.9 147.3	133.3 127.0 133.5	147.4 131.9 147.5	106.0 105.0 106.4	42.5 46.7	44.5 45.0 43.4	69.0 12 68.2 13 67.9 12	8.5 5.4 6.9 11	5.6 146 5.8 151 5.8 151 1.5 145	5.4 137 1.4 131 5.3 143	.1 146 .7 150 .8 115	12 12 13 13	-1 3 32 3 3 3 3 3 3 3 3	2 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2	800 80 80 80 80 80 80 80 80 80 80 80 80	5 55.6, 56.0, 58.9 2 56.0, 56.3, 60.0 5 55.3, 55.8		55 55 55
155a Cyclogalgravin	<	138.5	108.8	147.1	147.1	110.8	119.4	50.8	41.9	18.6 12	6.9 112	2.7 148	8.4 147	3 110	.8 127	.1 120	9 137.	9 22.	l 55.7	ł	21
 2.2. Derivatives of tetrahydrona; 156 Deoxypodophyllotoxin 157 Podophyllotoxin 158 Podophyllotoxin acetate 159 Epipodophyllotoxin 160 Epipodophyllotoxin acetate 	ohthaler A A A A	ne lacto 135.4 135.4 134.6 134.9 134.1	ne: 108.1 108.1 108.1 108.1 107.7	152.3 152.1 152.0 152.3 152.3	136.9 136.6 137.0 137.1	152.3 152.2 152.0 152.3 152.3	108.1 108.1 108.1 108.1 107.7	44.5 44.0 43.6 43.8	46.5 1 45.0 1 45.6 1 40.4 1 41.2 1	72.7 12 74.6 13 73.2 12 74.9 13 73.8 12	8.1 106 3.1 106 8.1 106 7.3 106 7.3 109	8.1 146 5.2 147 5.8 147 5.9 148 9.2 148	88 146 2 147 2 147 147 147 147	.5 110 .2 109 .0 110 .0 110		6.72 6.72 73 73 73 73 73 73 73 73 73 73 73 73 73	8 38.00 36.00 37.0	7 72.0 71.5 8 67.6	56.2, 60.6, 101.0 56.0, 60.5, 101.1 156.0, 60.5, 101.4 56.1, 60.6, 101.4 56.1, 60.6, 101.3		23 23 23 28 28 29 29 29 29 29
161 Picropodophyllotoxin 162 Picropodophyllotoxin	۲ م ا	139.1 138.8	105.6 106.3	153.2 153.3	136.6 136.6	153.3 1 153.0 1	106.3 106.3	43.8 44.4	45.4 1 45.4 1	78.0 13 76.7 12	2.8 10 ² 6.2 105	1.8 146 1.8 147		.5 108 .4 108	13 130 13 131	ы. 13. 12. 12.	3 42.0	69.7 8 70.5	7 56.4, 60.3, 101.2 5 56.0, 60.7, 102.0	170.0,20.8	58 58
acetate 163 Picropodophyllone 164 α-Conidendrin 165 α-Conidendrin diacetate 165 α-Conidendrin diacetate 166 β-Conidendrin diacetate	40444	131.9 134.8 140.8 138.6	107.5 112.7 111.9 112.0 113.1	152.8 148.6 151.5 151.8 151.4	137.4 146.0 139.0 139.3 139.3	152.8 115.8 115.8 123.1 123.3 123.3 123.3	107.5 121.8 120.6 20.3	44.5 48.2 49.7 46.6	46.5 1 42.5 47.3 41.7 41.2	72.7 12 72.9 12 71.5 13 71.7 13 71.2 13	8.0 105 6.6 111 3.6 113 3.8 113 3.9 112	.5 147 .9 147 .1 150 .1	9 138 152 9 138 152 9 138 152 9 138 152	0 110 0 123 0 123 0 123	5 141 5 132 6 130 9 131	78 73 73 73 78 74 74 74 78 74 74 74 74 74 74 74 74 74 74 74 74 74	6, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	66.8 179.2 176.4 176.6	56.1, 60.6, 102.2 56.2 155.9 156.0 1 55.8 1	— — 68.9, 20.5 69.0, 20.7	හි සි ශි හි ශි
 2.2a. Derivatives of tetrahydrona 167 See Scheme 168 See Scheme 169 See Scheme 	phthale A A A	ene acel 142.6 140.1 140.4	tal: 112.0 113.4 113.7	151.2 151.2 151.4	138.6 138.0 139.9	122.8 121.0 121.7	120.6 121.4 121.3	49.1 47.5 47.6	49.5 45.8 46.0	70.9 13 70.6 13 70.8 13	4.9 112 6.0 111 6.1 111	.8 149 .7 149 .8 149	.5 138 .3 137 .6 138	0 123 8 123 1 123	5 131 0 133 1 133	4 33. 4 31.	9 47.6 6 44.9 7 45.1	5 109.9 9 110.6	55.7, 56.4 1 55.8, 54.4 1 55.8, 56.2, 62.7, 1 55.0, 56.2, 62.7, 1	168.8, 20.5 168.9, 20.6 169.1, 169.2, 20.7	59, 60 59 59
170 (+)-Africanal	0		126.1 -	147.1	112.0 - '	121.3		48.5	45.1	70.3 12	6.1 – 14 7	-		112	0 - 121	3 37.	3 79.0	103.3	56.1	20.7	56
																					cont'd)

Table 1. (continued)																					
Substance		2	C-2	ဗ ပ	4	C-5	မှုပ	C-7	8-0 -8	6-D	C-1,	C X	් හ	# C-5	ڻ ن	C-7	န ပ	C-9	or others	ососн _з	Ref.
2.3. Derivatives of naphthaler	ne lacton	:e																			
171 Diphyllin	۷	145.0	105.8	146.7	146.9	107.7	123.7	118.7	121.7	169.6	29.7 1	01.0 14	9.8 15(0.6 111	0 129	7 123.	5 129.0	66.6	55.6, 55.2, 101.0	1	23a
171a Helioxanthin	8	131.4	109.7	146.6	147.0	116.7	120.7	125.7	128.5	170.4 1	30.5 1	07.8 12	0.9 14(0.0 141	2 126	8 122.	8 130.1	69.3	101.1, 101.4	ļ	60c
171b Orosunol	œ	131.2	115.0	147.4	148.9	116.5	120.6	121.6	130.9	168.4 1	29.1 1	12.7 12	1.3 14:	3.2 145	2 122	1 146.	3 125.3	69.7	55.9, 59.5, 101.2	1	60c
171c Demethylorosunol ^b	B	131.2	114.5	145.1	148.8	116.5	120.7	121.6	130.8	168.4 1	26.4 1	12.7 12	1.4 14:	3.3 144	0 122	2 147.	3 125.5	69.9	59.5, 101.2	1	60c
172 Cleistanthin A	٩	144.2	106.1	147.5	147.5	108.2	123.7	119.2	126.9	169.9	30.7 1	30.8 15	0.3 15	110	8 135	9 128.	4 129.2	67.4	55.8, 56.2, 58.0	1	23a
173 Cleistanthin A acetate	٩	1 44 1	106.1	147 G	147 F	108.2	123 G		126.0	169.7	30.7 10	0 8 1 E	0.4 15	9 110	7 135	6 126	1 128.4	66.9	60.1, 101.2 55 56 2 58 5		239
	5			2	2	100			2	8		2	2	2	2	2		2	59.9, 101.2	I	57
174 Cleistanthin A methyl ether	۷	144.4	106.3	147.5	147.5	108.1	123.6	119.2	127.0	169.7	31.0 10	35.1 15	0.2 15'	.9 110	7 136	4 128.	4 130.8	67.3	55.8, 56.1, 58.7, 60.7, 61.2,	ł	23a
	•			1	1						1				1				101.2		
174a Cleistanthin D	۷	144.6	106.1	147.5	147.5	108.1	123.5	119.4	123.6	169.8	30.7 10	15	0.2 151	.9 110	136	1 128.	5 127.1	67.6	55.7, 56.1, 57.4, 57.8, 61.3, 101.2		23a
3. Isolignan and benzofuran t 3.1. Derivatives of dihvdrober	ypes of rzofuran	neoligné :	JU.																		
175 Licarin A	۷	131.6	108.6	146.1	145.3	113.8	119.3	93.3	45.2	17.2 1	31.7 1	13.9 13	2.8 146	.3 143	6 109.	0 130.	5 122.8	18.0	55.5	I	26
176 (±)-Dehydrodiisoeuger	A lot	133.2	110.0	146.7	146.4	116.0	122.0	94.4	46.6	17.7	34.0	14.0 13	4.0 147	.6 143	4 112.	0 132.	0 125.6	18.0	56.0	ļ	ж :
176 (±)-Dehydroiisoeugenc	A ·	132.1	108.9	146.6	145.8	114.1	119.9	93.8	45.6	17.6 1	32.2 1	13.3 13. 13.0	3.3 14	44	2 109. 212	3 130.	9 123.4	18.3	55.9 50.4]	61
177 (+)-Dehydrodiisoeugen	A ioi	132.4	110.0	149.5	119.5	9.111	119.2	93.6 20.0	45.7	8.71		3.6 13.6			01 0 7 0 7 0	131.	2 123.3	18.3	56.1	l	60b
178 Licarin B	۱ ک	134.0	106.3	147.5	147.2	/./01	119.7	93.0 200	45.5	17.6	8.1.8	13.0	2.7	241 243	109.	2 130.0	6 122 9	18.1	1001, /.œc	I	8
179 See Scheme	ш I	133.8	1.28.1	116.2	158.1	116.2	128.1	88.3 88.3	54.6	64.5 24 r - 1	29.4	23.7 10	3.8	6ZL G1	9 128	1 130.	128.0	63.3	1	I	19
180 Dehydrodiconiferyl alco	ahol E	134.3	7.0LL	148.6	147.3	115.8	119.5	88.3	54.6	64.5	30.4	8.1		132	0 116.	2 130.	9 128.0	63.3	1 4]	19,6Z
181 Cedrusin		134.6	110.5	148.2	14/.0	116.3	119.5		55.1	64.7	29.7	14. 14.	1.5 146	0.136	2 116.		6.15 0.15 0.15	61.9 6.03	50.3 EE 0	I	38
iaz Uinyaroaenyaroaiconin alcohol		0.201	0.501	5.01	40.0	0.01	t. 	0.70	20.2	7.00		<u>f</u>	ř.		- - 0	Š	6.00	7.00	6°00	ł	8
182 Dihydrodehydrodiconife alcohol	eryl E	134.5	110.8	148.5	147.1	115.8	119.4	88.3	54.6	64.5 1	29.9 11	3.9 136	5.4 144	.8 129.	9 117.	7 35.	3 32.4	61.7		ł	19
183 Cedrusin tetraacetate	۲	139.6	109.4	151.1	139.2	122.7	117.3	87.8	51.1	65.5 1	27.8 12	2.2 13	1.7 148	.7 133.	6 121.	31.1	30.3	63.6	55.9	(68.1, 168.7, 170.8, 170.8 20.7, 20.8,	83
																				20.9	
184 Dihydrodehydrodiconife alcohol triacetate	eryl A	139.5	109.8	150.9	139.3	122.6	118.0	87.6	50.7	65.4 1	26.8 11	2.5 143	3.9 145	9 134	9 16.	32.0	30.5	63.1	55.8, 56.0	68.6, 170.4, 170.8, 20.6, 20.8, 20.9	8
185 Cedrusin-4-glucoside	ပ	137.9	111.5	146.8	150.1	116.8	118.9	87.6	56.5	64.6 1	29.1 11	7.2 141	1.2 145	.9 136.	5 116.3	35.	32.2	62.1	56.5	ļ	83
186 Cedrusin-4-glucoside peracetate	٩	137.4	109.8	150.7	145.5	120.1	117.4	87.8	51.1	65.5 1	27.9 12	13	148	8 133	9 122	8 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	30.3	63.6	56.1	68.2, 169.1, 169.9, 170.3 170.4, 170.9, 20.7, 20.9, 21.0	8
187 Dihydrodehydrodiconife alcohol-4-glucoside hexaacetate	eryl A	137.3	110.2	150.7	145.8	120.1	118.5	87.8	50.7	65.4 1:	26.8 11	2.4 143	145	9 134.	9 116.	1 32.1	30.6	63.7	55.1, 56.0	69.2-170.9, 20.8-21.0	83
188a Dehydrodiconiferyl alcohol-4-olucoside	۷	137.5	110.9	150.4	147.1	117.5	119.5	88.4	54.7	64.5 1	29.7 11	1.7 14	5.0 148	.7 132.	2 116.	1 131.6	5 127.3	63.5	56.4	ļ	2
188b Dihydrocarnatin 188c Balanophonin	۹ ۹	132.7 129.1	109.5 108.6	149.1 146.5	144.0 145.6	115.6 114.3	119.2 119.1	93.6 88.8	45.7 52.9	17.5 1 63.7 1	33.2 11 27.8 11	0.8 13 2.3 14	3.5 149 1.4 151	.1 133. .2 132.	5 111. 0 118.	9 40.	2 137.9 9 126.0	115.5 193.2	55.9 55.9, 56.0	1 1	83a 75b

P. K. AGRAWAL AND R. S. THAKUR

¹³CNMR SPECTROSCOPY OF LIGNAN AND NEOLIGNAN DERIVATIVES

 188d Dihydrocarinatinol 188 Americanin D 190 Leptolepisol 191 See Scheme 192 See Scheme 	বৰৰৰ	127.7 130.2 134.7	109.3 113.1 110.5	149.0 145.2 149.0	147.0 145.2 146.2	116.1 115.3 116.1	118.7 116.6 119.5	87.5 87.5 89.1 87.9 87.9	53.8 52.9 55.4 53.6 53.6	63.9 63.0 65.1 64.0	133.7 1 127.4 1 138.4 1	11.0 1 17.0 1 12.6 1	44.3 14 41.3 11 48.3 1	49.2 13 50.2 13 44.8 12	33.8 11 32.3 11 29.1 11	2.6 6.6 72 6.4 73	0.1 137 5.5 154 5.5 56	.8 115. 0 193. 8 64.	7 55.9 8 4 56.4,56.6 56.0	1111	8 8 8 8 8 7
193 Herpetotriol 194 Herpetriol 195 Herpetetrol	υυυ	134.3 134.5 133.8	110.4 110.4 110.5	148.8 149.2	147.3 147.5	116.3 116.0 116.3	119.5 119.6 119.7	89.2 88.9 89.1	55.2 55.3 55.2	64.8 64.8 64.8 64.8	130.1 1 130.0 1 130.0 1	15.5 1 16.0 15.7 1	48.9 1 [,] 48.6 1 [,]	45.2 13 15.1 13 45.1 13	36.3 11 35.6 11 35.3 11	6.0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.1 55	2 2	6 56.7, 56.3 56.3, 56.5 56.3, 56.7	ł	66 66 66
 3.2. Derivatives of benzofuran: 195a Ratanhiaphenol II 195b Carinatin 	4 م	124.6 133.0	128.4 107.6	115.7 148.9	155.1 144.7	115.7 111.1	128.4 119.9	155.5 154.2	109.8 110.2	9.3 9.6	(32.9 1 (35.2 1	16.2 1 10.0 1	31.5 15 41.5 14	51.3 11 18.9 12	0.7 12 24.3 11	2.3 1.0 4(1.5 124 0.6 138	2 18. 0 115.	3 6 55.9, 56.0, 56.1	1	67 83a
 Benzocyclooctadiene lignan. I. R-Biphenyl configuration. I.1. (+)-Deoxyschizandrin gr (+)-Deoxyschizandrin gr (+)-Deoxyschizandrin 197 (+)-Gomisin K₂ 	:dno	139.1 139.4	107.3 107.4	153.0 152.9	140.3 139.9	151.6 151.5	122.4 122.3	35.7 35.6	40.9	21.8 1 21.8 1	33.9 1 34.7 1	10.6 11 13.1 14	51.7 13 47.6 13	9.9 15 37.7 15	61.5 12 0.4 12	8 8 5 9 5 9 5 9	88 38 38	8 12. 12.	7 55.7, 60.3, 60.7 6 55.9, 60.1, 60.5,		70
198 (+)-Gomisin K ₂ acetate	۷	139.1	107.4	153.3	139.9	151.4	121.9	35.6	40.8	21.8 1	34.2 1	20.4 1	42.5 14	15.8 15	1.7 12	9.0	3.8	6 12.	61.0 5 56.0, 60.3, 60.6, 60.6 60.0	169.1, 20.8	71
199 (+)-Gomisin K ₃	٩	139.8	107.3	153.2	139.9	151.3	121.3	35.8	40.9	21.7 1	34.3 1	07.9 1	50.6 13	4.0 14	6.9 11	7.0 33	39	2 12.	60.6, 61.0, 8 55.9, 56.0, 61.0, 51 1	I	71
200 (+)-Gomisin K_3 acetate	۷	140.2	107.5	153.2	139.6	151.3	120.9	35.5	40.6	21.6 1	34.0	13.1 1	51.5 13	14 14	2.3 12	3.5 3.	39	2 13.	0 55.9, 56.1, 56.2, 60.7, 60.0	168.4, 20.5	11
201 Deoxy-(+)-gomisin K ₃	٩	139.3	107.7	152.6	140.1	151.0	126.5	35.7	40.5	21.6 1	28.5 1	14.7 14	47.2 1/	11	4.0 13	0.3	3.4 38	8 12.4	8 55.9, 56.0, 60.5,	ł	11
4.1.2. Schizandrin group with a 202 Gomisin A	a hydro: A	xy grou 132.1	ip at C⊰ 110.4	3: 152.3	140.8	152.1	124.2	40.6	71.7	30.1	32.5 1	05.9 1	47.9 13	35.0 12	I 3.3 12	1.9 3	3.8 42	.1 15.	8 56.0, 59.6, 60.6,	i	70
203 Schizandrin 204 Gomisin H	۹ ۹	131.8 132.5	110.5 110.6	152.3 152.6	140.8 140.8	151.9 152.6	124.2 123.2	40.9 41.1	71.8 72.0	29.7	33.8 1 34.3 1	10.1 1	52.0 14 50.7 13	40.3 15 34.0 12	33.6 12 16.9 11	ა. წ. ფ. წ. ფ.	1.4 41 1.5 41	8 15. 8 15.	9 56.0, 60.5, 60.9 9 55.8, 56.0, 61.0,	!	70
 S-Biphenyl configuration. Gomisin J group: Comisin N 	۲	134.1	110.7	151.6	140.2	151.7	123.4	39.2	33.6	12.9 1	37.8 10	02.9 1	48.7 13	<u>н</u> .6 14	1.1 12	1.4 3!	6.6 40	8 21.	61.1 5 55.9, 59.6, 60.5,	Į	70
205a Wuweizisu C 206 (–)-Gomisin K.	4 ۹	134.1	110.8	157.7	140.3	157.6	123.4	38.9 39.6	33.7 33.8	12.6 12.8 1	40.0	10.01	48.8	7.5 15	0.3 12	36 36 19	6.4 20.3 40.	8 21. 9 21.	59.6 56.0.601.605		74 70
207 (-)-Gomisin K ₁ acetate	< ∢	133.9	110.7	152.0	140.3	151.5	122.0	39.1	33.7	12.6 1	39.5 1	17.5 14	13.7 14	2.4 15	1.6 12	5 08 2 08	2 2 2 3	9 21.7	60.3, 61.0 56.6, 60.3, 60.6,	169.0, 20.8	202
208 Dimethylgomisin J 209 Gomisin J	4 م	133.5 134.9	110.3 113.3	151.3 147.6	140.3 137.8	151.3 150.3	123.3 122.5	39.1 38.9	33.7 33.8	12.7 1 12.6 1	38.8 1(40.2 11	07.0 1E	52.7 13 18.8 13	9.6 15 7.5 15	1.5 12 0.5 12	2.2 3E 1.5 3E	55 40. 13 41.	7 21.5 0 21.5	60.8, 61.0 8 55.7, 60.4, 60.8 7 60.1, 61.0		7 Z
1.2.2 Gomisin O group with a 210 AngeloyI gomisin O	hydroxy A	group 132.8	at C-7: 111.3	151.9	141.7	151.9	123.8	80.8	37.0	15.8 1	35.1 10	02.2 14	13 13	4.6 14	2.0 12	1.7 37	.9 37.	2 17.8	8 56.0, 59.3, 60.4,	1	72c
210a Gomisin O	۷	137.0	110.2	152.1	141.7	151.9	122.2	81.4	40.1	16.6 1	35.5 1()2.5 14	19.5 13	4.6 14	1.5 12(.7 38	.1 37.	2 17.5	60.9, 100.7 5 56.0, 59.5, 60.3, 20.0, 200 7	I	70
210b Gomisin R	٩	136.0	105.6	148.2	136.4	141.6	121.5	81.1	40.1	16.5 1	35.7 10	02.7 14	19.3 13	4.5 14	1.6 12(.4 37	.9 37.	1 17.5	5 59.5, 59.6,	I	72d
211 Epigomisin O	۷	136.5	106.4	152.3	140.8	151.2	121.3	73.4	42.6	7.8 1	37.9 10	12.8 12	13 13	4.6 14	0.9 11	3.6	.7 39.	3 22.0	100.8, 101.2 56.0, 59.6, 60.6,	ł	70
211a Deangeloyi isogomisin	٩ م ا	135.2	105.5	148.1	136.4	141.6	121.6	81.1	40.2	15.6 1	37.2 10	7.1 1E	33.6 14	0.1 15	1.9 12'	.3 37	. <u>3</u> 6.	6 18.7	01.0 55.9, 59.6, 60.7, 60.0, 101.7	[72c
211b Benzoyl isogomisin O	۲	130.8	106.5	148.0	137.0	141.7	122.8	81.2	36.4	14.3	36.9 10	7.1 1E	3.2 14	0.1 15	1.8 12	37	.9 37.	2 19.2	60.7, 101.3 60.7, 101.3	Į	72c

(cont'd)

Table 1. (continued)																					
Substance		5	C-2	ဗ္ပ	4	0-5 C	မှုပ	C-7	۵ ۵	6	0 	S.	ن ښ	ن ج	ن عز	່ບໍ່ ເວ	ي م	6 0	or others	ососн	Ref
4.2.3. Gomisin B group with 212 Deangeloylgomisin B	two hydre A	oxy gro 133.6	ups at 110.3	C-7 ano 152.1	1 C-8: 141.5	151.9	122.1	86.0	73.6	28.5 1	35.0 10	03.2 14	9.8 13	5.5 14	0.7 11	9.6	3.3 41	.6 18	.8 56.0, 59.6, 60.7,	1	20
212a DeangeloyIschisan- therin D	٩	132.6	106.0	140.8	136.3	140.8	120.3	85.8	73.6	28.6 1	35.6 1(33.4 14	9.8 13	4.9 14	1.5 11	9.5 36	3.1 41	.6 18	60.8, 101.0 .6 59.6, 59.7, 101 1 101 2	ł	72d
213 Deangeloylgomisin F	۷	132.2	106.0	148.1	136.5	141.5	120.6	85.9	73.6	28.7 1	36.7 1(7.7 15	4.2 14	0.5 15	1.4 12	36	3.4 41	.6 18	.9 55.9, 59.7, 60.6,	1	70
214 Gomisin P	۷	135.4	106.4	152.4	140.8	150.9	122.2	75.0	76.2	16.0 1	36.9 1(14	9.1 13	4.9 14	1.1 11	9.5 36	3.9 46	.6 18	61.0, 101.3 .8 56.0, 59.8, 60.5, 60.9 100.9	I	70
215 (–)-Gomisin Q	٩	133.3	110.2	152.0	140.6	152.0	120.6	86.1	73.8	28.6 1	36.6 1()7.6 15	4.2 14	1.6 15	1.3 12	1.2 36	3.5 41	.7 19	.0 56.0, 60.6, 60.9, 61.0, 60.7	ł	72
4.2.4. Derivatives of benzocyc 216 See Scheme	slooctadie A	ne lacto 132.0	one: 112.2	148.9	147.3	114.3	132.5	32.1	46.9 1	76.5 1	31.0 11	11.9 14	8.8 14	7.3 11	4.1 13.	5.5 34	1.2 50	-1 70.	.1 56.0	1	73
4.2.5 (and 4.1.3). With a keto 216A See Scheme	function A	at C-7 a 137.0	101.1	C-7': 154.6	142.4	152.8	117.9	209.6	52.4	8.5	31.7 1	04.2 1/	49.8 14	1.0.12	1.2 12	2.6 20	1.7 4.	.2 15	5 56.1, 59.9, 61.1,	J	73b
216b See Scheme	٩	137.3	105.7	153.6	141.3	152.9	120.3	79.4	47.8	10.2	31.0 1	04.0 12	49.2 14	1.3 1/	0.9 12	5.8 20	0.5 4	1.2 16	61.3, 102.2 3.0 56.0, 59.8, 61.0, 3.00 0		73b
216c See Scheme	۲	131.8	108.4	153.4	146.3	151.7	122.1	201.9	47.2	15.3	35.6	97.1 1E	50.1 13	7.0 14	11 11	7.8 20	9.2	5.5	102.0 3.4 55.9, 59.8, 60.5, 21 0 101 7		73b
216d See Scheme	٩	130.9	108.2	152.8	146.4	151.7	125.1	200.3	44.0	15.8	35.7 1	01.5 14	19.5 13	6.2 14	2.2 11	9.5	9.5 4	3.1 10	01.0, 101.7 1.3 55.9, 59.8, 60.5, 51.0, 101 5		73b
216e See Scheme	۷	134.3	106.9	152.7	141.3	151.7	120.5	73.1	43.2	8.0	34.3	97.2 14	19.6 13	6.7 14	11 0.0	5.7 20	9.4	3.9 14	1.1 55.9, 59.9, 60.8,		73b
216f Kadsurin	٩	133.3	110.4	151.6	139.7	151.0	123.4	200.3	44.0	14.8	34.9 1	02.5 14	18.4 13	6.0 14	1.4 12	0.6	2.3 4	.9 19	01.1, 101.5 1.6 56.0, 59.7, 60.3, 1 60.7 101.2	170.1, 20.7	73b
216g See Scheme	٩	137.0	101.0	154.5	142.3	152.5	118.1	209.6	52.4	8.6	31.7 1	08.2 15	53.4 14	6.5 15	1.7 12	2.3 20	1.9 4	11 15	5.5 56.0, 56.1, 60.5,		73b
 Neolignan. Hydrobenzofuranoid type 1.1. Angularly methoxylatex 217 Mirandin A 	1 hydrobe A	enzofura 135.5	anoid ty 102.6	/pe: 152.8	137.2	152.8	102.6	94.3	46.9	16.1	142.5 1	31.6	80.9 17	2.6 10	16 18	8. 9. 9	3.2 13	4.8 116	3.9 56.1, 60.7±0.1, 50.3	I	26
218 Mirandin B	٩	132.7	103.5	153.3	138.4	153.3	103.5	91.2	49.8	6.9	142.8 1	30.9	77.6 17	4.3 10	12.7 18	6.8	3.5 13	117	7.1 56.1,60.7±0.1, 51.1	ł	26
5.1.2. Angulariy aliylated hyd. 219 Ferriearin 220 Burchellin 221 See Scheme	robenzofu A A A	ıranoid 133.9 131.5 129.8	type: 100.2 106.5 109.1	148.6 148.1 149.6	133.9 148.1 149.2	143.1 107.8 110.9	105.5 120.5 119.3	81.8 90.9 91.0	44.5 49.5 49.3	8.3 8.5 9.5	52.5 153.3 1 153.3 1	99.7 19 97.8 19 97.8 19	92.6 12 50.9 18 51.0 18	5.7 15 1.4 10 1.3 10	0.9 1.8 1.9 16 16	2.8 3 2.8 2.6 3 3 4	0.4 13 6.6 13 6.7 13	3.9 117 3.9 120 3.7 119 3.7 119	7.6 56.4, 101.2 3.0 101.2, 51.8 3.9 55.2, 55.9		26 26
222 See Scheme	< ۲	130.1	109.2	149.5	149.2	110.9	119.2	91.5	49.6	8.5	52.7 1	07.2	49.8 18	3.9 16	6.0 15	9.7 3	6.7 13	0.7 119	3.8 55.3, 55.9, 60.4	ļ	26
223 See Scheme	4 م	130.2 134.6	106.0	147.7 148.9	131.0	108.1 143.4	118.7 105.0	87.2 87.1	44.6 44.5	12.0	52.7 1 52.6 1	0.90	53.9 18 19 19	1.2	1.8 1.8 1.8 1.8	224	3.9 3.8 13	1.5 120 1.5 120	0.0 101.0, 55.2 0.0 56 7 101.4 55 1	11	26 26
225 See Scheme	< ◄	130.7	102.4	153.2	132.1	153.2	102.4	87.2	44.5	12.0	52.6 1	6.80	53.9 18	1.1	2.0 18	2.4	3.9 13	1.5 120	0.1 56.1, 60.7, 55.2	ł	26
226 See Scheme	4 •	129.8	106.2	147.8	147.8	108.2	118.7	87.4	42.8	11.6	48.7 1	67.0 16	36.6 19 26.0 19	2.3	7.3	2.2	9.8	2.7 119	0.8 55.9, 101.1]	F 8
22/ Porosin 228 See Scheme	4 م	128.3	108.6	149.6	148.5 149.7	110.9	8./11	2.78	47.5 49.4	0.1 8.5	51.0 1	32.U 32	21.9 1.9 1.9	2.7 IL	3.0 10 3.0 10	5 6 C	9.0 13 6.7 13(0./ 00.3, 00./ 0.9 55.9, 55.2		8 8
229a See Scheme	۷	133.1	103.4	153.3	131.5	153.3	103.4	91.1	49.4	8.5	51.0 1	81.4 10	1.9 18	2.7 15	3.0 10	7.9 34	6.7 13(.8 119	.9 56.1, 60.7	l	81
229b See Scheme	۷	136.1	102.3	149.7	130.2	143.4	109.1	62.1	82.2	18.9	48.3	69.6	27.4 19	2.7	7.2 3	8. 2.8	9.1 133	8.7 118	1.8 57.1, 59.3, 60.3, 101.7	1	80b

P. K. AGRAWAL AND R. S. THAKUR

ţ

¹³C NMR SPECTROSCOPY OF LIGNAN AND NEOLIGNAN DERIVATIVES

Q.

5.1.3. Linearly allylated and met 229c See Scheme 229d See Scheme	hoxylĕ A A 1	ated hyc 131.4 1 133.2 1	drobenz 106.1	cofuranc 148.1 - 153.4 1	oid type 148.1 138.5	e: 108.2 153.4	120.0 103.0	93.7 93.7	42.6 42.6	16.1 16.3	80.8 80.6	134.1 134.1	140.2 140.0	172.0 171.0	99.5 99.6	199.3 199.2	45.0 44.8	130.7	119.0 118.8	100.3, 53.5 56.1, 60.7 ± 0.1, 53.4		26 26
 Benzodioxane type: Eusiderin Eusiderin See Scheme See Scheme See Scheme 	4 4 4 4 4	131.9 1 132.4 1 132.4 1 132.4 1 29.6 1 29.5 1	104.1 1 104.4 1 07.1 1 03.2 1 11.2 1	153.0 1 153.4 1 147.9 1 153.5 1 153.5 1	38.0 138.3 147.9 137.8 137.8 147.9 148.9	153.0 153.4 108.2 153.5 109.5	104.1 104.4 121.3 103.2	80.6 81.0 80.6 77.1	73.7 74.0 73.2 73.2	17.0 17.3 12.6 12.6	132.1 132.2 132.5 132.5	104.3 104.5 105.1 105.1	148.1 148.4 148.4 148.1	130.9 131.1 131.1 132.3 132.3	143.8 143.8 143.8 143.4 143.4	109.1 109.4 109.8 109.8	39.7 39.9 40.0 10.0	136.9 137.1 137.5 137.5 137.5	115.3 115.6 115.6 115.9	55.7, 55.8, 60.4 56.3, 60.7 56.1, 101.1 56.2, 60.9, 56.1 56.0, 56.1		26 75a 78 78
234 Americanin A 235 Americanin A triacetate 236 Americanin B	. e <	127.2 134.2 1 29.4 1	115.0 1 23.0 1 16.1 1	145.3 1 142.5 1 43.2 1	45.9 42.1 44.0	115.5 1 23.9 1 116.7 1	118.9 126.0 20.4	76.1 75.4 75.2	78.1 74.3 78.2	60.1 60.0 60.0	127.6 128.1 127.5	122.6 123.0 116.7	117.3 117.5 143.7	146.5 145.8 146.1	143.5 142.7 117.3	116.8 116.9 123.0	126.9	153.0 ·	194.0 193.9 193.9	11	 168.0, 169.8, 20.2	79 79 84
 Bicyclo[3.2.1]octane type. Bicyclo[3.2.1]octane type: Carl Guianin type: See Scheme See Scheme See Scheme See Scheme See Scheme See Scheme 	4 4 4 4 F F F F	131.4 1 131.6 1 132.2 1 33.3 1	07.6 1 07.9 1 08.2 1	147.4 1 147.5 1 147.5 1 48.0 1	46.3 1 46.5 1 46.4 1 47.8 1	110.8 110.6 109.6 108.7	120.3 119.5 119.4	57.0 57.5 55.6 53.1	48.6 49.4 47.4	13.9 13.9 17.4	51.4 50.8 51.8 51.8	78.2 77.6 84.5 80.9	90.8 90.2 64.9	194.6 193.6 185.8	151.4 152.1 151.2 153.0	123.8 124.1 126.8	36.6 37.1 34.6	(34,4 (33.9 (33.9 (34.3	117.9 118.6 117.9	54.5, 55.4, 100.8 54.8, 55.5, 100.9 53.5, 55.4, 100.8 53.3, 100.9		80a 80a 80a 80a
5.3.2. Macrophyllin type: 241 See Scheme 242 Macrophyllin B 243 See Scheme	444	137.2 1 140.3 1 136.7 1	04.6 1 04.7 1 04.5 1	153.8 1 153.7 153.9 1	37.2 1 36.7 1	153.8 1 153.7 1 153.9 1	104.6 104.7 104.5	45.4 45.4 45.3	49.5 46.0 46.6	13.9 11.9 15.6	140.6 140.3 140.1	202.2 76.3 189.3	69.9 58.9 66.4	194.3	89.4 85.5 94.5	147.3 126.6 143.6	32.8 36.4 34.1	134.1 135.1 133.8	118.0 117.3 118.5	54.0, 56.3, 60.8 56.3, 60.8, 52.9 56.3, 60.9, 51.0	[[]	83 83
5.4. Carinatane type: 244 (-)-Carinatone 245 Carinatinol 246 (-)-Carinatanol	4 4 4 7 7 7	27.6 1 22.2 1 29.0 1	09.5 1 10.1 1 09.4 1	48.8 1 48.7 1 48.5 1	46.6 1 46.7 1 46.7 1	20.0 1 20.4 1 19.5 1	23.2 1 23.5 1 20.4	99.6 99.3 78.9	39.8 48.2 42.0	17.9 63.9 17.1	129.7 129.3 131.6	110.2 110.1 109.7	140.4 140.9 142.1	153.0 153.2 148.9	131.9 131.9 135.7	111.2 110.9 110.7	39.9 39.8 40.1	137.6 137.3 137.8	115.6 115.7 115.6	55.9 55.8, 55.9 55.8		833 834 838
 5.5 Heterotropanone type: 247 Heterotropanone 	A 1	35.0 1	1 106.1	152.8 1	. 8.14	152.8	106.1	37.4	39.7	27.1	135.0	41.2	94.2	201.7	86.1	118.8	39.5	33.9	117.2	49.2, 50.7, 53.7, 56.0, 60.6	ł	25a,b
248 Isoheterotropane	A	136.1	105.8 1	152.8 1	46.2	152.8	105.8	36.2	41.7	26.2	136.1	41.4	94.7	201.0	86.5	120.2	39.6	133.7	117.3	49.0, 50.7, 52.9, 56.0, 60.6	ļ	25a,b
5.6. Asatone type: 243a Asatone	٩	49.8 1	21.7 1	50.2	88.7	93.2	43.9	41.3 1	35.2 1	18.2	144.9	116.6	92.1	201.4	98.7	44.5	39.0	116.9	133.4	50.1, 50.2, 54.8, 55.5	ļ	25b, 83b
249b Isoasatone	۲	50.2 1	22.1 1	150.2 1	87.7	93.3	43.2	41.5 1	35.0 1	17.3	141.2	116.0	91.8	201.2	<u> 98.5</u>	39.6	128.7	128.2	18.4	50.2, 50.5, 50.8, 54.8, 55.4		25b
250 Heterotropatrione 251 Isoheterotropatrione	۹ ۷	49.5 1 49.8 1	20.6 1	150.2 150.5 1	87.9 87.5	93.2 93.4	43.9 44.1	41.1 1 41.7 1	33.8 1 34.2 1	16.7 17.0	144.0 145.8	115.8 117.0	91.8 91.6	201.3 201.6	98.3 98.2	44.6 4.1	36.7 35.6	33.0 36.9	28.0 27.1	48.9–55.4 49.4–55.4	}	25b 25b
5.7. Other types: 252 Aurein 253 Surinamerein	۲ م ا	35.8 1 37.6 1	05.7 1	52.6 52.9	35.6 35.6	52.6 1	05.7	45.2 83.6	41.9 78.0	20.8 17.0	141.9 133.3	103.8	152.2 150.5	134.5 146.4	152.2 118.6	103.8 118.7	73.7	134.2 . 124.6	116.9 18.2	55.6, 55.7, 60.4 55.6, 56.0, 60.7	1	26 76
254 Magnolol	< 4	33.3 1	31.4 1	24.5 1	51.0	16.8	29.8	39.4 1	37.6 1	15.8	133.3	131.4	124.5	151.0	116.8	129.8	39.4	. 97.6	115.8	ļ	ł	82a,b
255 Honokiol 255a Ohovatol	4 4 1 1	32.4 1 33.3 1	31.1 1 29.8 1	17.8 1	50.7 55.2	16.8 1 17.8 1	29.6 29.8	39.4 39.5	37.8 1 37.4 1	15.6 15.8	126.5 132.5	153.9 111.1	116.5 144.0	130.3 135.0	128.6 144.9	128.8 111.5	35.0 39.4	136.1 137.2	115.6 115.7] -	-	82a,b 82b
255b Futoenone 256 Denudatone		50.3 1 50.4 1	80.1 1	01.4	83.1	53.4 1 53.3 1	0.60	43.7 43.6	81.9 9.19	38.0 37.9	137.3 139.1	107.7	148.0 153.3	146.4 139.1	108.3 153.3	121.1 104.8	46.2 46.9	45.5 45.3	14.5 14.6	55.2, 101.0 55.2, 56.2, 60.8		81b 81b
																						(cont'd)

MAGNETIC RESONANCE IN CHEMISTRY, VOL. 23, NO. 6, 1985 415

Table 1. (continued)																								
Substance	ដ	2 C-3	5	C-5	9-0 -0	C-7	နို	6-0	C-10	۔ ن	C X	3. C-1	r, C-5	C é	C-1"	C-2	C-3"	C-4"	C-5″	් ක ර	7" C-6	" C-9"	ocH3	Ref.
 6. Miscellaneous lignans. 6.1. Flavonolignan: 257 Silychristin 258 Silychristin acetate 	8883 8883	8.5 72. 1.3 71.6 1.9 73.2	1 197. 6 2 185.	3 163.4 163.5 1 151.5	6 96.6 3 95.9 3 111.4	167.0 156.7 156.4	95.2 95.0 109.0	162.6 162.5 166.4	100.5 1 100.4 1 110.7 1	29.0 1 29.0 1 28.6 1	15.3 14 15.3 14 22.7 13	17.6 147 17.5 147 29.7 151	.4 129. .0 129. .39.	9 115.1 9 115.1 9 123.0	8 132.6 6 132.4 0 139.4	110.2 110.4 109.6	147.4 146.3 151.5	140.4 140.6 139.7	115.1 1 115.3 1 121.3 1	18.7 8 18.6 8 17.6 8	7.3 6.9 5.5 8.3 51	(7 63.2 (3 62.9 (0 65.2	∞ ∞ ∞ ∞	6a 6a 85
259 Anhydrosilychristin 260 Anhydrosilychristin acetate	88	3.5 71.5 .4 73.6	9 197. 6 185.	6 163. 9 151.4	3 96.1 4 111.3	166.8 156.4	95.0 109.1	162.5 162.5	100.5 1 110.7 1	29.4	09.8 15 16.1 14	50.9 141 10.1 152	.6 122.	0 110.(3 119.5	0 132.5 9 134.9	110.4 109.3	147.8 151.3	147.1 140.1	115.9 1 123.1 1	19.7 14 17.2 14	1.7 109 5.2 112	.5 0.9.3	∞ ∞ 	ga Qa
261 Isohydnocarpin	в 9 29	1.7 103.	8 181.	7 157.	4 99.0	161.6 165.0	94.0 94.0	164.1 161.6	103.8	123.6 1	16.6 13	30.7 141	1.6 145. 0 115	2 114.	4 132.0	110.4	147.8	147.7	115.7 1	19.2 8	0.9 55	62.9 62.9	55.8 8 55.9 8	5
263 Silandrin	8 8 6 9 8 6	8.1 41.5 0.0	9 195.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.4 0.00 0.00 0.00	166.6	95.0 95.0	162.5	101.8	131.6	14.9		3.6 115. 1.6 115.	4 119.	1 127.4	112.2	147.6	147.1	116.5	20.4	2 L J 2	.0.33.0 	55.9 8 9	2 QQ I
265 Methoxyhydnocarpin 265 Methoxyhydnocarpin	в 1 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3	1.2 103. 1.3 103.1	8 181. 8 181.	0 15/. 7 157.	2 00 2 00 2 00	161.4 161.4	93.9 94.0	162.8 163.0	103.8 1	23.6	19.3 11 04.1 14	16./ 14/ 19.0 136	2.0 144.	3 108. 14.	1 127.0	112.0	147.7	147.2	115.4	20.6 7	5.7 78	1.1 59.6	55.8 8 56.0 8	2 12
266 Hydnowightin	B 164	1.1 103.	9 180.	4 157.	7 98.8	161.5	93.8 20.0	156.9	103.9 1	1 1.27.1	12.1 14	15.3 147	.3 115.	5 113.	4 127.1	113.2	147.8	147.2	132.5 1	19.2 7	6.1 7	.8 59.8	55.6 8	
26/ Neohydnocarpin 269 Silvmonin	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	но 104. г. 30.	8 180. 6 195.	163/		161.3 166.6	8.05 7	161.3	101.8	20.3	13.7 14 47.6 0	34- 7.74 20-20-30	5.2 119. 5.2 44.	2 123.	8 140 3	112.0	147.3	147.0	115.7	2/12 20 E 4	90 - C. C.	1 202 2	20.1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	≥ ¤
269 Silydianin	а 8 8		8 196 196	4 163.	- 86.1	166.8	95.0	161.9	100.2	32.9	48.9	96.6 201	с ю 14	0 124.0	139.4	112.4	147.0	144.9	114.8	20.8 5	- 6.6 - 6.6	0 72.7	55.4 8	2 00
270 Isosilybin	в 8	2.4 71.	4 197.	4 163.	1 95.9	166.6	94.9	162.2	100.3	30.1	16.2 14	143	116.	2 120.	7 127.2	111.5	147.4	146.8	115.1 1	20.8	7.9 7.9	.7 60.0	55.6 8	g
	Ċ	ن ج	, ,	8 0	4	C-4a	C-4b	22 C	90	C-7	6 C	C-8a	6-0 0	C-9a	C-1,	м С	с. С	4	C-5'	ن بور بور	-7' C-8'	0-9 0-	och _a Re	ц.
6.2. Xanthonolignan: 271 Kielcorin	ж 8	6.4 145	5.6 13	39.4	32.3	141.1	155.1	117.9	134.5	124.1	125.7	120.6	174.5	113.7	126.5	112.0	147.6	147.2	115.3	120.7 76	3.4 77.8	29.8	55.6 90	Ja
	Ċ	ٺ ج	ņ	4	C-5	9 0	C-7	8 5	6-0	C-10	- ,	C-2	С-З	4 0	C-E	C-6	C-7	۲ 8	ۍ م	осн	m	ococH ₃	Re	÷.
6.3. Coumarinolignan: 272 Cleomiscosin A	с 16(3.8 113	3.6 14	14.5	01.1	146.3	138.4	133.0	139.3	111.9	127.5	112.3	150.0	149.0	116.6	121.7	77.5	79.9	60.7	55.8, 5	6.2	Į	91	
273 Cleomiscosin A	G 16(0.7 118	3.3 14	44.5 1	01.0	146.3	138.2	132.0	139.2	112.2	129.1	111.6	150.1	149.6	113.8	121.0	77.3	79.7	60.6	55.7, 5 64.4	6.1, 14 9	[6	
274 Cleomiscosin A diaretate	A 16(J.4 114	4.4 12	13.5	. 00.5	145.8	136.9	133.5	140.8	111.9	131.7	111.5	151.7	138.8	123.3	119.9	76.7	75.1	62.4	56.0, 56	6.3	68.5, 170. 20.6	2, 91,	92
275 Cleomiscosin B	G 16C	113	3.8 14	14.4 1	01.2	146.2	138.1	133.2	139.4	111.8	127.5	112.3	150.1	149.1	116.5	121.7	77.1	80.2	61.1	55.9, 5(6.1	ļ	92	
276 Cleomiscosin B diacetate	A 16(0.4 114	4.3 14	43.5 1	8.00	145.7	136.3	132.1	140.7	111.8	133.5	111.3	151.6	138.8	123.2	119.8	76.0	75.6	62.4	56.0, 56	6.4	68.6, 170. 20.6	2, 92	
277 Aqillochin diacetate	A 160	0.2 114	4.1 14	13.5	01.1	45.8	36.9	131.6	145.7	111.8	133.1	104.5	152.7	138.7	152.7	104.5	77.0	75.0	62.3	56.2	-	68.2, 170. 21.0, 21.	1, 93 2	
^a Symbols for aryl groups and s	ugars use	ed in stru	uctural	formula	le in tex	t for the	compo	unds lis	ted in Ta	able 1:														

Angeloyl Benzoyl Catechyl (3,4-dihydroxyphenyl) Catechyl Actatek (3,4-diacetoxyphenyl) Catechyl Actatek (3,4-diacetoxyphenyl) 4-Hydroxy-3,5-dimethoxyphenyl Guaicyl (4,4-hydroxy-3-methoxyphenyl) Guaicyl Actatek (4-acetoxy-3-methoxyphenyl) 3-Methoxy-4,5-methylenedioxyphenyl Phenyl Piperonyl (3,4-methylenedioxyphenyl) Piperonyl (3,4-dimethoxyphenyl) Tri-o-methylpyrogaliyl Veraryl (3,4-dimethoxyphenyl) 2,3,4,6-fetracetylglucose Xylose Ang Angelovi Benz Angelovi Benzovi Catechyl (3,4-dihydroxyphenyl) Hd 4-Hydroxy-3,5-dimethoxyphenyl) Hd 4-Hydroxy-3,5-dimethoxyphenyl Guaicyl (4-hydroxy-3-methoxyphenyl) Guac Guaicyl (4-hydroxy-3-methoxyphenyl) Mp 3-Methoxy-4,5-methylenedioxyphenyl Phenyl 7,4-5-methylenedioxyphenyl Phenyl 7,4-6-methylpyrogallyl Ve Veratryl (3,4-dimethoxyphenyl) Glu Guacs GluCOAcl, 2,3,4,6-tetracetylglucose Xyl (OAc), 2,3,4-triacetylylose Xyl(OAc), 2,3,4-triacetylylose

- 1. P. K. Agrawal, S. B. Singh and R. S. Thakur, Indian J. Pharm. Sci. 46, 158 (1984) (Studies on Lignan and Neolignans, Part 6).
- (a) R. D. Haworth, Annu. Rep. Prog. Chem. 33, 266 (1936);
 (b) R. D. Haworth, J. Chem. Soc. 448 (1942).
 R. S. McCredie, E. Ritchie and W. C. Taylor, Aust. J. Chem.
- 22, 1011 (1969).
- 4. O. R. Gottlieb, Phytochemistry 11, 1537 (1972).
- 5. O. R. Gottlieb, 'Neolignans,' in Progress in the Chemistry of Organic Natural Products, edited by W. Herz, H. Grisebach and G. W. Kirby, Springer Verlag, Vienna, 35, 1 (1978)
- 6. C. B. S. Rao, The Chemistry of Lignans. Andhra University Press, Andhra, India (1978).
- 7. (a) J. R. Hartwell, Cancer Treat. Rep. 60, 1031 (1976); A. S. Barclay and R. E. Perdue, Jr, Cancer Treat. Rep. 60, 1081 (1976); M. M. Badawi, A. A. Seida, A. D. Kinghorn, G. A. Cordell and N. R. Farnsworth, J. Nat. Prod. 43, 331 (1981); (b) A. Kato, Y. Hashimoto and M. Kidokoro, J. Nat. Prod. 42, 159 (1979); (c) T. Nikaido, T. Ohmoto, T. Kinoshita, U. Sankawa, S. Nishibe and S. Hisada, Chem. Pharm. Bull. 29, 3586 (1981); (d) T. Namba, M. Tsunezuka and M. Hattori, Planta Med. 44, 100 (1982); (e) Y. Kumada, H. Naganawa, H. Tinuma, M. Matsuzaki, T. Takeuchi and H. Umezawa, J. Antibiot. 29, 8821 (1976); Y. Kumada, H. Naganawa, T. Takeuchi, H. Yamashita and K. Watanabe, J. Antibiot. **31**, 105 (1978); (f) T. Markkanen, M. L. Makinen, E. Maunuksela and P. Himanen, Drug Exp. Clin. Res. 7, 711 (1981); (g) T. J. Mabry and A. Ulubelen, J. Agric. Food Chem. 28, 188 (1980).
- 8. (a) S. R. Stitch, P. D. Smith, D. Illingworth and K. Toumba, J. Endocrinol. 85, 23 (1980); (b) K. D. R. Setchell, R. Bull and H. Adlercreutz, J. Steroid Biochem. 12, 375 (1979); (c) K. D. R. Setchell, A. M. Lawson, M. Axelson and H. Adlercreutz, Res. Steroids 9, 207 (1980); (d) K. D. R. Setchell, A. M. Lawson, F. L. Mitchell, H. Adlercreutz, D. N. Kirk and M. Axelson, Nature (London) 287, 740 (1980).
- 9. (a) H. Erdtman, in Morderne Methoden der Pflanzenanalyse, edited by K. Peach and M. V. Tracy, Vol. III, P. 428. Springer Verlag, Berlin (1955); (b) W. M. Hearson and W. S. Macgregor, Chem. Rev. 55, 957 (1955); (c) W. Karrer, Konstitution und Vorkommen der Organischen Pflanzenstoff. Birkhauser-Verlag, Basle, Stuttgart (1958); (d) M. S. Adjangba, Bull. Soc. Chim. Fr. 2344 (1963); (e) K. Weinges and R. Spaning, in Oxidative Coupling of Phenols. Marcel Dekker, New York (1967); (f) R. Ekman, Holzforschung 30, 79 (1976).
- 10. R. S. Ward, Chem. Soc. Rev. 11, 75 (1982).
- 11. J. B. Stothers, Carbon-13 NMR Spectroscopy. Academic Press, New York and London (1972). 12. E. Breitmaier and W. Voelter, ¹³C NMR spectroscopy, 2nd
- ed. Verlag Chemie, Weinheim (1978). 13. F. W. Wehrli and T. Nishida, 'The Use of ¹³C Nuclear
- Magnetic Resonance Spectroscopy in Natural Products Chemistry,' in Progress in the Chemistry of Organic Natural Products, edited by W. Herz, H. Grisebach and G. W. Kirby, Springer Verlag, Vienna, 36, 1 (1979).
 14. G. C. Levy, R. L. Lichter and G. L. Nelson, Carbon-13
- Nuclear Magnetic Resonance Spectroscopy, 2nd ed. Wiley, New York (1980).
- 15. M. Shamma and D. M. Hindenlang, Carbon-13 NMR Shift Assignments of Amines and Alkaloids. Plenum Press, New York and London (1979).
- 16. Ch. LeCocq and J. Y. Lallemand, J. Chem. Soc., Chem. Commun. 150 (1981); D. J. Cookson and B. E. Smith, Org. Magn. Reson. 16, 111 (1981); D. W. Brown, T. Nakashima and D. L. Rabenstein, J. Mag. Reson. 45, 302 (1981).
- 17. J. N. Shoolery, J. Nat. Prod. 47, 226 (1984).
- 18. H. J. Schneider and P. K. Agrawal, Tetrahedron, 40, 1025 (1984).
- 19. H. D. Lüdemann and H. Nimz, Makromol. Chem. 175, 2393 (1974).
- 20. S. F. Fonseca, J. P. Campello, L. E. S. Barata and E. A. Ruveda, Phytochemistry 17, 499 (1978).

- 21. S. F. Fonseca, L. T. Nielsen and E. A. Ruveda, Phytochemistry 18, 1703 (1979).
- 22. (a) R. S. Ward, P. Satyanarayana, L. R. Row and B. V. G. Rao, Tetrahedron Lett. 3043 (1979); (b) F. G. Morin, W. J. Horton, D. M. Grant, D. K. Dalling and R. J. Pugmire, J. Am. Chem. Soc. 105, 3848 (1983).
- 23. (a) A. S. R. Anjaneyulu, P. A. Ramaiah, L. R. Row, R. Venkateswarlu, A. Pelter and R. S. Ward, Tetrahedron 37, 3641 (1981); (b) M. H. Bhadbade, G. S. R. Subbarao and K. Venkatesan, Tetrahedron Lett. 3097 (1980); (c) P. A. Ganeshpure, G. E. Schneiders and R. Stevenson, Tetrahedron Lett. 393 (1981); G. E. Schneiders and R. Stevenson, J. Chem. Soc., Perkin Trans. 1 999 (1982).
- 24. A. Patra and A. K. Mitra, Indian J. Chem. 17B, 412 (1979).
- 25. (a) S. Yamamura, M. Niwa, M. Monoyama and Y. Terada, Tetrahedron Lett. 4891 (1978); (b) S. Yamamura, N. Niwa, Y. Terada and M. Nonoyama, Bull. Chem. Soc. Jpn. 55, 3573 (1982); (c) E. L. Eliel and K. M. Pietrusiewicz, Org. Mag. Reson. 13, 193 (1980). 26. E. Wenkert, H. E. Gottlieb, O. R. Gottlieb, M. O. S. Pereira
- and M. D. Formiga, Phytochemistry 15, 1547 (1976).
- 27. S. R. Stitch, J. K. Toumba, M. B. Groen, C. W. Funke, J. Leemhuis, J. Vink and G. F. Woods, Nature (London) 287, 738 (1980).
- 28. (a) S. Nishibe, M. Chiba, A. Sakushima, S. Hisada, S. Yamanouchi, M. Takido, U. Sankawa and A. Sakakibara, Chem. Pharm. Bull. 28, 850 (1980); (b) D. G. Turabelidze, G. A. Mikaya, E. P. Kemertelidze and N. S. Wulfson, Bioorg. Chim. 8, 695 (1982); (c) J. Harmatha, M. Budesinsky and A. Trka, Collect. Czech. Chem. Commun. 47, 644 (1982).
- 29. S. Nishibe, K. Okabe, and S. Hisada, Chem. Pharm. Bull. 29, 2078 (1981).
- 30. R. W. Miller, J. L. McLaughlin, R. G. Powell, R. D. Plattner, D. Weisleder and C. R. Smith, Jr, J. Nat. Prod. 45, 78 (1982)
- 31. G. A. Mikaya, D. G. Turabelidze, E. P. Kemertelidze and N. S. Wulfson, Planta Med. 43, 378 (1981).
- 32. (a) S. F. Fonseca, L. E. S. Barata, E. A. Ruveda and P. M. Baker, Can. J. Chem. 57, 441 (1979); (b) H. Suzuki, K. H. Lee, M. Haruna, T. lida, K. Ito and H. C. Huang, *Phytochemistry* **21**, 1824 (1982).
- 33. P. W. Lequesne, J. E. Larrahondo and R. F. Raffauf, J. Nat. Prod. 43, 353 (1980).
- 34. A. Hernandez, C. Pascual and S. Valverde, Phytochemistry 20, 181 (1981).
- 35. (a) R. Cooper, H. E. Gottlieb, D. Lavie and E. C. Levy, Tetrahedron 35, 861 (1979); (b) K. V. Sarkanen and A. F. A. Wallis, J. Heterocycl. Chem. 10, 1025 (1973).
- 36. (a) K. Tomioka and K. Koga, Heterocycles 12, 1523 (1979); (b) A. Accary, J. Huet, Y. Infarnet and J. C. Duplan, Org. Magn. Reson. 11, 287 (1978); E. L. Eliel, V. S. Rao and K. M. Pietrusiewicz, Org. Magn. Reson. 12, 461 (1979).
- A. S. R. Anjaneyulu, K. J. Rao, V. K. Rao, L. R. Row, C. Subramanyam, A. Pelter and R. S. Ward, *Tetrahedron* 31, 1277 (1975).
- A. S. R. Anjaneyulu, A. M. Rao, V. K. Rao, L. R. Row, A. 38. Pelter and R. S. Ward, Tetrahedron Lett. 1803 (1975)
- 39. A. Pelter, R. S. Ward, E. V. Rao and K. V. Sastry, Tetrahedron 32, 2783 (1976).
- 40. A. S. R. Anjaneyulu, P. A. Ramaiah, L. R. Row, A. Pelter and R. S. Ward, Tetrahedron Lett. 2961 (1975).
- C. B. S. Rao, The Chemistry of Lignans, pp. 254-259. 41. Andhra University Press, Andhra, India (1978).
- 42. A. S. R. Anjaneyulu, A. M. Rao, V. K. Rao, L. R. Row, A. Pelter and R. S. Ward, Tetrahedron 33, 133 (1977).
- 43. M. Chiba, K. Okabe, S. Hisada, K. Shima, T. Takemoto and S. Nishibe, Chem. Pharm. Bull. 27, 2868 (1979)
- 44. M. Chiba, S. Hisada, S. Nishibe and H. Thieme, Phytochemistry 19, 335 (1980).
- 45. R. K. Chaudhuri and O. Sticher, Helv. Chim. Acta 64, 9 (1981).
- 46. (a) S. D. Jolad, J. J. Hoffmann, J. R. Cole, M. S. Tempesta and R. B. Bates, J. Org. Chem. 45, 1327 (1980); (b) M. A. M. Nawwar, J. Buddrus and H. Bauer, Phytochemistry 21,

1755 (1982); (c) A. A. Leslie Gunatilaka, A. M. Y. Jasmin DeSilva, S. Sotheeswaren and L. M. V. Tillekeratne, Phytochemistry 21, 2719 (1982).

- 47. A. Pelter, R. S. Ward and C. Nishino. Tetrahedron Lett. 4137 (1977).
- 48. (a) M. Chiba, S. Hisada and S. Nishibe, Chem. Pharm. Bull. 25, 3435 (1977); (b) M. Chiba, H. Tsukamoto, S. Hisada and S. Nishibe, Shoyakugaku Zasshi 33, 150 (1979); (c) A.
- Banerji and S. Pal, J. Nat. Prod. 45, 672 (1982).
 49. A. Pelter, R. S. Ward, J. Watson, P. Murray-Rust and J. Murray-Rust, Tetrahedron Lett. 1509 (1978).
- 50. K. Inoue, H. Inouye and C. C. Chen, Phytochemistry 20, 2271 (1981).
- 51. A. Pelter, R. S. Ward, D. J. Watson, P. Collins and I. T. Kay, J. Chem. Soc., Perkin Trans. 1 175 (1982).
- 52. A. Pelter, R. S. Ward, D. J. Watson and I. R. Jack, J. Chem. Soc., Perkin Trans. 1 183 (1982).
- 53. S. B. Kalidhar, M. R. Parthasarathy and P. Sharma, Phytochemistry 21, 796 (1982).
- 54. T. lida, M. Nakano and K. Ito, Phytochemistry 21, 673 (1982).
- 55. V. Vecchietti, G. Ferrari, F. Orsini and F. Pelizzoni, Phytochemistry 18, 1847 (1979).
- 56. P. M. Viviers, D. Ferreira and D. G. Roux, Tetrahedron Lett. 3773 (1979).
- 57. M. Takani, K. Ohya and K. Takahashi, Chem. Pharm. Bull. 27, 1422 (1979).
- 58. S. F. Fonseca, E. A. Ruveda and J. D. McChesney, Phytochemistry 19, 1527 (1980).
- 59. R. C. Cambie, J. C. Parnell and R. Rodrigo, Tetrahedron Lett. 1085 (1979).
- 60. (a) R. C. Cambie, G. T. M. Pang, J. C. Parnell, R. Rodrigo and R. J. Weston, Aust. J. Chem. 32, 2741 (1979); (b) F. S. El-Feraly, S. F. Cheatham, C. D. Hufford and W. S. Li, Phytochemistry 21, 1133 (1982); (c) A. A. Olaniyi, Planta Med. 44, 154 (1982).
- 61. K. K. Purushothaman and A. Sarada, Indian J. Chem. 19B, 236 (1980).
- 62. C. J. Kalley, R. C. Harruff and M. Carmack, J. Org. Chem. 41, 449 (1976).
- 63. P. K. Agrawal, R. P. Rastogi and B. G. Osterdahl, Org. Magn. Reson. 21, 119 (1983).
- 64. O. Salama, R. K. Chaudhuri and O. Sticher, Phytochemistry 20, 2603 (1981).
- 65. J. F. Bonwin, M. K. Kaouadji and A. Mariotte, Tetrahedron Lett. 4111 (1978).
- 66. M. Kaouadji, J. F. Bonvin and A. Mariotte, Z. Naturforsch., Teil C 34, 1129 (1979).
- 67. E. Stahl and I. Ittel, Planta Med. 42, 144 (1981).
- 68. S. Yamanouchi, M. Takido, U. Sankawa and S. Shibata, Yakugaku Zasshi 96, 1492 (1976).
- 69. K. Miki, T. Takehara, T. Sasaya and A. Sakakibara, Phytochemistry 19, 449 (1980).
- 70. Y. Ikeya, H. Taguchi, H. Sasaki, K. Nakajima and I. Yosioka, Chem. Pharm. Bull. 28, 2414 (1980).
- 71. Y. Ikeya, H. Taguchi and I. Yoshioka, Chem. Pharm. Bull. 28, 2422 (1980).
- (a) Y. Ikeya, H. Taguchi and I. Yoshioka, Chem. Pharm. Bull. 29, 2893 (1981); (b) Y. Ikeya, H. Taguchi and I. Yoshioka, Chem. Pharm. Bull. 30, 132 (1982); (c) Y. Ikeya, N. Ookawa, H. Taguchi and I. Yosioka, Chem. Pharm. Bull. 30, 3202 (1982); (d) Y. Ikeya, H. Taguchi and I. Yosioka, Chem. Pharm. Bull. 30, 3207 (1982).
- (a) R. C. Cambie, M. G. Dunlop, P. S. Rutledge and P. D. Woodgate, Synth. Commun. 10, 827 (1980); (b) H. E. Gottlieb, M. Mervic, E. Ghera and F. Frolow, J. Chem. Soc., Perkin Trans. 1 2353 (1982).
- 74. G. E. Schneiders and R. Stevenson, J. Org. Chem. 46, 2969 (1981).
- 75. (a) R. B. Fo, M. G. De Carvalho, O. R. Gottlieb, G. S. Maia and M. L. Da Silva, Phytochemistry 20, 2049 (1981); (b) M. Haruna, T. Koube, K. Ito and H. Murata, Chem. Pharm. Bull. 30, 1525 (1982).
- 76. L. E. S. Barata, P. M. Baker, O. R. Gottlieb and E. A.
- Ruveda, Phytochemistry 17, 783 (1978). 77. C. H. S. Andrade, R. B. Filho and O. R. Gottlieb, Phytochemistry 19, 1191 (1980).
- 78. J. B. Fernandes, M. N. S. Ribeiro, O. R. Gottlieb and H. E. Gottlieb, Phytochemistry 19, 1523 (1980).

- 79. W. S. Woo, S. S. Kang, H. Wagner and V. M. Chari, Tetrahedron Lett. 3239 (1978).
- (a) L. V. Alegrio, R. B. Fo, O. R. Gottlieb and J. G. S. Maia, Phytochemistry 20, 1963 (1981); (b) Z. S. Ferreira, N. C. Roque, O. R. Gottlieb and H. E. Gottlieb, Phytochemistry 21, 2756 (1982).
- 81. (a) R. B. Filho, R. Figliuolo and O. R. Gottlieb, Phytochemistry 19, 659 (1980); (b) T. lida, K. Ichino and K. Ito, Phytochemistry 21, 2939 (1982).
- 82. (a) F. S. El-Feraly and W. S. Li, J. Nat. Prod. 41, 442 (1978); (b) K. Ito, T. Iida, K. Ichino, M. Tsunezuka, M. Hattari and T. Namba, Chem. Pharm. Bull. **30,** 3347 (1982).
- (a) K. Kawanishi, Y. Uhara and Y. Hashimoto, Phytochemistry 21, 929 (1982); (b) S. Yamamura, Y. Terada, Y. P. Chen, M. Hong, H. Y. Hsu, K. Sasaki and Y. Hirata, Bull. Chem. Soc. Jpn. 49, 1940 (1976); (c) M. Niwa, Y. Terada, M. Monoyama and S. Yamamura, Tetrahedron Lett. 813 (1979); (d) K. Kawanishi, Y. Uhara and Y. Hashimoto, Phytochemistry 21, 2725 (1982).
- 84. W. S. Woo, S. S. Kang, O. Seligmann, V. M. Chari and H. Wagner, Tetrahedron Lett. 4255 (1980).
- 85. H. Wagner, V. M. Chari, M. Seitz and I. Riess-Maurer, Tetrahedron Lett. 381 (1978).
- 86. (a) A. Pelter, R. Hansel and M. Kaloga, Tetrahedron Lett. 4547 (1977); (b) A. Zanarotti, Heterocycles 19, 1585 (1982).
- 87. M. R. Parthasarathy, K. R. Ranganathan and D. K. Sharma, Phytochemistry 18, 506 (1979).
- I. Szilagi, P. Tetenyi, S. Antus, O. Seligmann, V. M. Chari, 88. M. Seitz and H. Wagner, Planta Med. 43, 121 (1981).
- L. Merlini, A. Zanarotti, A. Pelter, M. P. Rochefort and R. 89. Hansel, J. Chem. Soc., Perkins Trans. 1 775 (1980).
- 90. J. F. Castelao, Jr, O. R. Gottlieb, R. A. De Lima, A. A. B. Mesquita, H. E. Gottlieb and E. Wenkert, *Phytochemistry* 16, 735 (1977); H. Nielsen and P. Arends, *Phytochemistry* 17, 2040 (1978).
- 91. A. B. Ray, S. K. Chattopadhyay, C. Konno and H. Hikino, Tetrahedron Lett. 4477 (1980).
- 92. A. B. Ray, S. K. Chattopadhyay, C. Konno and H. Hikino, Heterocycles 19, 19 (1982).
- 93. P. Bhandari, P. Pant and R. P. Rastogi, Phytochemistry 21, 2147 (1982).
- 94. (a) P. K. Agrawal and R. P. Rastogi, Heterocycles 16, 2181 (1981); (b) K. R. Markham and V. M. Chari (with T. J. Mabry) in The Flavonoids, Advances in Research, edited by J. B. Harborne and T. J. Mabry, pp. 19–134. Chapman and Hall, London (1982); (c) P. K. Agrawal, M. C. Bansal and D. K. Bhardwaj, Heterocycles submitted.
- 95. (a) H. Duddeck and M. Kaiser, Org. Magn. Reson. 20, 55 (1982); (b) P. Bhandari and R. P. Rastogi, J. Sci. Ind. Res. 42, 319 (1983).
- 96. (a) P. W. Westerman, S. P. Gunasekera, M. U. S. Sultanbawa and R. Kazlauskas, Org. Magn. Reson. 9, 631 (1977); A. W. Frahm and R. K. Chaudhury, Tetrahedron 35, 2035 (1979).
- 97. P. A. J. Gorin and M. Mazurek, Can. J. Chem. 53, 1212 (1975).
- 98. R. G. S. Ritchie, N. Cyr, B. Korsch, H. J. Koch and A. S. Perlin, Can. J. Chem. 53, 1424 (1975).
- 99. P. K. Agrawal, D. C. Jain, R. K. Gupta and R. S. Thakur, Phytochemistry to be submitted.
- 100. K. Bock and C. Pedersen, J. Chem. Soc., Perkin Trans. 2, 293 (1974); K. Bock and C. Pedersen, Acta Chem. Scand., Ser. B 29, 258 (1975); P. E. Hansen, Prog. Nucl. Magn. Reson. Spectrosc., edited by J. W. Emsley, J. Feeney and L. H. Sutcliffe, Pergamon Press, Oxford, 14, 175 (1981).
- 101. K. Bock and C. Pedersen, Carbohyd. Res. 71, 319 (1979).
- 102. A. Pelter, R. S. Ward and T. I. Gray, J. Chem. Soc., Perkin Trans. 1 2475 (1976); P. K. Agrawal, unpublished results.
- 103. P. K. Agrawal, H. J. Schneider, M. S. Malik and S. N. Rastogi, Org. Magn. Reson. 21, 146 (1983); H. J. Schneider and P. K. Agrawal, Org. Magn. Reson. 22, 180 (1984); P. K. Agrawal and H. J. Schneider, in preparation.
- 104. A. Makrivaninis and J. J. Knittel, Tetrahedron Lett. 2753 (1979); A. Makriyaninis and S. Fesik, J. Am. Chem. Soc. 104, 6462 (1982).

Received 18 July 1984; accepted (revised) 7 December 1984

418 MAGNETIC RESONANCE IN CHEMISTRY, VOL. 23, NO. 6, 1985