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Abstract

Lignans are widely distributed in the plant kingdom, and display a variety of biological activities which have
attracted the attention of the scientific community for decades. Several representative compounds of the cyclolig-
nan class, such as podophyllotoxin and its semisynthetic derivative, etoposide, are currently used for the clinical
treatment of warts and malign neoplasms. Other cyclolignans are involved in antineoplastic and antiarthritic clinical
trials. Numerous podophyllotoxin-related compounds have been prepared through modification of nearly all the
positions on the cyclolignan skeleton in the search of new, more selective and less toxic anticancer drugs. Our
group has been interested in the chemoinduction of drug selectivity for several years, and we have designed and
prepared new podophyllotoxin derivatives by modification mainly on the C and D-rings of the podophyllotoxin
skeleton. Those derivatives, bearing an electrophilic functionality at C-9, have shown, both in vitro and in vivo, a
high degree of selectivity against colon carcinoma, and less cytotoxicity for other neoplastic systems and normal
kidney fibroblasts. The main structural modifications found in the literature for the podophyllotoxin skeleton in the

past decade, including those from our research group, are presented in this article.

Introduction

Lignans are a large family of natural products char-
acterized by the coupling of two phenylpropane units
(C6-C3), they constitute a complex family of skel-
etons and characteristic functionalizations which can
be subdivided into different groups, such as lignans,
neolignans or oxyneolignans, among others (Moss,
2000).

Plants containing lignans have been used for cen-
turies by many different cultures as folk remedies in
the treatment of various diseases (Ayres and Loike,
1990); for example, as cathartics, poisons, antihel-
minthic or vesicant agents, and also in the treatment
of rheumatoid arthritis or gastric ulcers, among other
diseases (Ayres and Loike, 1990). The lignans present
in these plants are often believed to be responsible for
these therapeutic properties and the spectrum of activ-
ity for lignans is continuously being expanded with

the discovery of new bioactive compounds or through
the screening of different activities for already known
compounds.

Podophyllotoxin (Figure 1), the main cyclolignan
component of Podophyllum sp. resin, has been used
as a cathartic, antirheumatic, antiviral, etc. Currently
it is used clinically for the treatment of venereal warts
caused by Papilloma virus (Beutner, 1996; Syed et al.,
1995); however, its antitumour activity is the most
attractive feature of its biological profile, and clin-
ical trials were undertaken (Hartwell and Schrecker,
1958; Stihelin and von Wartburg, 1989). In spite of
the severe gastrointestinal toxicity shown in these clin-
ical trials, podophyllotoxin became a lead compound
for the design of new drugs, searching for increased
activity, decreased toxicity and, in general, improved
pharmacological profile.

Thus, several hundred derivatives were prepared,
culminating in the clinical use of some semisynthetic
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Figure 1. Structure and numbering of podophyllotoxin and its semi-synthetic derivatives in clinical use.

analogues named etoposide (Stdhelin, 1973) and teni-
poside (Stéhelin, 1970), developed in the late 60s and
early 70s, and more recently etopophos (Hande, 1998;
Schacter, 1996; Witterland et al., 1996), a more sol-
uble prodrug of etoposide (Figure 1). Surprisingly,
these semisynthetic derivatives and the parent com-
pound podophyllotoxin showed different mechanisms
of action (Jardine et al., 1980; Ayres and Loike, 1990).

Podophyllotoxin inhibits the assembly of tubulin
into microtubules through interaction at the colchicine
binding site (tubulin normally polymerises and gives
rise to microtubules, which form the spindle during
cell division); thus, when podophyllotoxin binds tu-
bulin, cells are able to begin cell division with the pro-
phase and the corresponding differentiation of chro-
mosomes; however, those chromosomes are unable to
separate because this process depends on the forma-
tion of the spindle. The result is that the cells, which
have begun to divide, are arrested in the metaphase, re-
maining with their chromosomes joined together until
they disintegrate some hours later.

Etoposide and related analogues are not inhibitors
of microtubule formation. They induce a premitotic
blockade in the late cell cycle S stage by binding
to topoisomerase II, an enzyme required for the un-
winding of DNA during replication. Topoisomerase
II is assumed to form a transient, covalent DNA-
protein link, the cleavage complex, which allows one
double strand to pass through a temporary break into

another double strand. Etoposide binds to and sta-
bilizes the cleavage complex preventing repair of the
double-stranded breaks.

These two mechanisms are not the only ones.
There must be at least a third, undetermined, mech-
anism, because some derivatives have been reported
to be as cytotoxic as podophyllotoxin and etoposide,
but do not inhibit tubulin polymerisation and are only
very weak inhibitors of topoisomerase II in vitro (Cho
et al., 1996).

The main chemical modifications which convert
podophyllotoxin from a compound that interacts with
tubulin to one that inhibits topoisomerase I (Ayres and
Loike, 1990) are: demethylation at C-4’, epimerization
at C-7, glucosylation at OH-C-7, and acetalization of
the 4- and 6-hydroxyl groups of the glucopyranose
unit by aldehydes. Currently, these derivatives are
widely used as anticancer drugs (stomach, ovarian,
breast or small cell lung carcinomas among others)
but they still have problems such as myelosuppres-
sion, poor bioavailability or drug resistance. Because
of these problems, the aryltetralin lignans are still the
subject of extensive research looking for new drugs
with improved pharmacological profiles.
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Figure 2. A-Ring modifications.

Chemical transformations of podophyllotoxin

Considering the cyclolignan skeleton shown in Fig-
ure 1 for podophyllotoxin, every ring of the molecule
(A to E) has been modified and the main chemical
transformations reported during the last decade are re-
ferred to below; related compounds obtained by total
synthesis are for the most part not considered. The
changes reported in the literature and those performed
by our research group are summarized on the basis of
the ring modified, taking into account that it is also
possible to find simultaneous changes on more than
one ring.

Ring A

One of the most common transformations performed
on the A-ring (Figure 2) is the removal of the methyle-
nedioxy group (Terada et al., 1992; Wang et al., 1992;
Gordaliza et al., 1997a; Castro et al., 2003), keeping
the two phenolic groups free or transforming them into
ethers, esters, etc. (Maddaford and Charlton, 1993;
Kamal et al., 1995; Bertounesque et al., 1996). Ana-
logues with free phenols can bear diverse substituents
at C-7. The dioxole ring has also been transformed into
different rings such as substituted dioxoles or dioxanes
(Castro et al., 2003b), phenazines (Cho et al., 1996)
and phthalazines (Bertounesque et al., 1996).

The biological results indicate that the unsubsti-
tuted dioxole ring is important for the inhibition of
both tubulin polymerisation and topoisomerase II, al-
though the podophenazines showed high cytotoxicity
values which must be produced through a third mech-
anism, as mentioned above (Cho et al., 1996). On the
other hand, some derivatives lacking the methylenedi-
oxy group, although much less cytotoxic than podo-
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Figure 3. B-Ring modifications.

phyllotoxin, are potent immunosuppressants (Gordal-
iza et al., 1997a).

Ring B

Few modifications have been performed on the B-
ring (Figure 3). Such modifications are obviously
directed to positions C-2 and C-5 and are usually
related to the natural o- and S-peltatins and 2- and
5-methoxypodophyllotoxins (Gu et al., 2002). Some
of these compounds showed cytotoxicity values com-
parable to that of podophyllotoxin itself (San Feli-
ciano et al., 1993; Gordaliza et al., 1994). Some
glucuronides have also been prepared with the aim of
obtaining less cytotoxic prodrugs, which would be hy-
drolysed in the tissues to the active species (Nudelman
etal., 1997).

Ring C

The C-ring is one of the most widely modified, with
C-7 and C-8’ being the most important positions (Fig-
ure 4) to be changed. As mentioned before, the change
of configuration of the C-7 substituent from o to 8
gives rise to analogues with antitopoisomerase II activ-
ity and decreases the ability of the compounds to
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Figure 4. C-Ring modifications.

inhibit tubulin polymerisation. Many varied radicals
have been introduced at C-7: ethers (Gordaliza et al.,
1994; Miguel del Corral et al., 1995; Gupta et al.,
1996; Wang et al., 1997b; Bathini et al., 1999), esters
(Barro, 1996; Leav and Durst, 1996; Barajas, 1999;
Greenwald et al., 1999; Lie Ken Jie et al., 1999; Wang
et al., 2001), thioethers (Lee et al., 1997), alkylamino,
arylamino and amido groups (Wang et al., 1997a;
Damayanthi and Lown, 1998; Etievant et al., 1998;
Zhu et al., 1999; Kamal et al., 2000; Shi et al., 2001),
aziridines or triazoles (Laatsch et al., 1995), sugars
(Hashimoto et al., 1991; Allevi et al. 1993; Nudelman
et al. 1997; Daley et al., 1998), etc. Some directly
attached alkyl chains have also been introduced at that
position (Terada et al., 1993; Leav and Durst, 1996;
Utsugi et al., 1996). In general, these modifications
have been accompanied by demethylation at C-4'.
The cytotoxicity of several of these derivatives is
comparable to etoposide and congeners. Other modi-
fications of the C-ring include oxidation of the hy-
droxyl group to the corresponding ketone followed by

its derivatization to give various oximes. In general, a
loss of bioactivity is observed in these cases (Miguel
del Corral et al., 1997).

Modification at C-8' has been related to the meta-
bolic inactivation of podophyllotoxin, since the trans-
lactones are more potent than the cis-lactones (Gordal-
iza et al., 1995, 2000b). Hence, several substituents
have been introduced (Zhou et al., 1994; Laatsch et al.,
1996; Subrahmanyam et al., 1999; Van Vliet et al.,
2001) in order to avoid or minimize that epimerisation,
for example by introduction of fluorine (Van Vliet
et al., 2001).

Formation of azaderivatives (Hitotsuyanagi et al.,
1999), ring expansion (Laatsch et al., 1995) or aro-
matisation (Laatsch et al., 1995; Doré et al., 1996,
Gordaliza et al., 2000b) are other modifications that
concern the whole C-ring, but such modifications have
never succeeded in improving the properties of the
parent compound.



Ring D

The lactone ring has also been widely modified (Fig-
ure 5). Reports have mentioned introduction of some
substituents (Garcia, 2000), reduction to lactols or
furans (Subrahmanyam et al., 1999; Roulland et al.,
2000), opening of the lactone and further derivatiza-
tion (Wang et al., 1993; Merino, 1995; Subrahman-
yam et al., 1998; Tian et al., 2002), or formation
of new rings such as the neoanalogues (Gordaliza
et al. 2000a) or pyrazo and isoxazolignans reported
by our group (Gordaliza et al., 2000b). The latter
modifications lead to compounds that are less cyto-
toxic than podophyllotoxin, but are active as effective
non-cytotoxic immunosuppressants in vivo (Gordaliza
et al., 1997a).

Ring E

The trimethoxyphenyl ring has been related to active
quinone metabolites generated through the in vivo ox-
idation of this type of drug (Van Vliet et al., 2001).
Thus, the main modification reported is demethyla-
tion at C-4’, which can be seen to be very important
for topoisomerase inhibition. The resulting phenol has
also been further derivatized to easily-metabolisable
groups such as esters or phosphates (Nudelman et al.,
1997; Damayanthi and Lown, 1998; Canel et al.,
2000) (Figure 6).

Other transformations imply changes in the degree
of oxidation: catechols (Saulnier et al., 1993), ortho-
quinones (Zhang et al., 1992) and acetals (Pelter et al.
1993) have all been studied. All of these modifica-
tions led to less potent compounds than those of the
4’-demethyl series. Analogues without one, two or
even all three methoxyl groups have been synthes-
ized, in some cases with retention of the cytotoxicity
(Berkowitz et al., 1996) of the parent compounds,
which suggests that the three oxygenated functions are
not a strong determinant of cytotoxicity.

Other analogues involving the formation of
new heterocyclic systems, such as quinoxalines,
phenazines or benzodioxanes, were prepared in our
laboratory (Castro et al., 2003a). A general decrease
in the cytotoxic potency was observed.

All these structural modifications have provided
hundreds of podophyllotoxin analogues, most of
which were several times less potent than the parent
compound. However, it is worth mentioning that there
are some derivatives which have reached phase I and
phase II clinical trials (Figure 7) as antitumourals;
this is the case for NPF (Daley et al., 1997), GL331

223

RARARRARARAY
\ 7/
S w)
&{O

3
Ar 0

R1, R2 =H, OH

R = OH, OAc, CH
3 R = H, OH, OAlk, Alk

R = COOH, COOCH3, CH,0H, CHO
COO-Alk, CO-NH-Alk, CON(AIk),

R4 = CHo0H(Ac), CHO, Alk, CH,Cl, CHoN(AlK),

R, = H, OH, OAc, OCH3, =O

X =0, N-Ac, N-Ar,
Figure 5. D-Ring modifications.

(Van Vliet and Lee, 1999), NK611 (Damayanthi and
Lown, 1998), TOP-53 (Utsugi et al., 1996), and GP-
11 (Wang et al., 1993). There is also a compound in
a clinical trial as an antiarthritic (CPH-82) (Carlstrom
et al., 2000).

Preparation of selective cyclolignans

In our aim to obtain better podophyllotoxin-related
drugs, our group has been involved for several years
in the transformation of podophyllotoxin. We have
prepared a large number of cyclolignans by modifica-
tion of nearly all the rings of the skeleton, looking for
more potent, less toxic and, preferably, more selective
analogues. The plan and the preparation of selective
cyclolignans are discussed below.

Eich et al. (1991) proposed a molecular mechan-
ism for the interaction of etoposide with the cleavage
complex (DNA-Topo II). According to this hypo-
thesis, the free phenol at C-4' would interact with
DNA and the topoisomerase II would attack the
carbonyl group at C-9', suggesting that these lig-
nans could be phosphorylated by a DNA phosphate
group and could act as acylating agents for the topoi-
somerase. However, after studies with the stable
conformers found for etoposide, we felt that this mo-
lecular mechanism looks improbable. The two bulky
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Scheme 1. Interaction of cyclolignanolides and biomolecules. A) Proposal for lignan lactones as acylating agents. B) New proposal for C-9

alkylating agents based on chemical evidence.
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Scheme 2. Podophyllic aldehydes. Preparation and cytotoxicity.

groups, sugar on the upper part and the pendant tri-
methoxyphenyl at the lower part, have almost free
rotation, and thus it seemed to us that the approach of
a large biomolecule to the C-9’ carbonyl of the lignans
would be too hindered for an efficient acylation pro-
cess. On the other hand, the electronically deficient C-
9 methylene looks a more accessible position, which
could be attacked by the enzyme from the rear side
(Scheme 1). We thought that this could be the point of
interaction with the biomolecule, whether for topoi-

somerase II or for biomolecules involved in tubulin
polymerisation, and if this were to be the case, cyclo-
lignanolides should be considered as alkylating agents.
To further validate this idea, we confirmed chemically
that weak nucleophiles were able to open the strained
trans-lactone ring of podolignans (Gordaliza et al.,
1995).

The ease with which the C-9 methylene reacts
prompted us to modify the electrophilic character at
that position, and we prepared two aldehydes from
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Figure 8. Superposition of podophyllotoxin and podophyllic aldehydes 3 and 4 based on the best fit for the tricyclic systems. A) Superposition
of podophyllotoxin (black atoms) and 4 (grey atoms) matching C-9 carbons. B) Superposition of podophyllotoxin (black atoms) and 4 (grey
atoms) matching C-9” carbons. C) Superposition of podophyllotoxin (black atoms) and 3 (grey atoms).

podophyllotoxin and deoxypodophyllotoxin (Scheme
2). The lactone ring was opened under basic condi-
tions and, after formation of the methyl esters 1 and
2, the alcohols were oxidized under Swern conditions,
yielding the two podophyllic aldehydes, 3 and 4, dif-
fering only in the presence or absence of a double bond
(Gordaliza et al., 1997b).

Both aldehydes were evaluated against four tumor
cell lines and their cytotoxicity showed the relev-
ance of that double bond. While 4 was somewhat
less cyctotoxic than podophyllotoxin, 3 showed a very
interesting selectivity index [SI] of 20 against colon
carcinoma HT-29, with an ICsg (uM) in the range of
the frans-lactonic tetralins, which have always been
reported as the most potent analogues (Ayres and

Loike, 1990; Damayanthi and Lown, 1998; Gordaliza
et al., 1994; Jardine, 1980).

The differences in potency of these compounds
cannot be explained by electronic factors (4 is ex-
pected to be more electrophilic than 3 and should
therefore be more potent). However, the presence of
the double bond makes the molecule more rigid, and
geometrically more similar to trans-lactones. This can
be seen in the superposition of both aldehydes 3 and
4 with podophyllotoxin, based on the alignment of
the tetracyclic ring system (Gordaliza et al., 1997b).
Figure 8A shows the lowest energy conformation of
4 superimposed on podophyllotoxin using the ABC
rings and C-9 carbons (2/, a) as matching points: as
can be seen, the methoxycarbonyl group (b’) of 4 ap-
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Figure 9. Podophyllotoxin analogues with different degrees of oxidation at C-9 and C-9'.

pears separated from the position of the lactone (b) of
podophyllotoxin. If the C-9’ atoms (b, b) are used
as matching points, as in Figure 8B, the aldehyde
group (a’) is now displaced relative to the correspond-
ing atom (a) in podophyllotoxin. In contrast, both the
ester and aldehyde functions of the unsaturated alde-
hyde 3 lie much closer to the corresponding groups in
podophyllotoxin as can be seen in Figure 8C.

The podophyllic aldehyde 3 was submitted to the
NCT for evaluation on its 60 tumour cell line panel and
again the selectivity was observed for colon carcinoma
cell lines (Log TGI (M) = —7.0) and also for CNS and
breast cancers (Log TGI = —6.1 and —6.3, respect-
ively). Apparently it is not a strong MDR substrate
since the same potency was measured in strong MDR
and non-MDR cell lines (Log TGI (M) = — 4.0). Nor
did it affect mutant p53 cell lines and it blocked the
cell cycle at the G2/M stage, thus indicating its abil-
ity to inhibit tubulin polymerisation and consequently
displaying a mechanism of action similar to that of

podophyllotoxin. The aldehyde 3 is also able to induce
a delayed apoptosis characterized by caspase-3 activa-
tion, with a long lag between microtubule disassembly
and the onset of apoptosis (Castro et al., 2004)

With these results in hand, the podophyllic alde-
hyde 3 seemed to us a good candidate for further
manipulation and several transformations were car-
ried out, trying to modify the electrophilic character
at C-9, in order to analyze its influence on the se-
lectivity observed for aldehyde 3. Thus, the following
modifications were considered: changes in the de-
gree of oxidation of both C-9 and C-9’; formation of
vinylogues; reactions with nucleophiles or synthesis
of purinyl and other heterocyclic analogues. Most of
the compounds prepared were evaluated against neo-
plastic cells and to provide an idea of their potency and
selectivity the ICs5o (uM) for murine leukaemia P-388
and colon carcinoma HT-29 are included in the figures.
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Different degrees of oxidation at C-9 and C-9'

The degree of oxidation at both C-9 and C-9" pos-
itions was modified by means of oxidation and re-
duction reactions. Several combinations of aldehyde-
alcohol, carboxylic acid-ester, alcohol-ester, diesters,
dialdehydes or diols at these positions were prepared
(compounds 5-12, Figure 9).

The ICsg (uM) values for these derivatives indic-
ated that the potency and the selectivity were lost
except for the analogue 9 in which the potency was
maintained, while the selectivity, if anything, was
reversed, as occurred in podophyllotoxin. This res-
ult could be justified if, in the course of the as-
says, a relactonization could take place to give o-
apopicropodophyllotoxin 28, which is as potent as
podophyllotoxin (Gordaliza et al., 1994). The differ-
ence in the ICs¢ for 5 and 6 seemed to indicate that
it is not only the degree of oxidation at C-9 that is
important, but also that at C-9’.

Those analogues with a higher degree of oxidation
at C-9, such as 10 and 11 which bear a carboxylic
acid, were nearly inactive. In some ways this was to
be expected if we consider the postulated molecular
mechanism discussed above. In such derivatives C-9
is less electrophilic, and to overcome that, some acid

derivatives were prepared such as ester (12), anhyd-
rides (19, 20), amides (13-18) or lactol (21). Again
the selectivity was lost, but amides and lactol partially
recover the cytotoxicity if they are compared with the
carboxylic acid precursor 10. It can be deduced that
not only the electrophilic character of the aldehyde,
but also its accessibility (as a result of its practically
free rotation) play an important role in the observed
potency and selectivity.

Preparation of vinylogues

For the preparation of derivatives with an additional
conjugate double bond, several Wittig reactions were
performed and the extended aldehyde 22, methyl-
ketone 23, nitroderivative 24, methylester 25 and
allylic alcohols 26 and 27 were obtained (Figure 10).
In all cases, most of the selectivity and the potency
were lost.

Reactions with nucleophiles

Making use of the electrophilic character of the podo-
phyllic aldehyde, we synthesised several derivatives
by reactions with carbon nucleophiles and nitrogen
nucleophiles (Figures 11 and 12).
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Figure 13. Purinyl, pyrimidinyl and other heterocyclic derivatives of podophyllotoxin.

As C-nucleophiles, Grignard and Reformatsky re-
agents were used. In all cases a relactonization was
observed and, in some cases, after column chroma-
tography on silica gel, the migration of the double
bond to C-8-C-8’ was also observed, as in compounds
31-33. In these compounds the tetracyclic system
of podophyllotoxin is present and this is noticeable
in the bioactivity: the potency and some selectivity
were retained and the ICsg values are in the range of
podophyllotoxin. The size and the orientation of the
new substituent at C-9 seemed to be important for se-
lectivity towards the HT-29 carcinoma. The aromatic
naphthalene derivatives 34 and 35 were less potent
analogues, as previously published (Gordaliza et al.,
1994; Doré et al., 1996).

As N-nucleophiles, substituted hydrazines, hy-
droxylamines and amines were used and the corres-
ponding hydrazones 36 and 37, oximes 38 and 39 and
imines 40-54 were obtained. The imine series was the
largest one, containing aliphatic chains, aminoacids,
aromatic and heteroaromatic fragments.

As far as the ICs9 (uM) is concerned, the oximes
lost selectivity but hydrazones and imines improved
considerably upon both the potency and the selectiv-
ity of the parent podophyllic aldehyde, attaining an SI
level up to 500 (the best result being obtained with the
ethylamine derivative (Castro et al., 2004)).

Synthesis of purinyl and other heterocyclic
derivatives

Some of the anilines used to obtain the imines bear
another heteroatom (N, O or S) that can also act as
a nucleophile and add to the double bond of the ini-
tially formed imine. Therefore, we decided to bring
the process to completion to obtain the correspond-
ing benzazoles (Figure 13): benzimidazoles 55-58
from phenylendiamines, benzoxazoles 59-61 from
o-aminophenols and benzothiazoles 62—63 from o-
aminothiophenols. All of the resulting compounds lost
the selectivity and were less potent than their imine
precursors.



Other heterocycles considered for attachment to
the lignan structure were purines and pyrimidines,
systems present in important endogenous compounds
such as the nucleosides and in numerous antineo-
plastic therapeutic agents. Thus, diaminopyridine and
diaminopyrimidine were used to obtain the corres-
ponding purinyl derivatives 64—65. If the reaction is
stopped at the intermediate imine, the pyrimidinyl
analogues 66—68 were obtained.

Regarding the observed ICs values, the pyrimidinyl
analogues retained potency and selectivity, but the
purine derivative did not. Work is in progress in or-
der to introduce biological purines such as guanine or
adenine.

In summary, starting from a natural product such
as podophyllotoxin, we have prepared a cytotoxic
and selective cyclolignan, the aldehyde 3, lacking the
y-lactone ring generally considered an important fea-
ture for the bioactivity of podophyllotoxin analogues.
Chemical transformations performed on this aldehyde
have yielded derivatives in which not only the potency
was improved but also the selectivity increased con-
siderably in those analogues in which C-9 retained
its electrophilic character, as in the imines 40-54,
confirming that the carbon C-9 is an important point
in the interaction with biomolecules such as tubulin.
While the great majority of work found in the liter-
ature is oriented towards inhibitors of topoisomerase
II, studies performed with some of our derivatives
indicated that they have the same mechanism of ac-
tion as podophyllotoxin, that is, inhibition of tubulin
polymerization.
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